mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 05:36:35 +07:00
f7b4263372
Improve the safety of the code and ensure the array cannot be indexed out of bounds when picking the CPU for a given SDMA engine. Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Michael J. Ruhl <michael.j.ruhl@intel.com> Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
3420 lines
89 KiB
C
3420 lines
89 KiB
C
/*
|
|
* Copyright(c) 2015, 2016 Intel Corporation.
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* - Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/spinlock.h>
|
|
#include <linux/seqlock.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include "hfi.h"
|
|
#include "common.h"
|
|
#include "qp.h"
|
|
#include "sdma.h"
|
|
#include "iowait.h"
|
|
#include "trace.h"
|
|
|
|
/* must be a power of 2 >= 64 <= 32768 */
|
|
#define SDMA_DESCQ_CNT 2048
|
|
#define SDMA_DESC_INTR 64
|
|
#define INVALID_TAIL 0xffff
|
|
|
|
static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
|
|
module_param(sdma_descq_cnt, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
|
|
|
|
static uint sdma_idle_cnt = 250;
|
|
module_param(sdma_idle_cnt, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
|
|
|
|
uint mod_num_sdma;
|
|
module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
|
|
|
|
static uint sdma_desct_intr = SDMA_DESC_INTR;
|
|
module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
|
|
|
|
#define SDMA_WAIT_BATCH_SIZE 20
|
|
/* max wait time for a SDMA engine to indicate it has halted */
|
|
#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
|
|
/* all SDMA engine errors that cause a halt */
|
|
|
|
#define SD(name) SEND_DMA_##name
|
|
#define ALL_SDMA_ENG_HALT_ERRS \
|
|
(SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
|
|
| SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
|
|
|
|
/* sdma_sendctrl operations */
|
|
#define SDMA_SENDCTRL_OP_ENABLE BIT(0)
|
|
#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
|
|
#define SDMA_SENDCTRL_OP_HALT BIT(2)
|
|
#define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
|
|
|
|
/* handle long defines */
|
|
#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
|
|
SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
|
|
#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
|
|
SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
|
|
|
|
static const char * const sdma_state_names[] = {
|
|
[sdma_state_s00_hw_down] = "s00_HwDown",
|
|
[sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
|
|
[sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
|
|
[sdma_state_s20_idle] = "s20_Idle",
|
|
[sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
|
|
[sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
|
|
[sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
|
|
[sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
|
|
[sdma_state_s80_hw_freeze] = "s80_HwFreeze",
|
|
[sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
|
|
[sdma_state_s99_running] = "s99_Running",
|
|
};
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
static const char * const sdma_event_names[] = {
|
|
[sdma_event_e00_go_hw_down] = "e00_GoHwDown",
|
|
[sdma_event_e10_go_hw_start] = "e10_GoHwStart",
|
|
[sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
|
|
[sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
|
|
[sdma_event_e30_go_running] = "e30_GoRunning",
|
|
[sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
|
|
[sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
|
|
[sdma_event_e60_hw_halted] = "e60_HwHalted",
|
|
[sdma_event_e70_go_idle] = "e70_GoIdle",
|
|
[sdma_event_e80_hw_freeze] = "e80_HwFreeze",
|
|
[sdma_event_e81_hw_frozen] = "e81_HwFrozen",
|
|
[sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
|
|
[sdma_event_e85_link_down] = "e85_LinkDown",
|
|
[sdma_event_e90_sw_halted] = "e90_SwHalted",
