mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 03:39:36 +07:00
4fc76e495b
Probably the next step is to introduce linux/time.h and use timespec_to_ns(), etc. Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/n/tip-4nqhskn27fn93cz3ukbc8drf@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2082 lines
52 KiB
C
2082 lines
52 KiB
C
#include "builtin.h"
|
|
#include "perf.h"
|
|
|
|
#include "util/util.h"
|
|
#include "util/evlist.h"
|
|
#include "util/cache.h"
|
|
#include "util/evsel.h"
|
|
#include "util/symbol.h"
|
|
#include "util/thread.h"
|
|
#include "util/header.h"
|
|
#include "util/session.h"
|
|
#include "util/tool.h"
|
|
#include "util/cloexec.h"
|
|
#include "util/thread_map.h"
|
|
#include "util/color.h"
|
|
|
|
#include <subcmd/parse-options.h>
|
|
#include "util/trace-event.h"
|
|
|
|
#include "util/debug.h"
|
|
|
|
#include <sys/prctl.h>
|
|
#include <sys/resource.h>
|
|
|
|
#include <semaphore.h>
|
|
#include <pthread.h>
|
|
#include <math.h>
|
|
#include <api/fs/fs.h>
|
|
#include <linux/time64.h>
|
|
|
|
#define PR_SET_NAME 15 /* Set process name */
|
|
#define MAX_CPUS 4096
|
|
#define COMM_LEN 20
|
|
#define SYM_LEN 129
|
|
#define MAX_PID 1024000
|
|
|
|
struct sched_atom;
|
|
|
|
struct task_desc {
|
|
unsigned long nr;
|
|
unsigned long pid;
|
|
char comm[COMM_LEN];
|
|
|
|
unsigned long nr_events;
|
|
unsigned long curr_event;
|
|
struct sched_atom **atoms;
|
|
|
|
pthread_t thread;
|
|
sem_t sleep_sem;
|
|
|
|
sem_t ready_for_work;
|
|
sem_t work_done_sem;
|
|
|
|
u64 cpu_usage;
|
|
};
|
|
|
|
enum sched_event_type {
|
|
SCHED_EVENT_RUN,
|
|
SCHED_EVENT_SLEEP,
|
|
SCHED_EVENT_WAKEUP,
|
|
SCHED_EVENT_MIGRATION,
|
|
};
|
|
|
|
struct sched_atom {
|
|
enum sched_event_type type;
|
|
int specific_wait;
|
|
u64 timestamp;
|
|
u64 duration;
|
|
unsigned long nr;
|
|
sem_t *wait_sem;
|
|
struct task_desc *wakee;
|
|
};
|
|
|
|
#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
|
|
|
|
enum thread_state {
|
|
THREAD_SLEEPING = 0,
|
|
THREAD_WAIT_CPU,
|
|
THREAD_SCHED_IN,
|
|
THREAD_IGNORE
|
|
};
|
|
|
|
struct work_atom {
|
|
struct list_head list;
|
|
enum thread_state state;
|
|
u64 sched_out_time;
|
|
u64 wake_up_time;
|
|
u64 sched_in_time;
|
|
u64 runtime;
|
|
};
|
|
|
|
struct work_atoms {
|
|
struct list_head work_list;
|
|
struct thread *thread;
|
|
struct rb_node node;
|
|
u64 max_lat;
|
|
u64 max_lat_at;
|
|
u64 total_lat;
|
|
u64 nb_atoms;
|
|
u64 total_runtime;
|
|
int num_merged;
|
|
};
|
|
|
|
typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
|
|
|
|
struct perf_sched;
|
|
|
|
struct trace_sched_handler {
|
|
int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
|
|
struct perf_sample *sample, struct machine *machine);
|
|
|
|
int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
|
|
struct perf_sample *sample, struct machine *machine);
|
|
|
|
int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
|
|
struct perf_sample *sample, struct machine *machine);
|
|
|
|
/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
|
|
int (*fork_event)(struct perf_sched *sched, union perf_event *event,
|
|
struct machine *machine);
|
|
|
|
int (*migrate_task_event)(struct perf_sched *sched,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine);
|
|
};
|
|
|
|
#define COLOR_PIDS PERF_COLOR_BLUE
|
|
#define COLOR_CPUS PERF_COLOR_BG_RED
|
|
|
|
struct perf_sched_map {
|
|
DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
|
|
int *comp_cpus;
|
|
bool comp;
|
|
struct thread_map *color_pids;
|
|
const char *color_pids_str;
|
|
struct cpu_map *color_cpus;
|
|
const char *color_cpus_str;
|
|
struct cpu_map *cpus;
|
|
const char *cpus_str;
|
|
};
|
|
|
|
struct perf_sched {
|
|
struct perf_tool tool;
|
|
const char *sort_order;
|
|
unsigned long nr_tasks;
|
|
struct task_desc **pid_to_task;
|
|
struct task_desc **tasks;
|
|
const struct trace_sched_handler *tp_handler;
|
|
pthread_mutex_t start_work_mutex;
|
|
pthread_mutex_t work_done_wait_mutex;
|
|
int profile_cpu;
|
|
/*
|
|
* Track the current task - that way we can know whether there's any
|
|
* weird events, such as a task being switched away that is not current.
|
|
*/
|
|
int max_cpu;
|
|
u32 curr_pid[MAX_CPUS];
|
|
struct thread *curr_thread[MAX_CPUS];
|
|
char next_shortname1;
|
|
char next_shortname2;
|
|
unsigned int replay_repeat;
|
|
unsigned long nr_run_events;
|
|
unsigned long nr_sleep_events;
|
|
unsigned long nr_wakeup_events;
|
|
unsigned long nr_sleep_corrections;
|
|
unsigned long nr_run_events_optimized;
|
|
unsigned long targetless_wakeups;
|
|
unsigned long multitarget_wakeups;
|
|
unsigned long nr_runs;
|
|
unsigned long nr_timestamps;
|
|
unsigned long nr_unordered_timestamps;
|
|
unsigned long nr_context_switch_bugs;
|
|
unsigned long nr_events;
|
|
unsigned long nr_lost_chunks;
|
|
unsigned long nr_lost_events;
|
|
u64 run_measurement_overhead;
|
|
u64 sleep_measurement_overhead;
|
|
u64 start_time;
|
|
u64 cpu_usage;
|
|
u64 runavg_cpu_usage;
|
|
u64 parent_cpu_usage;
|
|
u64 runavg_parent_cpu_usage;
|
|
u64 sum_runtime;
|
|
u64 sum_fluct;
|
|
u64 run_avg;
|
|
u64 all_runtime;
|
|
u64 all_count;
|
|
u64 cpu_last_switched[MAX_CPUS];
|
|
struct rb_root atom_root, sorted_atom_root, merged_atom_root;
|
|
struct list_head sort_list, cmp_pid;
|
|
bool force;
|
|
bool skip_merge;
|
|
struct perf_sched_map map;
|
|
};
|
|
|
|
static u64 get_nsecs(void)
|
|
{
|
|
struct timespec ts;
|
|
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
|
|
return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
|
|
}
|
|
|
|
static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
|
|
{
|
|
u64 T0 = get_nsecs(), T1;
|
|
|
|
do {
|
|
T1 = get_nsecs();
|
|
} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
|
|
}
|
|
|
|
static void sleep_nsecs(u64 nsecs)
|
|
{
|
|
struct timespec ts;
|
|
|
|
ts.tv_nsec = nsecs % 999999999;
|
|
ts.tv_sec = nsecs / 999999999;
|
|
|
|
nanosleep(&ts, NULL);
|
|
}
|
|
|
|
static void calibrate_run_measurement_overhead(struct perf_sched *sched)
|
|
{
|
|
u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
T0 = get_nsecs();
|
|
burn_nsecs(sched, 0);
|
|
T1 = get_nsecs();
|
|
delta = T1-T0;
|
|
min_delta = min(min_delta, delta);
|
|
}
|
|
sched->run_measurement_overhead = min_delta;
|
|
|
|
printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
|
|
}
|
|
|
|
static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
|
|
{
|
|
u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
T0 = get_nsecs();
|
|
sleep_nsecs(10000);
|
|
T1 = get_nsecs();
|
|
delta = T1-T0;
|
|
min_delta = min(min_delta, delta);
|
|
}
|
|
min_delta -= 10000;
|
|
