linux_dsm_epyc7002/drivers/ptp/ptp_clockmatrix.c
Vincent Cheng 3a6ba7dc77 ptp: Add a ptp clock driver for IDT ClockMatrix.
The IDT ClockMatrix (TM) family includes integrated devices that provide
eight PLL channels.  Each PLL channel can be independently configured as a
frequency synthesizer, jitter attenuator, digitally controlled
oscillator (DCO), or a digital phase lock loop (DPLL).  Typically
these devices are used as timing references and clock sources for PTP
applications.  This patch adds support for the device.

Co-developed-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Vincent Cheng <vincent.cheng.xh@renesas.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-03 17:35:40 -08:00

1426 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* PTP hardware clock driver for the IDT ClockMatrix(TM) family of timing and
* synchronization devices.
*
* Copyright (C) 2019 Integrated Device Technology, Inc., a Renesas Company.
*/
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/timekeeping.h>
#include "ptp_private.h"
#include "ptp_clockmatrix.h"
MODULE_DESCRIPTION("Driver for IDT ClockMatrix(TM) family");
MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL");
#define SETTIME_CORRECTION (0)
static int char_array_to_timespec(u8 *buf,
u8 count,
struct timespec64 *ts)
{
u8 i;
u64 nsec;
time64_t sec;
if (count < TOD_BYTE_COUNT)
return 1;
/* Sub-nanoseconds are in buf[0]. */
nsec = buf[4];
for (i = 0; i < 3; i++) {
nsec <<= 8;
nsec |= buf[3 - i];
}
sec = buf[10];
for (i = 0; i < 5; i++) {
sec <<= 8;
sec |= buf[9 - i];
}
ts->tv_sec = sec;
ts->tv_nsec = nsec;
return 0;
}
static int timespec_to_char_array(struct timespec64 const *ts,
u8 *buf,
u8 count)
{
u8 i;
s32 nsec;
time64_t sec;
if (count < TOD_BYTE_COUNT)
return 1;
nsec = ts->tv_nsec;
sec = ts->tv_sec;
/* Sub-nanoseconds are in buf[0]. */
buf[0] = 0;
for (i = 1; i < 5; i++) {
buf[i] = nsec & 0xff;
nsec >>= 8;
}
for (i = 5; i < TOD_BYTE_COUNT; i++) {
buf[i] = sec & 0xff;
sec >>= 8;
}
return 0;
}
static int idtcm_xfer(struct idtcm *idtcm,
u8 regaddr,
u8 *buf,
u16 count,
bool write)
{
struct i2c_client *client = idtcm->client;
struct i2c_msg msg[2];
int cnt;
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &regaddr;
msg[1].addr = client->addr;
msg[1].flags = write ? 0 : I2C_M_RD;
msg[1].len = count;
msg[1].buf = buf;
cnt = i2c_transfer(client->adapter, msg, 2);
if (cnt < 0) {
dev_err(&client->dev, "i2c_transfer returned %d\n", cnt);
return cnt;
} else if (cnt != 2) {
dev_err(&client->dev,
"i2c_transfer sent only %d of %d messages\n", cnt, 2);
return -EIO;
}
return 0;
}
static int idtcm_page_offset(struct idtcm *idtcm, u8 val)
{
u8 buf[4];
int err;
if (idtcm->page_offset == val)
return 0;
buf[0] = 0x0;
buf[1] = val;
buf[2] = 0x10;
buf[3] = 0x20;
err = idtcm_xfer(idtcm, PAGE_ADDR, buf, sizeof(buf), 1);
if (err)
dev_err(&idtcm->client->dev, "failed to set page offset\n");
else
idtcm->page_offset = val;
return err;
}
static int _idtcm_rdwr(struct idtcm *idtcm,
u16 regaddr,
u8 *buf,
u16 count,
bool write)
{
u8 hi;
u8 lo;
int err;
hi = (regaddr >> 8) & 0xff;
lo = regaddr & 0xff;