|
|
};
|
|
#endif
|
|
|
|
static const struct sdma_set_state_action sdma_action_table[] = {
|
|
[sdma_state_s00_hw_down] = {
|
|
.go_s99_running_tofalse = 1,
|
|
.op_enable = 0,
|
|
.op_intenable = 0,
|
|
.op_halt = 0,
|
|
.op_cleanup = 0,
|
|
},
|
|
[sdma_state_s10_hw_start_up_halt_wait] = {
|
|
.op_enable = 0,
|
|
.op_intenable = 0,
|
|
.op_halt = 1,
|
|
.op_cleanup = 0,
|
|
},
|
|
[sdma_state_s15_hw_start_up_clean_wait] = {
|
|
.op_enable = 0,
|
|
.op_intenable = 1,
|
|
.op_halt = 0,
|
|
.op_cleanup = 1,
|
|
},
|
|
[sdma_state_s20_idle] = {
|
|
.op_enable = 0,
|
|
.op_intenable = 1,
|
|
.op_halt = 0,
|
|
.op_cleanup = 0,
|
|
},
|
|
[sdma_state_s30_sw_clean_up_wait] = {
|
|
.op_enable = 0,
|
|
.op_intenable = 0,
|
|
.op_halt = 0,
|
|
.op_cleanup = 0,
|
|
},
|
|
[sdma_state_s40_hw_clean_up_wait] = {
|
|
.op_enable = 0,
|
|
.op_intenable = 0,
|
|
.op_halt = 0,
|
|
.op_cleanup = 1,
|
|
},
|
|
[sdma_state_s50_hw_halt_wait] = {
|
|
.op_enable = 0,
|
|
.op_intenable = 0,
|
|
.op_halt = 0,
|
|
.op_cleanup = 0,
|
|
},
|
|
[sdma_state_s60_idle_halt_wait] = {
|
|
.go_s99_running_tofalse = 1,
|
|
.op_enable = 0,
|
|
.op_intenable = 0,
|
|
.op_halt = 1,
|
|
.op_cleanup = 0,
|
|
},
|
|
[sdma_state_s80_hw_freeze] = {
|
|
.op_enable = 0,
|
|
.op_intenable = 0,
|
|
.op_halt = 0,
|
|
.op_cleanup = 0,
|
|
},
|
|
[sdma_state_s82_freeze_sw_clean] = {
|
|
.op_enable = 0,
|
|
.op_intenable = 0,
|
|
.op_halt = 0,
|
|
.op_cleanup = 0,
|
|
},
|
|
[sdma_state_s99_running] = {
|
|
.op_enable = 1,
|
|
.op_intenable = 1,
|
|
.op_halt = 0,
|
|
.op_cleanup = 0,
|
|
.go_s99_running_totrue = 1,
|
|
},
|
|
};
|
|
|
|
#define SDMA_TAIL_UPDATE_THRESH 0x1F
|
|
|
|
/* declare all statics here rather than keep sorting */
|
|
static void sdma_complete(struct kref *);
|
|
static void sdma_finalput(struct sdma_state *);
|
|
static void sdma_get(struct sdma_state *);
|
|
static void sdma_hw_clean_up_task(unsigned long);
|
|
static void sdma_put(struct sdma_state *);
|
|
static void sdma_set_state(struct sdma_engine *, enum sdma_states);
|
|
static void sdma_start_hw_clean_up(struct sdma_engine *);
|
|
static void sdma_sw_clean_up_task(unsigned long);
|
|
static void sdma_sendctrl(struct sdma_engine *, unsigned);
|
|
static void init_sdma_regs(struct sdma_engine *, u32, uint);
|
|
static void sdma_process_event(
|
|
struct sdma_engine *sde,
|
|
enum sdma_events event);
|
|
static void __sdma_process_event(
|
|
struct sdma_engine *sde,
|
|
enum sdma_events event);
|
|
static void dump_sdma_state(struct sdma_engine *sde);
|
|
static void sdma_make_progress(struct sdma_engine *sde, u64 status);
|
|
static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
|
|
static void sdma_flush_descq(struct sdma_engine *sde);
|
|
|
|
/**
|
|
* sdma_state_name() - return state string from enum
|
|
* @state: state
|
|
*/
|
|
static const char *sdma_state_name(enum sdma_states state)
|
|
{
|
|
return sdma_state_names[state];
|
|
}
|
|
|
|
static void sdma_get(struct sdma_state *ss)
|
|
{
|
|
kref_get(&ss->kref);
|
|
}
|
|
|
|
static void sdma_complete(struct kref *kref)
|
|
{
|
|
struct sdma_state *ss =
|
|
container_of(kref, struct sdma_state, kref);
|
|
|
|
complete(&ss->comp);
|
|
}
|
|
|
|
static void sdma_put(struct sdma_state *ss)
|
|
{
|
|
kref_put(&ss->kref, sdma_complete);
|
|
}
|
|
|
|
static void sdma_finalput(struct sdma_state *ss)
|
|
{
|
|
sdma_put(ss);
|
|
wait_for_completion(&ss->comp);
|
|
}
|
|
|
|
static inline void write_sde_csr(
|
|
struct sdma_engine *sde,
|
|
u32 offset0,
|
|
u64 value)
|
|
{
|
|
write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
|
|
}
|
|
|
|
static inline u64 read_sde_csr(
|
|
struct sdma_engine *sde,
|
|
u32 offset0)
|
|
{
|
|
return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
|
|
}
|
|
|
|
/*
|
|
* sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
|
|
* sdma engine 'sde' to drop to 0.