sched->sleep_measurement_overhead = min_delta;
|
|
|
|
printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
|
|
}
|
|
|
|
static struct sched_atom *
|
|
get_new_event(struct task_desc *task, u64 timestamp)
|
|
{
|
|
struct sched_atom *event = zalloc(sizeof(*event));
|
|
unsigned long idx = task->nr_events;
|
|
size_t size;
|
|
|
|
event->timestamp = timestamp;
|
|
event->nr = idx;
|
|
|
|
task->nr_events++;
|
|
size = sizeof(struct sched_atom *) * task->nr_events;
|
|
task->atoms = realloc(task->atoms, size);
|
|
BUG_ON(!task->atoms);
|
|
|
|
task->atoms[idx] = event;
|
|
|
|
return event;
|
|
}
|
|
|
|
static struct sched_atom *last_event(struct task_desc *task)
|
|
{
|
|
if (!task->nr_events)
|
|
return NULL;
|
|
|
|
return task->atoms[task->nr_events - 1];
|
|
}
|
|
|
|
static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
|
|
u64 timestamp, u64 duration)
|
|
{
|
|
struct sched_atom *event, *curr_event = last_event(task);
|
|
|
|
/*
|
|
* optimize an existing RUN event by merging this one
|
|
* to it:
|
|
*/
|
|
if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
|
|
sched->nr_run_events_optimized++;
|
|
curr_event->duration += duration;
|
|
return;
|
|
}
|
|
|
|
event = get_new_event(task, timestamp);
|
|
|
|
event->type = SCHED_EVENT_RUN;
|
|
event->duration = duration;
|
|
|
|
sched->nr_run_events++;
|
|
}
|
|
|
|
static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
|
|
u64 timestamp, struct task_desc *wakee)
|
|
{
|
|
struct sched_atom *event, *wakee_event;
|
|
|
|
event = get_new_event(task, timestamp);
|
|
event->type = SCHED_EVENT_WAKEUP;
|
|
event->wakee = wakee;
|
|
|
|
wakee_event = last_event(wakee);
|
|
if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
|
|
sched->targetless_wakeups++;
|
|
return;
|
|
}
|
|
if (wakee_event->wait_sem) {
|
|
sched->multitarget_wakeups++;
|
|
return;
|
|
}
|
|
|
|
wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
|
|
sem_init(wakee_event->wait_sem, 0, 0);
|
|
wakee_event->specific_wait = 1;
|
|
event->wait_sem = wakee_event->wait_sem;
|
|
|
|
sched->nr_wakeup_events++;
|
|
}
|
|
|
|
static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
|
|
u64 timestamp, u64 task_state __maybe_unused)
|
|
{
|
|
struct sched_atom *event = get_new_event(task, timestamp);
|
|
|
|
event->type = SCHED_EVENT_SLEEP;
|
|
|
|
sched->nr_sleep_events++;
|
|
}
|
|
|
|
static struct task_desc *register_pid(struct perf_sched *sched,
|
|
unsigned long pid, const char *comm)
|
|
{
|
|
struct task_desc *task;
|
|
static int pid_max;
|
|
|
|
if (sched->pid_to_task == NULL) {
|
|
if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
|
|
pid_max = MAX_PID;
|
|
BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
|
|
}
|
|
if (pid >= (unsigned long)pid_max) {
|
|
BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
|
|
sizeof(struct task_desc *))) == NULL);
|
|
while (pid >= (unsigned long)pid_max)
|
|
sched->pid_to_task[pid_max++] = NULL;
|
|
}
|
|
|
|
task = sched->pid_to_task[pid];
|
|
|
|
if (task)
|
|
return task;
|
|
|
|
task = zalloc(sizeof(*task));
|
|
task->pid = pid;
|
|
task->nr = sched->nr_tasks;
|
|
strcpy(task->comm, comm);
|
|
/*
|
|
* every task starts in sleeping state - this gets ignored
|
|
* if there's no wakeup pointing to this sleep state:
|
|
*/
|
|
add_sched_event_sleep(sched, task, 0, 0);
|
|
|
|
sched->pid_to_task[pid] = task;
|
|
sched->nr_tasks++;
|
|
sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
|
|
BUG_ON(!sched->tasks);
|
|
sched->tasks[task->nr] = task;
|
|
|
|
if (verbose)
|
|
printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
|
|
|
|
return task;
|
|
}
|
|
|
|
|
|
static void print_task_traces(struct perf_sched *sched)
|
|
{
|
|
struct task_desc *task;
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < sched->nr_tasks; i++) {
|
|
task = sched->tasks[i];
|
|
printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
|
|
task->nr, task->comm, task->pid, task->nr_events);
|
|
}
|
|
}
|
|
|
|
static void add_cross_task_wakeups(struct perf_sched *sched)
|
|
{
|
|
struct task_desc *task1, *task2;
|
|
unsigned long i, j;
|
|
|
|
for (i = 0; i < sched->nr_tasks; i++) {
|
|
task1 = sched->tasks[i];
|
|
j = i + 1;
|
|
if (j == sched->nr_tasks)
|
|
j = 0;
|
|
task2 = sched->tasks[j];
|
|
add_sched_event_wakeup(sched, task1, 0, task2);
|
|
}
|
|
}
|
|
|
|
static void perf_sched__process_event(struct perf_sched *sched,
|
|
struct sched_atom *atom)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (atom->type) {
|
|
case SCHED_EVENT_RUN:
|
|
burn_nsecs(sched, atom->duration);
|
|
break;
|
|
case SCHED_EVENT_SLEEP:
|
|
if (atom->wait_sem)
|
|
ret = sem_wait(atom->wait_sem);
|
|
BUG_ON(ret);
|
|
break;
|
|
case SCHED_EVENT_WAKEUP:
|
|
if (atom->wait_sem)
|
|
ret = sem_post(atom->wait_sem);
|
|
BUG_ON(ret);
|
|
break;
|
|
case SCHED_EVENT_MIGRATION:
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
}
|
|
}
|
|
|
|
static u64 get_cpu_usage_nsec_parent(void)
|
|
{
|
|
struct rusage ru;
|
|
u64 sum;
|
|
int err;
|
|
|
|
err = getrusage(RUSAGE_SELF, &ru);
|
|
BUG_ON(err);
|
|
|
|
sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
|
|
sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
|
|
|
|
return sum;
|
|
}
|
|
|
|
static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
|
|
{
|
|
struct perf_event_attr attr;
|
|
char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
|
|
int fd;
|
|
struct rlimit limit;
|
|
bool need_privilege = false;
|
|
|
|
memset(&attr, 0, sizeof(attr));
|
|
|
|
attr.type = PERF_TYPE_SOFTWARE;
|
|
attr.config = PERF_COUNT_SW_TASK_CLOCK;
|
|
|
|
force_again:
|
|
fd = sys_perf_event_open(&attr, 0, -1, -1,
|
|
perf_event_open_cloexec_flag());
|
|
|
|
if (fd < 0) {
|
|
if (errno == EMFILE) {
|
|
if (sched->force) {
|
|
BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
|
|
limit.rlim_cur += sched->nr_tasks - cur_task;
|
|
if (limit.rlim_cur > limit.rlim_max) {
|
|
limit.rlim_max = limit.rlim_cur;
|
|
need_privilege = true;
|
|
}
|
|
if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
|
|
if (need_privilege && errno == EPERM)
|
|
strcpy(info, "Need privilege\n");
|
|
} else
|
|
goto force_again;
|
|
} else
|
|
strcpy(info, "Have a try with -f option\n");
|
|
}
|
|
pr_err("Error: sys_perf_event_open() syscall returned "
|
|
"with %d (%s)\n%s", fd,
|
|
str_error_r(errno, sbuf, sizeof(sbuf)), info);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
static u64 get_cpu_usage_nsec_self(int fd)
|
|
{
|
|
u64 runtime;
|
|
int ret;
|
|
|
|
ret = read(fd, &runtime, sizeof(runtime));
|
|
BUG_ON(ret != sizeof(runtime));
|
|
|
|
return runtime;
|
|
}
|
|
|
|