err = idtcm_page_offset(idtcm, hi);
if (err)
goto out;
err = idtcm_xfer(idtcm, lo, buf, count, write);
out:
return err;
}
static int idtcm_read(struct idtcm *idtcm,
u16 module,
u16 regaddr,
u8 *buf,
u16 count)
{
return _idtcm_rdwr(idtcm, module + regaddr, buf, count, false);
}
static int idtcm_write(struct idtcm *idtcm,
u16 module,
u16 regaddr,
u8 *buf,
u16 count)
{
return _idtcm_rdwr(idtcm, module + regaddr, buf, count, true);
}
static int _idtcm_gettime(struct idtcm_channel *channel,
struct timespec64 *ts)
{
struct idtcm *idtcm = channel->idtcm;
u8 buf[TOD_BYTE_COUNT];
u8 trigger;
int err;
err = idtcm_read(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger));
if (err)
return err;
trigger &= ~(TOD_READ_TRIGGER_MASK << TOD_READ_TRIGGER_SHIFT);
trigger |= (1 << TOD_READ_TRIGGER_SHIFT);
trigger |= TOD_READ_TRIGGER_MODE;
err = idtcm_write(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger));
if (err)
return err;
if (idtcm->calculate_overhead_flag)
idtcm->start_time = ktime_get_raw();
err = idtcm_read(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY, buf, sizeof(buf));
if (err)
return err;
err = char_array_to_timespec(buf, sizeof(buf), ts);
return err;
}
static int _sync_pll_output(struct idtcm *idtcm,
u8 pll,
u8 sync_src,
u8 qn,
u8 qn_plus_1)
{
int err;
u8 val;
u16 sync_ctrl0;
u16 sync_ctrl1;
if ((qn == 0) && (qn_plus_1 == 0))
return 0;
switch (pll) {
case 0:
sync_ctrl0 = HW_Q0_Q1_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q0_Q1_CH_SYNC_CTRL_1;
break;
case 1:
sync_ctrl0 = HW_Q2_Q3_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q2_Q3_CH_SYNC_CTRL_1;
break;
case 2:
sync_ctrl0 = HW_Q4_Q5_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q4_Q5_CH_SYNC_CTRL_1;
break;
case 3:
sync_ctrl0 = HW_Q6_Q7_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q6_Q7_CH_SYNC_CTRL_1;
break;
case 4:
sync_ctrl0 = HW_Q8_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q8_CH_SYNC_CTRL_1;
break;
case 5:
sync_ctrl0 = HW_Q9_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q9_CH_SYNC_CTRL_1;
break;
case 6:
sync_ctrl0 = HW_Q10_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q10_CH_SYNC_CTRL_1;
break;
case 7:
sync_ctrl0 = HW_Q11_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q11_CH_SYNC_CTRL_1;
break;
default:
return -EINVAL;
}
val = SYNCTRL1_MASTER_SYNC_RST;
/* Place master sync in reset */
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
if (err)
return err;
err = idtcm_write(idtcm, 0, sync_ctrl0, &sync_src, sizeof(sync_src));
if (err)
return err;
/* Set sync trigger mask */
val |= SYNCTRL1_FBDIV_FRAME_SYNC_TRIG | SYNCTRL1_FBDIV_SYNC_TRIG;
if (qn)
val |= SYNCTRL1_Q0_DIV_SYNC_TRIG;
if (qn_plus_1)
val |= SYNCTRL1_Q1_DIV_SYNC_TRIG;
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
if (err)
return err;
/* Place master sync out of reset */
val &= ~(SYNCTRL1_MASTER_SYNC_RST);
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
return err;
}
static int idtcm_sync_pps_output(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
u8 pll;
u8 sync_src;
u8 qn;
u8 qn_plus_1;
int err = 0;
u16 output_mask = channel->output_mask;