|
|
*/
|
|
static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
|
|
int pause)
|
|
{
|
|
u64 off = 8 * sde->this_idx;
|
|
struct hfi1_devdata *dd = sde->dd;
|
|
int lcnt = 0;
|
|
u64 reg_prev;
|
|
u64 reg = 0;
|
|
|
|
while (1) {
|
|
reg_prev = reg;
|
|
reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
|
|
|
|
reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
|
|
reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
|
|
if (reg == 0)
|
|
break;
|
|
/* counter is reest if accupancy count changes */
|
|
if (reg != reg_prev)
|
|
lcnt = 0;
|
|
if (lcnt++ > 500) {
|
|
/* timed out - bounce the link */
|
|
dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
|
|
__func__, sde->this_idx, (u32)reg);
|
|
queue_work(dd->pport->hfi1_wq,
|
|
&dd->pport->link_bounce_work);
|
|
break;
|
|
}
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sdma_wait() - wait for packet egress to complete for all SDMA engines,
|
|
* and pause for credit return.
|
|
*/
|
|
void sdma_wait(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dd->num_sdma; i++) {
|
|
struct sdma_engine *sde = &dd->per_sdma[i];
|
|
|
|
sdma_wait_for_packet_egress(sde, 0);
|
|
}
|
|
}
|
|
|
|
static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
|
|
{
|
|
u64 reg;
|
|
|
|
if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
|
|
return;
|
|
reg = cnt;
|
|
reg &= SD(DESC_CNT_CNT_MASK);
|
|
reg <<= SD(DESC_CNT_CNT_SHIFT);
|
|
write_sde_csr(sde, SD(DESC_CNT), reg);
|
|
}
|
|
|
|
static inline void complete_tx(struct sdma_engine *sde,
|
|
struct sdma_txreq *tx,
|
|
int res)
|
|
{
|
|
/* protect against complete modifying */
|
|
struct iowait *wait = tx->wait;
|
|
callback_t complete = tx->complete;
|
|
|
|
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
|
|
trace_hfi1_sdma_out_sn(sde, tx->sn);
|
|
if (WARN_ON_ONCE(sde->head_sn != tx->sn))
|
|
dd_dev_err(sde->dd, "expected %llu got %llu\n",
|
|
sde->head_sn, tx->sn);
|
|
sde->head_sn++;
|
|
#endif
|
|
__sdma_txclean(sde->dd, tx);
|
|
if (complete)
|
|
(*complete)(tx, res);
|
|
if (wait && iowait_sdma_dec(wait))
|
|
iowait_drain_wakeup(wait);
|
|
}
|
|
|
|
/*
|
|
* Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
|
|
*
|
|
* Depending on timing there can be txreqs in two places:
|
|
* - in the descq ring
|
|
* - in the flush list
|
|
*
|
|
* To avoid ordering issues the descq ring needs to be flushed
|
|
* first followed by the flush list.