struct sched_thread_parms {
|
|
struct task_desc *task;
|
|
struct perf_sched *sched;
|
|
int fd;
|
|
};
|
|
|
|
static void *thread_func(void *ctx)
|
|
{
|
|
struct sched_thread_parms *parms = ctx;
|
|
struct task_desc *this_task = parms->task;
|
|
struct perf_sched *sched = parms->sched;
|
|
u64 cpu_usage_0, cpu_usage_1;
|
|
unsigned long i, ret;
|
|
char comm2[22];
|
|
int fd = parms->fd;
|
|
|
|
zfree(&parms);
|
|
|
|
sprintf(comm2, ":%s", this_task->comm);
|
|
prctl(PR_SET_NAME, comm2);
|
|
if (fd < 0)
|
|
return NULL;
|
|
again:
|
|
ret = sem_post(&this_task->ready_for_work);
|
|
BUG_ON(ret);
|
|
ret = pthread_mutex_lock(&sched->start_work_mutex);
|
|
BUG_ON(ret);
|
|
ret = pthread_mutex_unlock(&sched->start_work_mutex);
|
|
BUG_ON(ret);
|
|
|
|
cpu_usage_0 = get_cpu_usage_nsec_self(fd);
|
|
|
|
for (i = 0; i < this_task->nr_events; i++) {
|
|
this_task->curr_event = i;
|
|
perf_sched__process_event(sched, this_task->atoms[i]);
|
|
}
|
|
|
|
cpu_usage_1 = get_cpu_usage_nsec_self(fd);
|
|
this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
|
|
ret = sem_post(&this_task->work_done_sem);
|
|
BUG_ON(ret);
|
|
|
|
ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
|
|
BUG_ON(ret);
|
|
ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
|
|
BUG_ON(ret);
|
|
|
|
goto again;
|
|
}
|
|
|
|
static void create_tasks(struct perf_sched *sched)
|
|
{
|
|
struct task_desc *task;
|
|
pthread_attr_t attr;
|
|
unsigned long i;
|
|
int err;
|
|
|
|
err = pthread_attr_init(&attr);
|
|
BUG_ON(err);
|
|
err = pthread_attr_setstacksize(&attr,
|
|
(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
|
|
BUG_ON(err);
|
|
err = pthread_mutex_lock(&sched->start_work_mutex);
|
|
BUG_ON(err);
|
|
err = pthread_mutex_lock(&sched->work_done_wait_mutex);
|
|
BUG_ON(err);
|
|
for (i = 0; i < sched->nr_tasks; i++) {
|
|
struct sched_thread_parms *parms = malloc(sizeof(*parms));
|
|
BUG_ON(parms == NULL);
|
|
parms->task = task = sched->tasks[i];
|
|
parms->sched = sched;
|
|
parms->fd = self_open_counters(sched, i);
|
|
sem_init(&task->sleep_sem, 0, 0);
|
|
sem_init(&task->ready_for_work, 0, 0);
|
|
sem_init(&task->work_done_sem, 0, 0);
|
|
task->curr_event = 0;
|
|
err = pthread_create(&task->thread, &attr, thread_func, parms);
|
|
BUG_ON(err);
|
|
}
|
|
}
|
|
|
|
static void wait_for_tasks(struct perf_sched *sched)
|
|
{
|
|
u64 cpu_usage_0, cpu_usage_1;
|
|
struct task_desc *task;
|
|
unsigned long i, ret;
|
|
|
|
sched->start_time = get_nsecs();
|
|
sched->cpu_usage = 0;
|
|
pthread_mutex_unlock(&sched->work_done_wait_mutex);
|
|
|
|
for (i = 0; i < sched->nr_tasks; i++) {
|
|
task = sched->tasks[i];
|
|
ret = sem_wait(&task->ready_for_work);
|
|
BUG_ON(ret);
|
|
sem_init(&task->ready_for_work, 0, 0);
|
|
}
|
|
ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
|
|
BUG_ON(ret);
|
|
|
|
cpu_usage_0 = get_cpu_usage_nsec_parent();
|
|
|
|
pthread_mutex_unlock(&sched->start_work_mutex);
|
|
|
|
for (i = 0; i < sched->nr_tasks; i++) {
|
|
task = sched->tasks[i];
|
|
ret = sem_wait(&task->work_done_sem);
|
|
BUG_ON(ret);
|
|
sem_init(&task->work_done_sem, 0, 0);
|
|
sched->cpu_usage += task->cpu_usage;
|
|
task->cpu_usage = 0;
|
|
}
|
|
|
|
cpu_usage_1 = get_cpu_usage_nsec_parent();
|
|
if (!sched->runavg_cpu_usage)
|
|
sched->runavg_cpu_usage = sched->cpu_usage;
|
|
sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
|
|
|
|
sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
|
|
if (!sched->runavg_parent_cpu_usage)
|
|
sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
|
|
sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
|
|
sched->parent_cpu_usage)/sched->replay_repeat;
|
|
|
|
ret = pthread_mutex_lock(&sched->start_work_mutex);
|
|
BUG_ON(ret);
|
|
|
|
for (i = 0; i < sched->nr_tasks; i++) {
|
|
task = sched->tasks[i];
|
|
sem_init(&task->sleep_sem, 0, 0);
|
|
task->curr_event = 0;
|
|
}
|
|
}
|
|
|
|
static void run_one_test(struct perf_sched *sched)
|
|
{
|
|
u64 T0, T1, delta, avg_delta, fluct;
|
|
|
|
T0 = get_nsecs();
|
|
wait_for_tasks(sched);
|
|
T1 = get_nsecs();
|
|
|
|
delta = T1 - T0;
|
|
sched->sum_runtime += delta;
|
|
sched->nr_runs++;
|
|
|
|
avg_delta = sched->sum_runtime / sched->nr_runs;
|
|
if (delta < avg_delta)
|
|
fluct = avg_delta - delta;
|
|
else
|
|
fluct = delta - avg_delta;
|
|
sched->sum_fluct += fluct;
|
|
if (!sched->run_avg)
|
|
sched->run_avg = delta;
|
|
sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
|
|
|
|
printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
|
|
|
|
printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
|
|
|
|
printf("cpu: %0.2f / %0.2f",
|
|
(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
|
|
|
|
#if 0
|
|
/*
|
|
* rusage statistics done by the parent, these are less
|
|
* accurate than the sched->sum_exec_runtime based statistics:
|
|
*/
|
|
printf(" [%0.2f / %0.2f]",
|
|
(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
|
|
(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
|
|
#endif
|
|
|
|
printf("\n");
|
|
|
|
if (sched->nr_sleep_corrections)
|
|
printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
|
|
sched->nr_sleep_corrections = 0;
|
|
}
|
|
|
|
static void test_calibrations(struct perf_sched *sched)
|
|
{
|
|
u64 T0, T1;
|
|
|
|
T0 = get_nsecs();
|
|
burn_nsecs(sched, NSEC_PER_MSEC);
|
|
T1 = get_nsecs();
|
|
|
|
printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
|
|
|
|
T0 = get_nsecs();
|
|
sleep_nsecs(NSEC_PER_MSEC);
|
|
T1 = get_nsecs();
|
|
|
|
printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
|
|
}
|
|
|
|
static int
|
|
replay_wakeup_event(struct perf_sched *sched,
|
|
struct perf_evsel *evsel, struct perf_sample *sample,
|
|
struct machine *machine __maybe_unused)
|
|
{
|
|
const char *comm = perf_evsel__strval(evsel, sample, "comm");
|
|
const u32 pid = perf_evsel__intval(evsel, sample, "pid");
|
|
struct task_desc *waker, *wakee;
|
|
|
|
if (verbose) {
|
|
printf("sched_wakeup event %p\n", evsel);
|
|
|
|
printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
|
|
}
|
|
|
|
waker = register_pid(sched, sample->tid, "<unknown>");
|
|
wakee = register_pid(sched, pid, comm);
|
|
|
|
add_sched_event_wakeup(sched, waker, sample->time, wakee);
|
|
return 0;
|
|
}
|
|
|
|
static int replay_switch_event(struct perf_sched *sched,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine __maybe_unused)
|
|
{
|
|
const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
|
|
*next_comm = perf_evsel__strval(evsel, sample, "next_comm");
|
|
const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
|
|
next_pid = perf_evsel__intval(evsel, sample, "next_pid");