switch (channel->dpll_n) {
case DPLL_0:
sync_src = SYNC_SOURCE_DPLL0_TOD_PPS;
break;
case DPLL_1:
sync_src = SYNC_SOURCE_DPLL1_TOD_PPS;
break;
case DPLL_2:
sync_src = SYNC_SOURCE_DPLL2_TOD_PPS;
break;
case DPLL_3:
sync_src = SYNC_SOURCE_DPLL3_TOD_PPS;
break;
default:
return -EINVAL;
}
for (pll = 0; pll < 8; pll++) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
if (pll < 4) {
/* First 4 pll has 2 outputs */
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
} else {
qn_plus_1 = 0;
}
if ((qn != 0) || (qn_plus_1 != 0))
err = _sync_pll_output(idtcm, pll, sync_src, qn,
qn_plus_1);
if (err)
return err;
}
return err;
}
static int _idtcm_set_dpll_tod(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum hw_tod_write_trig_sel wr_trig)
{
struct idtcm *idtcm = channel->idtcm;
u8 buf[TOD_BYTE_COUNT];
u8 cmd;
int err;
struct timespec64 local_ts = *ts;
s64 total_overhead_ns;
/* Configure HW TOD write trigger. */
err = idtcm_read(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (err)
return err;
cmd &= ~(0x0f);
cmd |= wr_trig | 0x08;
err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (err)
return err;
if (wr_trig != HW_TOD_WR_TRIG_SEL_MSB) {
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
if (err)
return err;
}
/* ARM HW TOD write trigger. */
cmd &= ~(0x08);
err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (wr_trig == HW_TOD_WR_TRIG_SEL_MSB) {
if (idtcm->calculate_overhead_flag) {
total_overhead_ns = ktime_to_ns(ktime_get_raw()
- idtcm->start_time)
+ idtcm->tod_write_overhead_ns
+ SETTIME_CORRECTION;
timespec64_add_ns(&local_ts, total_overhead_ns);
idtcm->calculate_overhead_flag = 0;
}
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
}
return err;
}
static int _idtcm_settime(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum hw_tod_write_trig_sel wr_trig)
{
struct idtcm *idtcm = channel->idtcm;
s32 retval;
int err;
int i;
u8 trig_sel;
err = _idtcm_set_dpll_tod(channel, ts, wr_trig);
if (err)
return err;
/* Wait for the operation to complete. */
for (i = 0; i < 10000; i++) {
err = idtcm_read(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_CTRL_1, &trig_sel,
sizeof(trig_sel));
if (err)
return err;
if (trig_sel == 0x4a)
break;
err = 1;
}
if (err)
return err;
retval = idtcm_sync_pps_output(channel);
return retval;
}
static int idtcm_set_phase_pull_in_offset(struct idtcm_channel *channel,
s32 offset_ns)
{
int err;
int i;
struct idtcm *idtcm = channel->idtcm;
u8 buf[4];
for (i = 0; i < 4; i++) {
buf[i] = 0xff & (offset_ns);
offset_ns >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_OFFSET,
buf, sizeof(buf));
return err;
}
static int idtcm_set_phase_pull_in_slope_limit(struct idtcm_channel *channel,
u32 max_ffo_ppb)
{
int err;
u8 i;
struct idtcm *idtcm = channel->idtcm;
u8 buf[3];
if (max_ffo_ppb & 0xff000000)
max_ffo_ppb = 0;
for (i = 0; i < 3; i++) {
buf[i] = 0xff & (max_ffo_ppb);
max_ffo_ppb >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
PULL_IN_SLOPE_LIMIT, buf, sizeof(buf));
return err;
}
static int idtcm_start_phase_pull_in(struct idtcm_channel *channel)
{
int err;
struct idtcm *idtcm = channel->idtcm;