|
|
*
|
|
* This routine is called from two places
|
|
* - From a work queue item
|
|
* - Directly from the state machine just before setting the
|
|
* state to running
|
|
*
|
|
* Must be called with head_lock held
|
|
*
|
|
*/
|
|
static void sdma_flush(struct sdma_engine *sde)
|
|
{
|
|
struct sdma_txreq *txp, *txp_next;
|
|
LIST_HEAD(flushlist);
|
|
unsigned long flags;
|
|
|
|
/* flush from head to tail */
|
|
sdma_flush_descq(sde);
|
|
spin_lock_irqsave(&sde->flushlist_lock, flags);
|
|
/* copy flush list */
|
|
list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
|
|
list_del_init(&txp->list);
|
|
list_add_tail(&txp->list, &flushlist);
|
|
}
|
|
spin_unlock_irqrestore(&sde->flushlist_lock, flags);
|
|
/* flush from flush list */
|
|
list_for_each_entry_safe(txp, txp_next, &flushlist, list)
|
|
complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
|
|
}
|
|
|
|
/*
|
|
* Fields a work request for flushing the descq ring
|
|
* and the flush list
|
|
*
|
|
* If the engine has been brought to running during
|
|
* the scheduling delay, the flush is ignored, assuming
|
|
* that the process of bringing the engine to running
|
|
* would have done this flush prior to going to running.
|
|
*
|
|
*/
|
|
static void sdma_field_flush(struct work_struct *work)
|
|
{
|
|
unsigned long flags;
|
|
struct sdma_engine *sde =
|
|
container_of(work, struct sdma_engine, flush_worker);
|
|
|
|
write_seqlock_irqsave(&sde->head_lock, flags);
|
|
if (!__sdma_running(sde))
|
|
sdma_flush(sde);
|
|
write_sequnlock_irqrestore(&sde->head_lock, flags);
|
|
}
|
|
|
|
static void sdma_err_halt_wait(struct work_struct *work)
|
|
{
|
|
struct sdma_engine *sde = container_of(work, struct sdma_engine,
|
|
err_halt_worker);
|
|
u64 statuscsr;
|
|
unsigned long timeout;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
|
|
while (1) {
|
|
statuscsr = read_sde_csr(sde, SD(STATUS));
|
|
statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
|
|
if (statuscsr)
|
|
break;
|
|
if (time_after(jiffies, timeout)) {
|
|
dd_dev_err(sde->dd,
|
|
"SDMA engine %d - timeout waiting for engine to halt\n",
|
|
sde->this_idx);
|
|
/*
|
|
* Continue anyway. This could happen if there was
|
|
* an uncorrectable error in the wrong spot.
|
|
*/
|
|
break;
|
|
}
|
|
usleep_range(80, 120);
|
|
}
|
|
|
|
sdma_process_event(sde, sdma_event_e15_hw_halt_done);
|
|
}
|
|
|
|
static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
|
|
{
|
|
if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
|
|
unsigned index;
|
|
struct hfi1_devdata *dd = sde->dd;
|
|
|
|
for (index = 0; index < dd->num_sdma; index++) {
|
|
struct sdma_engine *curr_sdma = &dd->per_sdma[index];
|
|
|
|
if (curr_sdma != sde)
|
|
curr_sdma->progress_check_head =
|
|
curr_sdma->descq_head;
|
|
}
|
|
dd_dev_err(sde->dd,
|
|
"SDMA engine %d - check scheduled\n",
|
|
sde->this_idx);
|
|
mod_timer(&sde->err_progress_check_timer, jiffies + 10);
|
|
}
|
|
}
|
|
|
|
static void sdma_err_progress_check(unsigned long data)
|
|
{
|
|
unsigned index;
|
|
struct sdma_engine *sde = (struct sdma_engine *)data;
|
|
|
|
dd_dev_err(sde->dd, "SDE progress check event\n");
|
|
for (index = 0; index < sde->dd->num_sdma; index++) {
|
|
struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
|
|
unsigned long flags;
|
|
|
|
/* check progress on each engine except the current one */
|
|
if (curr_sde == sde)
|
|
continue;
|
|
/*
|
|
* We must lock interrupts when acquiring sde->lock,
|
|
* to avoid a deadlock if interrupt triggers and spins on
|
|
* the same lock on same CPU
|
|
*/
|
|
spin_lock_irqsave(&curr_sde->tail_lock, flags);
|
|
write_seqlock(&curr_sde->head_lock);
|
|
|
|
/* skip non-running queues */
|
|
if (curr_sde->state.current_state != sdma_state_s99_running) {