|
|
const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
|
|
struct task_desc *prev, __maybe_unused *next;
|
|
u64 timestamp0, timestamp = sample->time;
|
|
int cpu = sample->cpu;
|
|
s64 delta;
|
|
|
|
if (verbose)
|
|
printf("sched_switch event %p\n", evsel);
|
|
|
|
if (cpu >= MAX_CPUS || cpu < 0)
|
|
return 0;
|
|
|
|
timestamp0 = sched->cpu_last_switched[cpu];
|
|
if (timestamp0)
|
|
delta = timestamp - timestamp0;
|
|
else
|
|
delta = 0;
|
|
|
|
if (delta < 0) {
|
|
pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
|
|
return -1;
|
|
}
|
|
|
|
pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
|
|
prev_comm, prev_pid, next_comm, next_pid, delta);
|
|
|
|
prev = register_pid(sched, prev_pid, prev_comm);
|
|
next = register_pid(sched, next_pid, next_comm);
|
|
|
|
sched->cpu_last_switched[cpu] = timestamp;
|
|
|
|
add_sched_event_run(sched, prev, timestamp, delta);
|
|
add_sched_event_sleep(sched, prev, timestamp, prev_state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int replay_fork_event(struct perf_sched *sched,
|
|
union perf_event *event,
|
|
struct machine *machine)
|
|
{
|
|
struct thread *child, *parent;
|
|
|
|
child = machine__findnew_thread(machine, event->fork.pid,
|
|
event->fork.tid);
|
|
parent = machine__findnew_thread(machine, event->fork.ppid,
|
|
event->fork.ptid);
|
|
|
|
if (child == NULL || parent == NULL) {
|
|
pr_debug("thread does not exist on fork event: child %p, parent %p\n",
|
|
child, parent);
|
|
goto out_put;
|
|
}
|
|
|
|
if (verbose) {
|
|
printf("fork event\n");
|
|
printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
|
|
printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
|
|
}
|
|
|
|
register_pid(sched, parent->tid, thread__comm_str(parent));
|
|
register_pid(sched, child->tid, thread__comm_str(child));
|
|
out_put:
|
|
thread__put(child);
|
|
thread__put(parent);
|
|
return 0;
|
|
}
|
|
|
|
struct sort_dimension {
|
|
const char *name;
|
|
sort_fn_t cmp;
|
|
struct list_head list;
|
|
};
|
|
|
|
static int
|
|
thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
|
|
{
|
|
struct sort_dimension *sort;
|
|
int ret = 0;
|
|
|
|
BUG_ON(list_empty(list));
|
|
|
|
list_for_each_entry(sort, list, list) {
|
|
ret = sort->cmp(l, r);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct work_atoms *
|
|
thread_atoms_search(struct rb_root *root, struct thread *thread,
|
|
struct list_head *sort_list)
|
|
{
|
|
struct rb_node *node = root->rb_node;
|
|
struct work_atoms key = { .thread = thread };
|
|
|
|
while (node) {
|
|
struct work_atoms *atoms;
|
|
int cmp;
|
|
|
|
atoms = container_of(node, struct work_atoms, node);
|
|
|
|
cmp = thread_lat_cmp(sort_list, &key, atoms);
|
|
if (cmp > 0)
|
|
node = node->rb_left;
|
|
else if (cmp < 0)
|
|
node = node->rb_right;
|
|
else {
|
|
BUG_ON(thread != atoms->thread);
|
|
return atoms;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
|
|
struct list_head *sort_list)
|
|
{
|
|
struct rb_node **new = &(root->rb_node), *parent = NULL;
|
|
|
|
while (*new) {
|
|
struct work_atoms *this;
|
|
int cmp;
|
|
|
|
this = container_of(*new, struct work_atoms, node);
|
|
parent = *new;
|
|
|
|
cmp = thread_lat_cmp(sort_list, data, this);
|
|
|
|
if (cmp > 0)
|
|
new = &((*new)->rb_left);
|
|
else
|
|
new = &((*new)->rb_right);
|
|
}
|
|
|
|
rb_link_node(&data->node, parent, new);
|
|
rb_insert_color(&data->node, root);
|
|
}
|
|
|
|
static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
|
|
{
|
|
struct work_atoms *atoms = zalloc(sizeof(*atoms));
|
|
if (!atoms) {
|
|
pr_err("No memory at %s\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
atoms->thread = thread__get(thread);
|
|
INIT_LIST_HEAD(&atoms->work_list);
|
|
__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
|
|
return 0;
|
|
}
|
|
|
|
static char sched_out_state(u64 prev_state)
|
|
{
|
|
const char *str = TASK_STATE_TO_CHAR_STR;
|
|
|
|
return str[prev_state];
|
|
}
|
|
|
|
static int
|
|
add_sched_out_event(struct work_atoms *atoms,
|
|
char run_state,
|
|
u64 timestamp)
|
|
{
|
|
struct work_atom *atom = zalloc(sizeof(*atom));
|
|
if (!atom) {
|
|
pr_err("Non memory at %s", __func__);
|
|
return -1;
|
|
}
|
|
|
|
atom->sched_out_time = timestamp;
|
|
|
|
if (run_state == 'R') {
|
|
atom->state = THREAD_WAIT_CPU;
|
|
atom->wake_up_time = atom->sched_out_time;
|
|
}
|
|
|
|
list_add_tail(&atom->list, &atoms->work_list);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
add_runtime_event(struct work_atoms *atoms, u64 delta,
|
|
u64 timestamp __maybe_unused)
|
|
{
|
|
struct work_atom *atom;
|
|
|
|
BUG_ON(list_empty(&atoms->work_list));
|
|
|
|
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
|
|
|
|
atom->runtime += delta;
|
|
atoms->total_runtime += delta;
|
|
}
|
|
|
|
static void
|
|
add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
|
|
{
|
|
struct work_atom *atom;
|
|
u64 delta;
|
|
|
|
if (list_empty(&atoms->work_list))
|
|
return;
|
|
|
|
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
|
|
|
|
if (atom->state != THREAD_WAIT_CPU)
|
|
return;
|
|
|
|
if (timestamp < atom->wake_up_time) {
|
|
atom->state = THREAD_IGNORE;
|
|
return;
|
|
}
|
|
|
|
atom->state = THREAD_SCHED_IN;
|
|
atom->sched_in_time = timestamp;
|
|
|
|
delta = atom->sched_in_time - atom->wake_up_time;
|
|
atoms->total_lat += delta;
|
|
if (delta > atoms->max_lat) {
|
|
atoms->max_lat = delta;
|
|
atoms->max_lat_at = timestamp;
|
|
}
|
|
atoms->nb_atoms++;
|
|
}
|
|
|
|
static int latency_switch_event(struct perf_sched *sched,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
|
|
next_pid = perf_evsel__intval(evsel, sample, "next_pid");
|
|
const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
|
|
struct work_atoms *out_events, *in_events;
|
|
struct thread *sched_out, *sched_in;
|
|
u64 timestamp0, timestamp = sample->time;
|
|
int cpu = sample->cpu, err = -1;
|
|
s64 delta;
|
|
|
|
BUG_ON(cpu >= MAX_CPUS || cpu < 0);
|
|
|
|
timestamp0 = sched->cpu_last_switched[cpu];
|
|
sched->cpu_last_switched[cpu] = timestamp;
|
|
if (timestamp0)
|
|
delta = timestamp - timestamp0;
|
|
else
|
|
delta = 0;
|
|
|
|
if (delta < 0) {
|
|
pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
|
|
return -1;
|
|
}
|
|
|
|
sched_out = machine__findnew_thread(machine, -1, prev_pid);
|
|
sched_in = machine__findnew_thread(machine, -1, next_pid);
|
|
if (sched_out == NULL || sched_in == NULL)
|
|
goto out_put;
|
|
|
|
out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
|
|
if (!out_events) {
|
|
if (thread_atoms_insert(sched, sched_out))
|
|
goto out_put;
|
|
out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