u8 buf;
err = idtcm_read(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL,
&buf, sizeof(buf));
if (err)
return err;
if (buf == 0) {
buf = 0x01;
err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
PULL_IN_CTRL, &buf, sizeof(buf));
} else {
err = -EBUSY;
}
return err;
}
static int idtcm_do_phase_pull_in(struct idtcm_channel *channel,
s32 offset_ns,
u32 max_ffo_ppb)
{
int err;
err = idtcm_set_phase_pull_in_offset(channel, -offset_ns);
if (err)
return err;
err = idtcm_set_phase_pull_in_slope_limit(channel, max_ffo_ppb);
if (err)
return err;
err = idtcm_start_phase_pull_in(channel);
return err;
}
static int _idtcm_adjtime(struct idtcm_channel *channel, s64 delta)
{
int err;
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts;
s64 now;
if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS) {
err = idtcm_do_phase_pull_in(channel, delta, 0);
} else {
idtcm->calculate_overhead_flag = 1;
err = _idtcm_gettime(channel, &ts);
if (err)
return err;
now = timespec64_to_ns(&ts);
now += delta;
ts = ns_to_timespec64(now);
err = _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB);
}
return err;
}
static int idtcm_state_machine_reset(struct idtcm *idtcm)
{
int err;
u8 byte = SM_RESET_CMD;
err = idtcm_write(idtcm, RESET_CTRL, SM_RESET, &byte, sizeof(byte));
if (!err)
msleep_interruptible(POST_SM_RESET_DELAY_MS);
return err;
}
static int idtcm_read_hw_rev_id(struct idtcm *idtcm, u8 *hw_rev_id)
{
return idtcm_read(idtcm,
GENERAL_STATUS,
HW_REV_ID,
hw_rev_id,
sizeof(u8));
}
static int idtcm_read_bond_id(struct idtcm *idtcm, u8 *bond_id)
{
return idtcm_read(idtcm,
GENERAL_STATUS,
BOND_ID,
bond_id,
sizeof(u8));
}
static int idtcm_read_hw_csr_id(struct idtcm *idtcm, u16 *hw_csr_id)
{
int err;
u8 buf[2] = {0};
err = idtcm_read(idtcm, GENERAL_STATUS, HW_CSR_ID, buf, sizeof(buf));
*hw_csr_id = (buf[1] << 8) | buf[0];
return err;
}
static int idtcm_read_hw_irq_id(struct idtcm *idtcm, u16 *hw_irq_id)
{
int err;
u8 buf[2] = {0};
err = idtcm_read(idtcm, GENERAL_STATUS, HW_IRQ_ID, buf, sizeof(buf));
*hw_irq_id = (buf[1] << 8) | buf[0];
return err;
}
static int idtcm_read_product_id(struct idtcm *idtcm, u16 *product_id)
{
int err;
u8 buf[2] = {0};
err = idtcm_read(idtcm, GENERAL_STATUS, PRODUCT_ID, buf, sizeof(buf));
*product_id = (buf[1] << 8) | buf[0];
return err;
}
static int idtcm_read_major_release(struct idtcm *idtcm, u8 *major)
{
int err;
u8 buf = 0;
err = idtcm_read(idtcm, GENERAL_STATUS, MAJ_REL, &buf, sizeof(buf));
*major = buf >> 1;
return err;
}
static int idtcm_read_minor_release(struct idtcm *idtcm, u8 *minor)
{
return idtcm_read(idtcm, GENERAL_STATUS, MIN_REL, minor, sizeof(u8));
}
static int idtcm_read_hotfix_release(struct idtcm *idtcm, u8 *hotfix)
{
return idtcm_read(idtcm,
GENERAL_STATUS,
HOTFIX_REL,
hotfix,
sizeof(u8));
}
static int idtcm_read_pipeline(struct idtcm *idtcm, u32 *pipeline)
{
int err;
u8 buf[4] = {0};
err = idtcm_read(idtcm,
GENERAL_STATUS,
PIPELINE_ID,
&buf[0],
sizeof(buf));
*pipeline = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
return err;
}
static int process_pll_mask(struct idtcm *idtcm, u32 addr, u8 val, u8 *mask)
