linux_dsm_epyc7002/drivers/net/ethernet/chelsio/cxgb4/smt.c
Gustavo A. R. Silva c49f0ce0b6 cxgb4: smt: use struct_size() in kvzalloc()
One of the more common cases of allocation size calculations is
finding the size of a structure that has a zero-sized array at
the end, along with memory for some number of elements for that
array. For example:

struct foo {
    int stuff;
    struct boo entry[];
};

instance = kvzalloc(sizeof(struct foo) + count * sizeof(struct boo), GFP_KERNEL);

Instead of leaving these open-coded and prone to type mistakes, we can now
use the new struct_size() helper:

instance = kvzalloc(struct_size(instance, entry, count), GFP_KERNEL);

This code was detected with the help of Coccinelle.

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-01 15:12:29 -08:00

247 lines
6.3 KiB
C

/*
* This file is part of the Chelsio T4/T5/T6 Ethernet driver for Linux.
*
* Copyright (c) 2017 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "cxgb4.h"
#include "smt.h"
#include "t4_msg.h"
#include "t4fw_api.h"
#include "t4_regs.h"
#include "t4_values.h"
struct smt_data *t4_init_smt(void)
{
unsigned int smt_size;
struct smt_data *s;
int i;
smt_size = SMT_SIZE;
s = kvzalloc(struct_size(s, smtab, smt_size), GFP_KERNEL);
if (!s)
return NULL;
s->smt_size = smt_size;
rwlock_init(&s->lock);
for (i = 0; i < s->smt_size; ++i) {
s->smtab[i].idx = i;
s->smtab[i].state = SMT_STATE_UNUSED;
memset(&s->smtab[i].src_mac, 0, ETH_ALEN);
spin_lock_init(&s->smtab[i].lock);
atomic_set(&s->smtab[i].refcnt, 0);
}
return s;
}
static struct smt_entry *find_or_alloc_smte(struct smt_data *s, u8 *smac)
{
struct smt_entry *first_free = NULL;
struct smt_entry *e, *end;
for (e = &s->smtab[0], end = &s->smtab[s->smt_size]; e != end; ++e) {
if (atomic_read(&e->refcnt) == 0) {
if (!first_free)
first_free = e;
} else {
if (e->state == SMT_STATE_SWITCHING) {
/* This entry is actually in use. See if we can
* re-use it ?
*/
if (memcmp(e->src_mac, smac, ETH_ALEN) == 0)
goto found_reuse;
}
}
}
if (first_free) {
e = first_free;
goto found;
}
return NULL;
found:
e->state = SMT_STATE_UNUSED;
found_reuse:
return e;
}
static void t4_smte_free(struct smt_entry *e)
{
spin_lock_bh(&e->lock);
if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
e->state = SMT_STATE_UNUSED;
}
spin_unlock_bh(&e->lock);
}
/**
* @e: smt entry to release
*
* Releases ref count and frees up an smt entry from SMT table
*/
void cxgb4_smt_release(struct smt_entry *e)
{
if (atomic_dec_and_test(&e->refcnt))
t4_smte_free(e);
}
EXPORT_SYMBOL(cxgb4_smt_release);
void do_smt_write_rpl(struct adapter *adap, const struct cpl_smt_write_rpl *rpl)
{
unsigned int smtidx = TID_TID_G(GET_TID(rpl));
struct smt_data *s = adap->smt;
if (unlikely(rpl->status != CPL_ERR_NONE)) {
struct smt_entry *e = &s->smtab[smtidx];
dev_err(adap->pdev_dev,
"Unexpected SMT_WRITE_RPL status %u for entry %u\n",
rpl->status, smtidx);
spin_lock(&e->lock);
e->state = SMT_STATE_ERROR;
spin_unlock(&e->lock);
return;
}
}
static int write_smt_entry(struct adapter *adapter, struct smt_entry *e)
{
struct cpl_t6_smt_write_req *t6req;
struct smt_data *s = adapter->smt;
struct cpl_smt_write_req *req;
struct sk_buff *skb;
int size;
u8 row;
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
size = sizeof(*req);
skb = alloc_skb(size, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
/* Source MAC Table (SMT) contains 256 SMAC entries
* organized in 128 rows of 2 entries each.
*/
req = (struct cpl_smt_write_req *)__skb_put(skb, size);
INIT_TP_WR(req, 0);
/* Each row contains an SMAC pair.
* LSB selects the SMAC entry within a row
*/
row = (e->idx >> 1);
if (e->idx & 1) {
req->pfvf1 = 0x0;
memcpy(req->src_mac1, e->src_mac, ETH_ALEN);
/* fill pfvf0/src_mac0 with entry
* at prev index from smt-tab.
*/
req->pfvf0 = 0x0;
memcpy(req->src_mac0, s->smtab[e->idx - 1].src_mac,
ETH_ALEN);
} else {
req->pfvf0 = 0x0;
memcpy(req->src_mac0, e->src_mac, ETH_ALEN);
/* fill pfvf1/src_mac1 with entry
* at next index from smt-tab
*/
req->pfvf1 = 0x0;
memcpy(req->src_mac1, s->smtab[e->idx + 1].src_mac,
ETH_ALEN);
}
} else {
size = sizeof(*t6req);
skb = alloc_skb(size, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
/* Source MAC Table (SMT) contains 256 SMAC entries */
t6req = (struct cpl_t6_smt_write_req *)__skb_put(skb, size);
INIT_TP_WR(t6req, 0);
req = (struct cpl_smt_write_req *)t6req;
/* fill pfvf0/src_mac0 from smt-tab */
req->pfvf0 = 0x0;
memcpy(req->src_mac0, s->smtab[e->idx].src_mac, ETH_ALEN);
row = e->idx;
}
OPCODE_TID(req) =
htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, e->idx |
TID_QID_V(adapter->sge.fw_evtq.abs_id)));
req->params = htonl(SMTW_NORPL_V(0) |
SMTW_IDX_V(row) |
SMTW_OVLAN_IDX_V(0));
t4_mgmt_tx(adapter, skb);
return 0;
}
static struct smt_entry *t4_smt_alloc_switching(struct adapter *adap, u16 pfvf,
u8 *smac)
{
struct smt_data *s = adap->smt;
struct smt_entry *e;
write_lock_bh(&s->lock);
e = find_or_alloc_smte(s, smac);
if (e) {
spin_lock(&e->lock);
if (!atomic_read(&e->refcnt)) {
atomic_set(&e->refcnt, 1);
e->state = SMT_STATE_SWITCHING;
e->pfvf = pfvf;
memcpy(e->src_mac, smac, ETH_ALEN);
write_smt_entry(adap, e);
} else {
atomic_inc(&e->refcnt);
}
spin_unlock(&e->lock);
}
write_unlock_bh(&s->lock);
return e;
}
/**
* @dev: net_device pointer
* @smac: MAC address to add to SMT
* Returns pointer to the SMT entry created
*
* Allocates an SMT entry to be used by switching rule of a filter.
*/
struct smt_entry *cxgb4_smt_alloc_switching(struct net_device *dev, u8 *smac)
{
struct adapter *adap = netdev2adap(dev);
return t4_smt_alloc_switching(adap, 0x0, smac);
}
EXPORT_SYMBOL(cxgb4_smt_alloc_switching);