|
|
if (!out_events) {
|
|
pr_err("out-event: Internal tree error");
|
|
goto out_put;
|
|
}
|
|
}
|
|
if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
|
|
return -1;
|
|
|
|
in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
|
|
if (!in_events) {
|
|
if (thread_atoms_insert(sched, sched_in))
|
|
goto out_put;
|
|
in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
|
|
if (!in_events) {
|
|
pr_err("in-event: Internal tree error");
|
|
goto out_put;
|
|
}
|
|
/*
|
|
* Take came in we have not heard about yet,
|
|
* add in an initial atom in runnable state:
|
|
*/
|
|
if (add_sched_out_event(in_events, 'R', timestamp))
|
|
goto out_put;
|
|
}
|
|
add_sched_in_event(in_events, timestamp);
|
|
err = 0;
|
|
out_put:
|
|
thread__put(sched_out);
|
|
thread__put(sched_in);
|
|
return err;
|
|
}
|
|
|
|
static int latency_runtime_event(struct perf_sched *sched,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
const u32 pid = perf_evsel__intval(evsel, sample, "pid");
|
|
const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
|
|
struct thread *thread = machine__findnew_thread(machine, -1, pid);
|
|
struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
|
|
u64 timestamp = sample->time;
|
|
int cpu = sample->cpu, err = -1;
|
|
|
|
if (thread == NULL)
|
|
return -1;
|
|
|
|
BUG_ON(cpu >= MAX_CPUS || cpu < 0);
|
|
if (!atoms) {
|
|
if (thread_atoms_insert(sched, thread))
|
|
goto out_put;
|
|
atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
|
|
if (!atoms) {
|
|
pr_err("in-event: Internal tree error");
|
|
goto out_put;
|
|
}
|
|
if (add_sched_out_event(atoms, 'R', timestamp))
|
|
goto out_put;
|
|
}
|
|
|
|
add_runtime_event(atoms, runtime, timestamp);
|
|
err = 0;
|
|
out_put:
|
|
thread__put(thread);
|
|
return err;
|
|
}
|
|
|
|
static int latency_wakeup_event(struct perf_sched *sched,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
const u32 pid = perf_evsel__intval(evsel, sample, "pid");
|
|
struct work_atoms *atoms;
|
|
struct work_atom *atom;
|
|
struct thread *wakee;
|
|
u64 timestamp = sample->time;
|
|
int err = -1;
|
|
|
|
wakee = machine__findnew_thread(machine, -1, pid);
|
|
if (wakee == NULL)
|
|
return -1;
|
|
atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
|
|
if (!atoms) {
|
|
if (thread_atoms_insert(sched, wakee))
|
|
goto out_put;
|
|
atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
|
|
if (!atoms) {
|
|
pr_err("wakeup-event: Internal tree error");
|
|
goto out_put;
|
|
}
|
|
if (add_sched_out_event(atoms, 'S', timestamp))
|
|
goto out_put;
|
|
}
|
|
|
|
BUG_ON(list_empty(&atoms->work_list));
|
|
|
|
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
|
|
|
|
/*
|
|
* As we do not guarantee the wakeup event happens when
|
|
* task is out of run queue, also may happen when task is
|
|
* on run queue and wakeup only change ->state to TASK_RUNNING,
|
|
* then we should not set the ->wake_up_time when wake up a
|
|
* task which is on run queue.
|
|
*
|
|
* You WILL be missing events if you've recorded only
|
|
* one CPU, or are only looking at only one, so don't
|
|
* skip in this case.
|
|
*/
|
|
if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
|
|
goto out_ok;
|
|
|
|
sched->nr_timestamps++;
|
|
if (atom->sched_out_time > timestamp) {
|
|
sched->nr_unordered_timestamps++;
|
|
goto out_ok;
|
|
}
|
|
|
|
atom->state = THREAD_WAIT_CPU;
|
|
atom->wake_up_time = timestamp;
|
|
out_ok:
|
|
err = 0;
|
|
out_put:
|
|
thread__put(wakee);
|
|
return err;
|
|
}
|
|
|
|
static int latency_migrate_task_event(struct perf_sched *sched,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
const u32 pid = perf_evsel__intval(evsel, sample, "pid");
|
|
u64 timestamp = sample->time;
|
|
struct work_atoms *atoms;
|
|
struct work_atom *atom;
|
|
struct thread *migrant;
|
|
int err = -1;
|
|
|
|
/*
|
|
* Only need to worry about migration when profiling one CPU.
|
|
*/
|
|
if (sched->profile_cpu == -1)
|
|
return 0;
|
|
|
|
migrant = machine__findnew_thread(machine, -1, pid);
|
|
if (migrant == NULL)
|
|
return -1;
|
|
atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
|
|
if (!atoms) {
|
|
if (thread_atoms_insert(sched, migrant))
|
|
goto out_put;
|
|
register_pid(sched, migrant->tid, thread__comm_str(migrant));
|
|
atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
|
|
if (!atoms) {
|
|
pr_err("migration-event: Internal tree error");
|
|
goto out_put;
|
|
}
|
|
if (add_sched_out_event(atoms, 'R', timestamp))
|
|
goto out_put;
|
|
}
|
|
|
|
BUG_ON(list_empty(&atoms->work_list));
|
|
|
|
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
|
|
atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
|
|
|
|
sched->nr_timestamps++;
|
|
|
|
if (atom->sched_out_time > timestamp)
|
|
sched->nr_unordered_timestamps++;
|
|
err = 0;
|
|
out_put:
|
|
thread__put(migrant);
|
|
return err;
|
|
}
|
|
|
|
static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
|
|
{
|
|
int i;
|
|
int ret;
|
|
u64 avg;
|
|
|
|
if (!work_list->nb_atoms)
|
|
return;
|
|
/*
|
|
* Ignore idle threads:
|
|
*/
|
|
if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
|
|
return;
|
|
|
|
sched->all_runtime += work_list->total_runtime;
|
|
sched->all_count += work_list->nb_atoms;
|
|
|
|
if (work_list->num_merged > 1)
|
|
ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
|
|
else
|
|
ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
|
|
|
|
for (i = 0; i < 24 - ret; i++)
|
|
printf(" ");
|
|
|
|
avg = work_list->total_lat / work_list->nb_atoms;
|
|
|
|
printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
|
|
(double)work_list->total_runtime / NSEC_PER_MSEC,
|
|
work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
|
|
(double)work_list->max_lat / NSEC_PER_MSEC,
|
|
(double)work_list->max_lat_at / NSEC_PER_SEC);
|
|
}
|
|
|
|
static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
|
|
{
|
|
if (l->thread == r->thread)
|
|
return 0;
|
|
if (l->thread->tid < r->thread->tid)
|
|
return -1;
|
|
if (l->thread->tid > r->thread->tid)
|
|
return 1;
|
|
return (int)(l->thread - r->thread);
|
|
}
|
|
|
|
static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
|
|
{
|
|
u64 avgl, avgr;
|
|
|
|
if (!l->nb_atoms)
|
|
return -1;
|
|
|
|
if (!r->nb_atoms)
|
|
return 1;
|
|
|
|
avgl = l->total_lat / l->nb_atoms;
|
|
avgr = r->total_lat / r->nb_atoms;
|
|
|
|
if (avgl < avgr)
|
|
return -1;
|
|
if (avgl > avgr)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int max_cmp(struct work_atoms *l, struct work_atoms *r)
|
|
{
|
|
if (l->max_lat < r->max_lat)
|
|
return -1;
|
|
if (l->max_lat > r->max_lat)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