{
int err = 0;
if (addr == PLL_MASK_ADDR) {
if ((val & 0xf0) || !(val & 0xf)) {
dev_err(&idtcm->client->dev,
"Invalid PLL mask 0x%hhx\n", val);
err = -EINVAL;
}
*mask = val;
}
return err;
}
static int set_pll_output_mask(struct idtcm *idtcm, u16 addr, u8 val)
{
int err = 0;
switch (addr) {
case OUTPUT_MASK_PLL0_ADDR:
SET_U16_LSB(idtcm->channel[0].output_mask, val);
break;
case OUTPUT_MASK_PLL0_ADDR + 1:
SET_U16_MSB(idtcm->channel[0].output_mask, val);
break;
case OUTPUT_MASK_PLL1_ADDR:
SET_U16_LSB(idtcm->channel[1].output_mask, val);
break;
case OUTPUT_MASK_PLL1_ADDR + 1:
SET_U16_MSB(idtcm->channel[1].output_mask, val);
break;
case OUTPUT_MASK_PLL2_ADDR:
SET_U16_LSB(idtcm->channel[2].output_mask, val);
break;
case OUTPUT_MASK_PLL2_ADDR + 1:
SET_U16_MSB(idtcm->channel[2].output_mask, val);
break;
case OUTPUT_MASK_PLL3_ADDR:
SET_U16_LSB(idtcm->channel[3].output_mask, val);
break;
case OUTPUT_MASK_PLL3_ADDR + 1:
SET_U16_MSB(idtcm->channel[3].output_mask, val);
break;
default:
err = -EINVAL;
break;
}
return err;
}
static int check_and_set_masks(struct idtcm *idtcm,
u16 regaddr,
u8 val)
{
int err = 0;
if (set_pll_output_mask(idtcm, regaddr, val)) {
/* Not an output mask, check for pll mask */
err = process_pll_mask(idtcm, regaddr, val, &idtcm->pll_mask);
}
return err;
}
static void display_pll_and_output_masks(struct idtcm *idtcm)
{
u8 i;
u8 mask;
dev_dbg(&idtcm->client->dev, "pllmask = 0x%02x\n", idtcm->pll_mask);
for (i = 0; i < MAX_PHC_PLL; i++) {
mask = 1 << i;
if (mask & idtcm->pll_mask)
dev_dbg(&idtcm->client->dev,
"PLL%d output_mask = 0x%04x\n",
i, idtcm->channel[i].output_mask);
}
}
static int idtcm_load_firmware(struct idtcm *idtcm,
struct device *dev)
{
const struct firmware *fw;
struct idtcm_fwrc *rec;
u32 regaddr;
int err;
s32 len;
u8 val;
u8 loaddr;
dev_dbg(&idtcm->client->dev, "requesting firmware '%s'\n", FW_FILENAME);
err = request_firmware(&fw, FW_FILENAME, dev);
if (err)
return err;
dev_dbg(&idtcm->client->dev, "firmware size %zu bytes\n", fw->size);
rec = (struct idtcm_fwrc *) fw->data;
if (fw->size > 0)
idtcm_state_machine_reset(idtcm);
for (len = fw->size; len > 0; len -= sizeof(*rec)) {
if (rec->reserved) {
dev_err(&idtcm->client->dev,
"bad firmware, reserved field non-zero\n");
err = -EINVAL;
} else {
regaddr = rec->hiaddr << 8;
regaddr |= rec->loaddr;
val = rec->value;
loaddr = rec->loaddr;
rec++;
err = check_and_set_masks(idtcm, regaddr, val);
}
if (err == 0) {
/* Top (status registers) and bottom are read-only */
if ((regaddr < GPIO_USER_CONTROL)
|| (regaddr >= SCRATCH))
continue;
/* Page size 128, last 4 bytes of page skipped */
if (((loaddr > 0x7b) && (loaddr <= 0x7f))
|| ((loaddr > 0xfb) && (loaddr <= 0xff)))
continue;
err = idtcm_write(idtcm, regaddr, 0, &val, sizeof(val));
}
if (err)
goto out;
}
display_pll_and_output_masks(idtcm);
out:
release_firmware(fw);
return err;
}
static int idtcm_pps_enable(struct idtcm_channel *channel, bool enable)
{
struct idtcm *idtcm = channel->idtcm;
u32 module;
u8 val;
int err;
/*
* This assumes that the 1-PPS is on the second of the two
* output. But is this always true?