|
|
{
|
|
if (l->nb_atoms < r->nb_atoms)
|
|
return -1;
|
|
if (l->nb_atoms > r->nb_atoms)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
|
|
{
|
|
if (l->total_runtime < r->total_runtime)
|
|
return -1;
|
|
if (l->total_runtime > r->total_runtime)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sort_dimension__add(const char *tok, struct list_head *list)
|
|
{
|
|
size_t i;
|
|
static struct sort_dimension avg_sort_dimension = {
|
|
.name = "avg",
|
|
.cmp = avg_cmp,
|
|
};
|
|
static struct sort_dimension max_sort_dimension = {
|
|
.name = "max",
|
|
.cmp = max_cmp,
|
|
};
|
|
static struct sort_dimension pid_sort_dimension = {
|
|
.name = "pid",
|
|
.cmp = pid_cmp,
|
|
};
|
|
static struct sort_dimension runtime_sort_dimension = {
|
|
.name = "runtime",
|
|
.cmp = runtime_cmp,
|
|
};
|
|
static struct sort_dimension switch_sort_dimension = {
|
|
.name = "switch",
|
|
.cmp = switch_cmp,
|
|
};
|
|
struct sort_dimension *available_sorts[] = {
|
|
&pid_sort_dimension,
|
|
&avg_sort_dimension,
|
|
&max_sort_dimension,
|
|
&switch_sort_dimension,
|
|
&runtime_sort_dimension,
|
|
};
|
|
|
|
for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
|
|
if (!strcmp(available_sorts[i]->name, tok)) {
|
|
list_add_tail(&available_sorts[i]->list, list);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void perf_sched__sort_lat(struct perf_sched *sched)
|
|
{
|
|
struct rb_node *node;
|
|
struct rb_root *root = &sched->atom_root;
|
|
again:
|
|
for (;;) {
|
|
struct work_atoms *data;
|
|
node = rb_first(root);
|
|
if (!node)
|
|
break;
|
|
|
|
rb_erase(node, root);
|
|
data = rb_entry(node, struct work_atoms, node);
|
|
__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
|
|
}
|
|
if (root == &sched->atom_root) {
|
|
root = &sched->merged_atom_root;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
static int process_sched_wakeup_event(struct perf_tool *tool,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
|
|
|
|
if (sched->tp_handler->wakeup_event)
|
|
return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
|
|
|
|
return 0;
|
|
}
|
|
|
|
union map_priv {
|
|
void *ptr;
|
|
bool color;
|
|
};
|
|
|
|
static bool thread__has_color(struct thread *thread)
|
|
{
|
|
union map_priv priv = {
|
|
.ptr = thread__priv(thread),
|
|
};
|
|
|
|
return priv.color;
|
|
}
|
|
|
|
static struct thread*
|
|
map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
|
|
{
|
|
struct thread *thread = machine__findnew_thread(machine, pid, tid);
|
|
union map_priv priv = {
|
|
.color = false,
|
|
};
|
|
|
|
if (!sched->map.color_pids || !thread || thread__priv(thread))
|
|
return thread;
|
|
|
|
if (thread_map__has(sched->map.color_pids, tid))
|
|
priv.color = true;
|
|
|
|
thread__set_priv(thread, priv.ptr);
|
|
return thread;
|
|
}
|
|
|
|
static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
|
|
struct perf_sample *sample, struct machine *machine)
|
|
{
|
|
const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
|
|
struct thread *sched_in;
|
|
int new_shortname;
|
|
u64 timestamp0, timestamp = sample->time;
|
|
s64 delta;
|
|
int i, this_cpu = sample->cpu;
|
|
int cpus_nr;
|
|
bool new_cpu = false;
|
|
const char *color = PERF_COLOR_NORMAL;
|
|
|
|
BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
|
|
|
|
if (this_cpu > sched->max_cpu)
|
|
sched->max_cpu = this_cpu;
|
|
|
|
if (sched->map.comp) {
|
|
cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
|
|
if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
|
|
sched->map.comp_cpus[cpus_nr++] = this_cpu;
|
|
new_cpu = true;
|
|
}
|
|
} else
|
|
cpus_nr = sched->max_cpu;
|
|
|
|
timestamp0 = sched->cpu_last_switched[this_cpu];
|
|
sched->cpu_last_switched[this_cpu] = timestamp;
|
|
if (timestamp0)
|
|
delta = timestamp - timestamp0;
|
|
else
|
|
delta = 0;
|
|
|
|
if (delta < 0) {
|
|
pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
|
|
return -1;
|
|
}
|
|
|
|
sched_in = map__findnew_thread(sched, machine, -1, next_pid);
|
|
if (sched_in == NULL)
|
|
return -1;
|
|
|
|
sched->curr_thread[this_cpu] = thread__get(sched_in);
|
|
|
|
printf(" ");
|
|
|
|
new_shortname = 0;
|
|
if (!sched_in->shortname[0]) {
|
|
if (!strcmp(thread__comm_str(sched_in), "swapper")) {
|
|
/*
|
|
* Don't allocate a letter-number for swapper:0
|
|
* as a shortname. Instead, we use '.' for it.
|
|
*/
|
|
sched_in->shortname[0] = '.';
|
|
sched_in->shortname[1] = ' ';
|
|
} else {
|
|
sched_in->shortname[0] = sched->next_shortname1;
|
|
sched_in->shortname[1] = sched->next_shortname2;
|
|
|
|
if (sched->next_shortname1 < 'Z') {
|
|
sched->next_shortname1++;
|
|
} else {
|
|
sched->next_shortname1 = 'A';
|
|
if (sched->next_shortname2 < '9')
|
|
sched->next_shortname2++;
|
|
else
|
|
sched->next_shortname2 = '0';
|
|
}
|
|
}
|
|
new_shortname = 1;
|
|
}
|
|
|
|
for (i = 0; i < cpus_nr; i++) {
|
|
int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
|
|
struct thread *curr_thread = sched->curr_thread[cpu];
|
|
const char *pid_color = color;
|
|
const char *cpu_color = color;
|
|
|
|
if (curr_thread && thread__has_color(curr_thread))
|
|
pid_color = COLOR_PIDS;
|
|
|
|
if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
|
|
continue;
|
|
|
|
if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
|
|
cpu_color = COLOR_CPUS;
|
|
|
|
if (cpu != this_cpu)
|
|
color_fprintf(stdout, cpu_color, " ");
|
|
else
|
|
color_fprintf(stdout, cpu_color, "*");
|
|
|
|
if (sched->curr_thread[cpu])
|
|
color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
|
|
else
|
|
color_fprintf(stdout, color, " ");
|
|
}
|
|
|
|
if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
|
|
goto out;
|
|
|
|
color_fprintf(stdout, color, " %12.6f secs ", (double)timestamp / NSEC_PER_SEC);
|
|
if (new_shortname) {
|
|
const char *pid_color = color;
|
|
|
|
if (thread__has_color(sched_in))
|
|
pid_color = COLOR_PIDS;
|
|
|
|
color_fprintf(stdout, pid_color, "%s => %s:%d",
|
|
sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
|
|
}
|
|
|
|
if (sched->map.comp && new_cpu)
|
|
color_fprintf(stdout, color, " (CPU %d)", this_cpu);
|
|
|
|
out:
|
|
color_fprintf(stdout, color, "\n");
|
|
|
|
thread__put(sched_in);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int process_sched_switch_event(struct perf_tool *tool,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
|
|
int this_cpu = sample->cpu, err = 0;
|
|
u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
|
|
next_pid = perf_evsel__intval(evsel, sample, "next_pid");
|
|
|
|
if (sched->curr_pid[this_cpu] != (u32)-1) {
|
|
/*
|
|
* Are we trying to switch away a PID that is
|
|
* not current?