*/
switch (channel->dpll_n) {
case DPLL_0:
module = OUTPUT_1;
break;
case DPLL_1:
module = OUTPUT_3;
break;
case DPLL_2:
module = OUTPUT_5;
break;
case DPLL_3:
module = OUTPUT_7;
break;
default:
return -EINVAL;
}
err = idtcm_read(idtcm, module, OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
if (enable)
val |= SQUELCH_DISABLE;
else
val &= ~SQUELCH_DISABLE;
err = idtcm_write(idtcm, module, OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
return 0;
}
static int idtcm_set_pll_mode(struct idtcm_channel *channel,
enum pll_mode pll_mode)
{
struct idtcm *idtcm = channel->idtcm;
int err;
u8 dpll_mode;
err = idtcm_read(idtcm, channel->dpll_n, DPLL_MODE,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT);
dpll_mode |= (pll_mode << PLL_MODE_SHIFT);
channel->pll_mode = pll_mode;
err = idtcm_write(idtcm, channel->dpll_n, DPLL_MODE,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
return 0;
}
/* PTP Hardware Clock interface */
static int idtcm_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
u8 i;
bool neg_adj = 0;
int err;
u8 buf[6] = {0};
s64 fcw;
if (channel->pll_mode != PLL_MODE_WRITE_FREQUENCY) {
err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY);
if (err)
return err;
}
/*
* Frequency Control Word unit is: 1.11 * 10^-10 ppm
*
* adjfreq:
* ppb * 10^9
* FCW = ----------
* 111
*
* adjfine:
* ppm_16 * 5^12
* FCW = -------------
* 111 * 2^4
*/
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
/* 2 ^ -53 = 1.1102230246251565404236316680908e-16 */
fcw = ppb * 1000000000000ULL;
fcw = div_u64(fcw, 111022);
if (neg_adj)
fcw = -fcw;
for (i = 0; i < 6; i++) {
buf[i] = fcw & 0xff;
fcw >>= 8;
}
mutex_lock(&idtcm->reg_lock);
err = idtcm_write(idtcm, channel->dpll_freq, DPLL_WR_FREQ,
buf, sizeof(buf));
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_gettime(channel, ts);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_settime(channel, ts, HW_TOD_WR_TRIG_SEL_MSB);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_adjtime(channel, delta);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
if (!on)
return idtcm_pps_enable(channel, false);
/* Only accept a 1-PPS aligned to the second. */
if (rq->perout.start.nsec || rq->perout.period.sec != 1 ||
rq->perout.period.nsec)
return -ERANGE;
return idtcm_pps_enable(channel, true);
default:
break;
}
return -EOPNOTSUPP;
}
static int idtcm_enable_tod(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts = {0, 0};
u8 cfg;
int err;
err = idtcm_pps_enable(channel, false);
if (err)
return err;
/*
* Start the TOD clock ticking.
*/
err = idtcm_read(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
if (err)
return err;
cfg |= TOD_ENABLE;
err = idtcm_write(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
if (err)
return err;
return _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB);
}
static void idtcm_display_version_info(struct idtcm *idtcm)
{
u8 major;
u8 minor;
u8 hotfix;
u32 pipeline;
u16 product_id;
u16 csr_id;
u16 irq_id;
u8 hw_rev_id;
u8 bond_id;
idtcm_read_major_release(idtcm, &major);
idtcm_read_minor_release(idtcm, &minor);
idtcm_read_hotfix_release(idtcm, &hotfix);
idtcm_read_pipeline(idtcm, &pipeline);
idtcm_read_product_id(idtcm, &product_id);
idtcm_read_hw_rev_id(idtcm, &hw_rev_id);
idtcm_read_bond_id(idtcm, &bond_id);
idtcm_read_hw_csr_id(idtcm, &csr_id);
idtcm_read_hw_irq_id(idtcm, &irq_id);
dev_info(&idtcm->client->dev, "Version: %d.%d.%d, Pipeline %u\t"
"0x%04x, Rev %d, Bond %d, CSR %d, IRQ %d\n",
major, minor, hotfix, pipeline,
product_id, hw_rev_id, bond_id, csr_id, irq_id);
}
static struct ptp_clock_info idtcm_caps = {
.owner = THIS_MODULE,
.max_adj = 244000,
.n_per_out = 1,
.adjfreq = &idtcm_adjfreq,
.adjtime = &idtcm_adjtime,
.gettime64 = &idtcm_gettime,
.settime64 = &idtcm_settime,
.enable = &idtcm_enable,
};
static int idtcm_enable_channel(struct idtcm *idtcm, u32 index)
{
struct idtcm_channel *channel;
int err;
if (!(index < MAX_PHC_PLL))
return -EINVAL;
channel = &idtcm->channel[index];
switch (index) {
case 0:
channel->dpll_freq = DPLL_FREQ_0;
channel->dpll_n = DPLL_0;
channel->tod_read_primary = TOD_READ_PRIMARY_0;
channel->tod_write = TOD_WRITE_0;
channel->tod_n = TOD_0;
channel->hw_dpll_n = HW_DPLL_0;
channel->dpll_phase = DPLL_PHASE_0;
channel->dpll_ctrl_n = DPLL_CTRL_0;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_0;
break;
case 1:
channel->dpll_freq = DPLL_FREQ_1;
channel->dpll_n = DPLL_1;
channel->tod_read_primary = TOD_READ_PRIMARY_1;
channel->tod_write = TOD_WRITE_1;
channel->tod_n = TOD_1;
channel->hw_dpll_n = HW_DPLL_1;
channel->dpll_phase = DPLL_PHASE_1;
channel->dpll_ctrl_n = DPLL_CTRL_1;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_1;
break;
case 2:
channel->dpll_freq = DPLL_FREQ_2;
channel->dpll_n = DPLL_2;
channel->tod_read_primary = TOD_READ_PRIMARY_2;
channel->tod_write = TOD_WRITE_2;
channel->tod_n = TOD_2;
channel->hw_dpll_n = HW_DPLL_2;
channel->dpll_phase = DPLL_PHASE_2;
channel->dpll_ctrl_n = DPLL_CTRL_2;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_2;
break;
case 3:
channel->dpll_freq = DPLL_FREQ_3;
channel->dpll_n = DPLL_3;
channel->tod_read_primary = TOD_READ_PRIMARY_3;
channel->tod_write = TOD_WRITE_3;
channel->tod_n = TOD_3;
channel->hw_dpll_n = HW_DPLL_3;
channel->dpll_phase = DPLL_PHASE_3;
channel->dpll_ctrl_n = DPLL_CTRL_3;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_3;
break;
default:
return -EINVAL;
}
channel->idtcm = idtcm;
channel->caps = idtcm_caps;
snprintf(channel->caps.name, sizeof(channel->caps.name),
"IDT CM PLL%u", index);
err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY);
if (err)
return err;
err = idtcm_enable_tod(channel);
if (err)
return err;
channel->ptp_clock = ptp_clock_register(&channel->caps, NULL);
if (IS_ERR(channel->ptp_clock)) {
err = PTR_ERR(channel->ptp_clock);
channel->ptp_clock = NULL;
return err;
}
if (!channel->ptp_clock)
return -ENOTSUPP;
dev_info(&idtcm->client->dev, "PLL%d registered as ptp%d\n",
index, channel->ptp_clock->index);
return 0;
}
static void ptp_clock_unregister_all(struct idtcm *idtcm)
{
u8 i;
struct idtcm_channel *channel;
for (i = 0; i < MAX_PHC_PLL; i++) {
channel = &idtcm->channel[i];
if (channel->ptp_clock)
ptp_clock_unregister(channel->ptp_clock);
}
}
static void set_default_masks(struct idtcm *idtcm)
{
idtcm->pll_mask = DEFAULT_PLL_MASK;
idtcm->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0;
idtcm->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1;
idtcm->channel[2].output_mask = DEFAULT_OUTPUT_MASK_PLL2;
idtcm->channel[3].output_mask = DEFAULT_OUTPUT_MASK_PLL3;
}
static int set_tod_write_overhead(struct idtcm *idtcm)
{
int err;
u8 i;
s64 total_ns = 0;
ktime_t start;
ktime_t stop;
char buf[TOD_BYTE_COUNT];
struct idtcm_channel *channel = &idtcm->channel[2];
/* Set page offset */
idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0,