|
|
*/
|
|
if (sched->curr_pid[this_cpu] != prev_pid)
|
|
sched->nr_context_switch_bugs++;
|
|
}
|
|
|
|
if (sched->tp_handler->switch_event)
|
|
err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
|
|
|
|
sched->curr_pid[this_cpu] = next_pid;
|
|
return err;
|
|
}
|
|
|
|
static int process_sched_runtime_event(struct perf_tool *tool,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
|
|
|
|
if (sched->tp_handler->runtime_event)
|
|
return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int perf_sched__process_fork_event(struct perf_tool *tool,
|
|
union perf_event *event,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
|
|
|
|
/* run the fork event through the perf machineruy */
|
|
perf_event__process_fork(tool, event, sample, machine);
|
|
|
|
/* and then run additional processing needed for this command */
|
|
if (sched->tp_handler->fork_event)
|
|
return sched->tp_handler->fork_event(sched, event, machine);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int process_sched_migrate_task_event(struct perf_tool *tool,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
|
|
|
|
if (sched->tp_handler->migrate_task_event)
|
|
return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef int (*tracepoint_handler)(struct perf_tool *tool,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
struct machine *machine);
|
|
|
|
static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
|
|
union perf_event *event __maybe_unused,
|
|
struct perf_sample *sample,
|
|
struct perf_evsel *evsel,
|
|
struct machine *machine)
|
|
{
|
|
int err = 0;
|
|
|
|
if (evsel->handler != NULL) {
|
|
tracepoint_handler f = evsel->handler;
|
|
err = f(tool, evsel, sample, machine);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int perf_sched__read_events(struct perf_sched *sched)
|
|
{
|
|
const struct perf_evsel_str_handler handlers[] = {
|
|
{ "sched:sched_switch", process_sched_switch_event, },
|
|
{ "sched:sched_stat_runtime", process_sched_runtime_event, },
|
|
{ "sched:sched_wakeup", process_sched_wakeup_event, },
|
|
{ "sched:sched_wakeup_new", process_sched_wakeup_event, },
|
|
{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
|
|
};
|
|
struct perf_session *session;
|
|
struct perf_data_file file = {
|
|
.path = input_name,
|
|
.mode = PERF_DATA_MODE_READ,
|
|
.force = sched->force,
|
|
};
|
|
int rc = -1;
|
|
|
|
session = perf_session__new(&file, false, &sched->tool);
|
|
if (session == NULL) {
|
|
pr_debug("No Memory for session\n");
|
|
return -1;
|
|
}
|
|
|
|
symbol__init(&session->header.env);
|
|
|
|
if (perf_session__set_tracepoints_handlers(session, handlers))
|
|
goto out_delete;
|
|
|
|
if (perf_session__has_traces(session, "record -R")) {
|
|
int err = perf_session__process_events(session);
|
|
if (err) {
|
|
pr_err("Failed to process events, error %d", err);
|
|
goto out_delete;
|
|
}
|
|
|
|
sched->nr_events = session->evlist->stats.nr_events[0];
|
|
sched->nr_lost_events = session->evlist->stats.total_lost;
|
|
sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
|
|
}
|
|
|
|
rc = 0;
|
|
out_delete:
|
|
perf_session__delete(session);
|
|
return rc;
|
|
}
|
|
|
|
static void print_bad_events(struct perf_sched *sched)
|
|
{
|
|
if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
|
|
printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
|
|
(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
|
|
sched->nr_unordered_timestamps, sched->nr_timestamps);
|
|
}
|
|
if (sched->nr_lost_events && sched->nr_events) {
|
|
printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
|
|
(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
|
|
sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
|
|
}
|
|
if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
|
|
printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
|
|
(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
|
|
sched->nr_context_switch_bugs, sched->nr_timestamps);
|
|
if (sched->nr_lost_events)
|
|
printf(" (due to lost events?)");
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
|
|
{
|
|
struct rb_node **new = &(root->rb_node), *parent = NULL;
|
|
struct work_atoms *this;
|
|
const char *comm = thread__comm_str(data->thread), *this_comm;
|
|
|
|
while (*new) {
|
|
int cmp;
|
|
|
|
this = container_of(*new, struct work_atoms, node);
|
|
parent = *new;
|
|
|
|
this_comm = thread__comm_str(this->thread);
|
|
cmp = strcmp(comm, this_comm);
|
|
if (cmp > 0) {
|
|
new = &((*new)->rb_left);
|
|
} else if (cmp < 0) {
|
|
new = &((*new)->rb_right);
|
|
} else {
|
|
this->num_merged++;
|
|
this->total_runtime += data->total_runtime;
|
|
this->nb_atoms += data->nb_atoms;
|
|
this->total_lat += data->total_lat;
|
|
list_splice(&data->work_list, &this->work_list);
|
|
if (this->max_lat < data->max_lat) {
|
|
this->max_lat = data->max_lat;
|
|
this->max_lat_at = data->max_lat_at;
|
|
}
|
|
zfree(&data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
data->num_merged++;
|
|
rb_link_node(&data->node, parent, new);
|
|
rb_insert_color(&data->node, root);
|
|
}
|
|
|
|
static void perf_sched__merge_lat(struct perf_sched *sched)
|
|
{
|
|
struct work_atoms *data;
|
|
struct rb_node *node;
|
|
|
|
if (sched->skip_merge)
|
|
return;
|
|
|
|
while ((node = rb_first(&sched->atom_root))) {
|
|
rb_erase(node, &sched->atom_root);
|
|
data = rb_entry(node, struct work_atoms, node);
|
|
__merge_work_atoms(&sched->merged_atom_root, data);
|
|
}
|
|
}
|
|
|
|
static int perf_sched__lat(struct perf_sched *sched)
|
|
{
|
|
struct rb_node *next;
|
|
|
|
setup_pager();
|
|
|
|
if (perf_sched__read_events(sched))
|
|
return -1;
|
|
|
|
perf_sched__merge_lat(sched);
|
|
perf_sched__sort_lat(sched);
|
|
|
|
printf("\n -----------------------------------------------------------------------------------------------------------------\n");
|
|
printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
|
|
printf(" -----------------------------------------------------------------------------------------------------------------\n");
|
|
|
|
next = rb_first(&sched->sorted_atom_root);
|
|
|
|
while (next) {
|
|
struct work_atoms *work_list;
|
|
|
|
work_list = rb_entry(next, struct work_atoms, node);
|
|
output_lat_thread(sched, work_list);
|
|
next = rb_next(next);
|
|
thread__zput(work_list->thread);
|
|
}
|
|
|
|
printf(" -----------------------------------------------------------------------------------------------------------------\n");
|
|
printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
|
|
(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
|
|
|
|
printf(" ---------------------------------------------------\n");
|
|
|
|
print_bad_events(sched);
|
|
printf("\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int setup_map_cpus(struct perf_sched *sched)
|
|
{
|
|
struct cpu_map *map;
|
|
|
|
sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
|
|
|
|
if (sched->map.comp) {
|
|
sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
|
|
if (!sched->map.comp_cpus)
|
|
return -1;
|
|
}
|
|
|
|
if (!sched->map.cpus_str)
|
|
return 0;
|
|
|
|
map = cpu_map__new(sched->map.cpus_str);
|
|
if (!map) {
|
|
pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
|
|
return -1;
|
|
}
|
|
|
|
sched->map.cpus = map;
|
|
return 0;
|
|
}
|
|
|
|
static int setup_color_pids(struct perf_sched *sched)
|
|
{
|
|
struct thread_map *map;
|
|
|
|
if (!sched->map.color_pids_str)
|
|
return 0;
|
|
|
|
map = thread_map__new_by_tid_str(sched->map.color_pids_str);
|
|
if (!map) {
|
|
pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
|
|
return -1;
|
|
}
|
|
|
|
sched->map.color_pids = map;
|
|
return 0;
|
|
}
|
|
|
|
static int setup_color_cpus(struct perf_sched *sched)
|
|
{
|
|
struct cpu_map *map;
|
|
|
|
if (!sched->map.color_cpus_str)
|
|
return 0;
|
|
|
|
map = cpu_map__new(sched->map.color_cpus_str);
|
|
if (!map) {
|
|
pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
|
|
return -1;
|
|
}
|
|
|
|
sched->map.color_cpus = map;
|
|
return 0;
|
|
}
|
|
|
|
static int perf_sched__map(struct perf_sched *sched)
|
|
{
|
|
if (setup_map_cpus(sched))
|
|
return -1;
|
|
|
|
if (setup_color_pids(sched))
|
|
return -1;
|
|
|
|
if (setup_color_cpus(sched))
|
|
return -1;
|
|
|
|
setup_pager();
|
|
if (perf_sched__read_events(sched))
|
|
return -1;
|
|
print_bad_events(sched);
|
|
return 0;
|
|
}
|
|
|
|
static int perf_sched__replay(struct perf_sched *sched)
|
|
{
|
|
unsigned long i;
|
|
|
|
calibrate_run_measurement_overhead(sched);
|
|
calibrate_sleep_measurement_overhead(sched);
|
|
|
|
test_calibrations(sched);
|
|
|
|
if (perf_sched__read_events(sched))
|
|
return -1;
|
|
|
|
printf("nr_run_events: %ld\n", sched->nr_run_events);
|
|
printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
|
|
printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
|
|
|
|
if (sched->targetless_wakeups)
|
|
printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
|
|
if (sched->multitarget_wakeups)
|
|
printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
|
|
if (sched->nr_run_events_optimized)
|
|
printf("run atoms optimized: %ld\n",
|
|
sched->nr_run_events_optimized);
|
|
|
|
print_task_traces(sched);
|
|
add_cross_task_wakeups(sched);
|
|
|
|
create_tasks(sched);
|
|
printf("------------------------------------------------------------\n");
|
|
for (i = 0; i < sched->replay_repeat; i++)
|
|
run_one_test(sched);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void setup_sorting(struct perf_sched *sched, const struct option *options,
|
|
const char * const usage_msg[])
|
|
{
|
|
char *tmp, *tok, *str = strdup(sched->sort_order);
|
|
|
|
for (tok = strtok_r(str, ", ", &tmp);
|
|
tok; tok = strtok_r(NULL, ", ", &tmp)) {
|
|
if (sort_dimension__add(tok, &sched->sort_list) < 0) {
|
|
usage_with_options_msg(usage_msg, options,
|
|
"Unknown --sort key: `%s'", tok);
|
|
}
|
|
}
|
|
|
|
free(str);
|
|
|
|
sort_dimension__add("pid", &sched->cmp_pid);
|
|
}
|
|
|
|
static int __cmd_record(int argc, const char **argv)
|
|
{
|
|
unsigned int rec_argc, i, j;
|
|
const char **rec_argv;
|
|
const char * const record_args[] = {
|
|
"record",
|
|
"-a",
|
|
"-R",
|
|
"-m", "1024",
|
|
"-c", "1",
|
|
"-e", "sched:sched_switch",
|
|
"-e", "sched:sched_stat_wait",
|
|
"-e", "sched:sched_stat_sleep",
|
|
"-e", "sched:sched_stat_iowait",
|
|
"-e", "sched:sched_stat_runtime",
|
|
"-e", "sched:sched_process_fork",
|
|
"-e", "sched:sched_wakeup",
|
|
"-e", "sched:sched_wakeup_new",
|
|
"-e", "sched:sched_migrate_task",
|
|
};
|
|
|
|
rec_argc = ARRAY_SIZE(record_args) + argc - 1;
|
|
rec_argv = calloc(rec_argc + 1, sizeof(char *));
|
|
|
|
if (rec_argv == NULL)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(record_args); i++)
|
|
rec_argv[i] = strdup(record_args[i]);
|
|
|
|
for (j = 1; j < (unsigned int)argc; j++, i++)
|
|
rec_argv[i] = argv[j];
|
|
|
|
BUG_ON(i != rec_argc);
|
|
|
|
return cmd_record(i, rec_argv, NULL);
|
|
}
|
|
|
|
int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
|
|
{
|
|
const char default_sort_order[] = "avg, max, switch, runtime";
|
|
struct perf_sched sched = {
|
|
.tool = {
|
|
.sample = perf_sched__process_tracepoint_sample,
|
|
.comm = perf_event__process_comm,
|
|
.lost = perf_event__process_lost,
|
|
.fork = perf_sched__process_fork_event,
|
|
.ordered_events = true,
|
|
},
|
|
.cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
|
|
.sort_list = LIST_HEAD_INIT(sched.sort_list),
|
|
.start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
|
|
.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
|
|
.sort_order = default_sort_order,
|
|
.replay_repeat = 10,
|
|
.profile_cpu = -1,
|
|
.next_shortname1 = 'A',
|
|
.next_shortname2 = '0',
|
|
.skip_merge = 0,
|
|
};
|
|
const struct option latency_options[] = {
|
|
OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
|
|
"sort by key(s): runtime, switch, avg, max"),
|
|
OPT_INCR('v', "verbose", &verbose,
|
|
"be more verbose (show symbol address, etc)"),
|
|
OPT_INTEGER('C', "CPU", &sched.profile_cpu,
|
|
"CPU to profile on"),
|
|
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
|
|
"dump raw trace in ASCII"),
|
|
OPT_BOOLEAN('p', "pids", &sched.skip_merge,
|
|
"latency stats per pid instead of per comm"),
|
|
OPT_END()
|
|
};
|
|
const struct option replay_options[] = {
|
|
OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
|
|
"repeat the workload replay N times (-1: infinite)"),
|
|
OPT_INCR('v', "verbose", &verbose,
|
|
"be more verbose (show symbol address, etc)"),
|
|
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
|
|
"dump raw trace in ASCII"),
|
|
OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
|
|
OPT_END()
|
|
};
|
|
const struct option sched_options[] = {
|
|
OPT_STRING('i', "input", &input_name, "file",
|
|
"input file name"),
|
|
OPT_INCR('v', "verbose", &verbose,
|
|
"be more verbose (show symbol address, etc)"),
|
|
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
|
|
"dump raw trace in ASCII"),
|
|
OPT_END()
|
|
};
|
|
const struct option map_options[] = {
|
|
OPT_BOOLEAN(0, "compact", &sched.map.comp,
|
|
"map output in compact mode"),
|
|
OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
|
|
"highlight given pids in map"),
|
|
OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
|
|
"highlight given CPUs in map"),
|
|
OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
|
|
"display given CPUs in map"),
|
|
OPT_END()
|
|
};
|
|
const char * const latency_usage[] = {
|
|
"perf sched latency [<options>]",
|
|
NULL
|
|
};
|
|
const char * const replay_usage[] = {
|
|
"perf sched replay [<options>]",
|
|
NULL
|
|
};
|
|
const char * const map_usage[] = {
|
|
"perf sched map [<options>]",
|
|
NULL
|
|
};
|
|
const char *const sched_subcommands[] = { "record", "latency", "map",
|
|
"replay", "script", NULL };
|
|
const char *sched_usage[] = {
|
|
NULL,
|
|
NULL
|
|
};
|
|
struct trace_sched_handler lat_ops = {
|
|
.wakeup_event = latency_wakeup_event,
|
|
.switch_event = latency_switch_event,
|
|
.runtime_event = latency_runtime_event,
|
|
.migrate_task_event = latency_migrate_task_event,
|
|
};
|
|
struct trace_sched_handler map_ops = {
|
|
.switch_event = map_switch_event,
|
|
};
|
|
struct trace_sched_handler replay_ops = {
|
|
.wakeup_event = replay_wakeup_event,
|
|
.switch_event = replay_switch_event,
|
|
.fork_event = replay_fork_event,
|
|
};
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
|
|
sched.curr_pid[i] = -1;
|
|
|
|
argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
|
|
sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
|
|
if (!argc)
|
|
usage_with_options(sched_usage, sched_options);
|
|
|
|
/*
|
|
* Aliased to 'perf script' for now:
|
|
*/
|
|
if (!strcmp(argv[0], "script"))
|
|
return cmd_script(argc, argv, prefix);
|
|
|
|
if (!strncmp(argv[0], "rec", 3)) {
|
|
return __cmd_record(argc, argv);
|
|
} else if (!strncmp(argv[0], "lat", 3)) {
|
|
sched.tp_handler = &lat_ops;
|
|
if (argc > 1) {
|
|
argc = parse_options(argc, argv, latency_options, latency_usage, 0);
|
|
if (argc)
|
|
usage_with_options(latency_usage, latency_options);
|
|
}
|
|
setup_sorting(&sched, latency_options, latency_usage);
|
|
return perf_sched__lat(&sched);
|
|
} else if (!strcmp(argv[0], "map")) {
|
|
if (argc) {
|
|
argc = parse_options(argc, argv, map_options, map_usage, 0);
|
|
if (argc)
|
|
usage_with_options(map_usage, map_options);
|
|
}
|
|
sched.tp_handler = &map_ops;
|
|
setup_sorting(&sched, latency_options, latency_usage);
|
|
return perf_sched__map(&sched);
|
|
} else if (!strncmp(argv[0], "rep", 3)) {
|
|
sched.tp_handler = &replay_ops;
|
|
if (argc) {
|
|
argc = parse_options(argc, argv, replay_options, replay_usage, 0);
|
|
if (argc)
|
|
usage_with_options(replay_usage, replay_options);
|
|
}
|
|
return perf_sched__replay(&sched);
|
|
} else {
|
|
usage_with_options(sched_usage, sched_options);
|
|
}
|
|
|
|
return 0;
|
|
}
|