buf, sizeof(buf));
for (i = 0; i < TOD_WRITE_OVERHEAD_COUNT_MAX; i++) {
start = ktime_get_raw();
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
if (err)
return err;
stop = ktime_get_raw();
total_ns += ktime_to_ns(stop - start);
}
idtcm->tod_write_overhead_ns = div_s64(total_ns,
TOD_WRITE_OVERHEAD_COUNT_MAX);
return err;
}
static int idtcm_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct idtcm *idtcm;
int err;
u8 i;
/* Unused for now */
(void)id;
idtcm = devm_kzalloc(&client->dev, sizeof(struct idtcm), GFP_KERNEL);
if (!idtcm)
return -ENOMEM;
idtcm->client = client;
idtcm->page_offset = 0xff;
idtcm->calculate_overhead_flag = 0;
set_default_masks(idtcm);
mutex_init(&idtcm->reg_lock);
mutex_lock(&idtcm->reg_lock);
idtcm_display_version_info(idtcm);
err = set_tod_write_overhead(idtcm);
if (err)
return err;
err = idtcm_load_firmware(idtcm, &client->dev);
if (err)
dev_warn(&idtcm->client->dev,
"loading firmware failed with %d\n", err);
if (idtcm->pll_mask) {
for (i = 0; i < MAX_PHC_PLL; i++) {
if (idtcm->pll_mask & (1 << i)) {
err = idtcm_enable_channel(idtcm, i);
if (err)
break;
}
}
} else {
dev_err(&idtcm->client->dev,
"no PLLs flagged as PHCs, nothing to do\n");
err = -ENODEV;
}
mutex_unlock(&idtcm->reg_lock);
if (err) {
ptp_clock_unregister_all(idtcm);
return err;
}
i2c_set_clientdata(client, idtcm);
return 0;
}
static int idtcm_remove(struct i2c_client *client)
{
struct idtcm *idtcm = i2c_get_clientdata(client);
ptp_clock_unregister_all(idtcm);
mutex_destroy(&idtcm->reg_lock);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id idtcm_dt_id[] = {
{ .compatible = "idt,8a34000" },
{ .compatible = "idt,8a34001" },
{ .compatible = "idt,8a34002" },
{ .compatible = "idt,8a34003" },
{ .compatible = "idt,8a34004" },
{ .compatible = "idt,8a34005" },
{ .compatible = "idt,8a34006" },
{ .compatible = "idt,8a34007" },
{ .compatible = "idt,8a34008" },
{ .compatible = "idt,8a34009" },
{ .compatible = "idt,8a34010" },
{ .compatible = "idt,8a34011" },
{ .compatible = "idt,8a34012" },
{ .compatible = "idt,8a34013" },
{ .compatible = "idt,8a34014" },
{ .compatible = "idt,8a34015" },
{ .compatible = "idt,8a34016" },
{ .compatible = "idt,8a34017" },
{ .compatible = "idt,8a34018" },
{ .compatible = "idt,8a34019" },
{ .compatible = "idt,8a34040" },
{ .compatible = "idt,8a34041" },
{ .compatible = "idt,8a34042" },
{ .compatible = "idt,8a34043" },
{ .compatible = "idt,8a34044" },
{ .compatible = "idt,8a34045" },
{ .compatible = "idt,8a34046" },
{ .compatible = "idt,8a34047" },
{ .compatible = "idt,8a34048" },
{ .compatible = "idt,8a34049" },
{},
};
MODULE_DEVICE_TABLE(of, idtcm_dt_id);
#endif
static const struct i2c_device_id idtcm_i2c_id[] = {
{ "8a34000" },
{ "8a34001" },
{ "8a34002" },
{ "8a34003" },
{ "8a34004" },
{ "8a34005" },
{ "8a34006" },
{ "8a34007" },
{ "8a34008" },
{ "8a34009" },
{ "8a34010" },
{ "8a34011" },
{ "8a34012" },
{ "8a34013" },
{ "8a34014" },
{ "8a34015" },
{ "8a34016" },
{ "8a34017" },
{ "8a34018" },
{ "8a34019" },
{ "8a34040" },
{ "8a34041" },
{ "8a34042" },
{ "8a34043" },
{ "8a34044" },
{ "8a34045" },
{ "8a34046" },
{ "8a34047" },
{ "8a34048" },
{ "8a34049" },
{},
};
MODULE_DEVICE_TABLE(i2c, idtcm_i2c_id);
static struct i2c_driver idtcm_driver = {
.driver = {
.of_match_table = of_match_ptr(idtcm_dt_id),
.name = "idtcm",
},
.probe = idtcm_probe,
.remove = idtcm_remove,
.id_table = idtcm_i2c_id,
};
module_i2c_driver(idtcm_driver);