|
|
write_sequnlock(&curr_sde->head_lock);
|
|
spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
|
|
continue;
|
|
}
|
|
|
|
if ((curr_sde->descq_head != curr_sde->descq_tail) &&
|
|
(curr_sde->descq_head ==
|
|
curr_sde->progress_check_head))
|
|
__sdma_process_event(curr_sde,
|
|
sdma_event_e90_sw_halted);
|
|
write_sequnlock(&curr_sde->head_lock);
|
|
spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
|
|
}
|
|
schedule_work(&sde->err_halt_worker);
|
|
}
|
|
|
|
static void sdma_hw_clean_up_task(unsigned long opaque)
|
|
{
|
|
struct sdma_engine *sde = (struct sdma_engine *)opaque;
|
|
u64 statuscsr;
|
|
|
|
while (1) {
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
|
|
sde->this_idx, slashstrip(__FILE__), __LINE__,
|
|
__func__);
|
|
#endif
|
|
statuscsr = read_sde_csr(sde, SD(STATUS));
|
|
statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
|
|
if (statuscsr)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
|
|
sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
|
|
}
|
|
|
|
static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
|
|
{
|
|
smp_read_barrier_depends(); /* see sdma_update_tail() */
|
|
return sde->tx_ring[sde->tx_head & sde->sdma_mask];
|
|
}
|
|
|
|
/*
|
|
* flush ring for recovery
|
|
*/
|
|
static void sdma_flush_descq(struct sdma_engine *sde)
|
|
{
|
|
u16 head, tail;
|
|
int progress = 0;
|
|
struct sdma_txreq *txp = get_txhead(sde);
|
|
|
|
/* The reason for some of the complexity of this code is that
|
|
* not all descriptors have corresponding txps. So, we have to
|
|
* be able to skip over descs until we wander into the range of
|
|
* the next txp on the list.
|
|
*/
|
|
head = sde->descq_head & sde->sdma_mask;
|
|
tail = sde->descq_tail & sde->sdma_mask;
|
|
while (head != tail) {
|
|
/* advance head, wrap if needed */
|
|
head = ++sde->descq_head & sde->sdma_mask;
|
|
/* if now past this txp's descs, do the callback */
|
|
if (txp && txp->next_descq_idx == head) {
|
|
/* remove from list */
|
|
sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
|
|
complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
|
|
trace_hfi1_sdma_progress(sde, head, tail, txp);
|
|
txp = get_txhead(sde);
|
|
}
|
|
progress++;
|
|
}
|
|
if (progress)
|
|
sdma_desc_avail(sde, sdma_descq_freecnt(sde));
|
|
}
|
|
|
|
static void sdma_sw_clean_up_task(unsigned long opaque)
|
|
{
|
|
struct sdma_engine *sde = (struct sdma_engine *)opaque;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sde->tail_lock, flags);
|
|
write_seqlock(&sde->head_lock);
|
|
|
|
/*
|
|
* At this point, the following should always be true:
|
|
* - We are halted, so no more descriptors are getting retired.
|
|
* - We are not running, so no one is submitting new work.
|
|
* - Only we can send the e40_sw_cleaned, so we can't start
|
|
* running again until we say so. So, the active list and
|
|
* descq are ours to play with.
|
|
*/
|
|
|
|
/*
|
|
* In the error clean up sequence, software clean must be called
|
|
* before the hardware clean so we can use the hardware head in
|
|
* the progress routine. A hardware clean or SPC unfreeze will
|
|
* reset the hardware head.
|
|
*
|
|
* Process all retired requests. The progress routine will use the
|
|
* latest physical hardware head - we are not running so speed does
|
|
* not matter.
|
|
*/
|
|
sdma_make_progress(sde, 0);
|
|
|
|
sdma_flush(sde);
|
|
|
|
/*
|
|
* Reset our notion of head and tail.
|
|
* Note that the HW registers have been reset via an earlier
|
|
* clean up.
|
|
*/
|
|
sde->descq_tail = 0;
|
|
sde->descq_head = 0;
|
|
sde->desc_avail = sdma_descq_freecnt(sde);
|
|
*sde->head_dma = 0;
|
|
|
|
__sdma_process_event(sde, sdma_event_e40_sw_cleaned);
|
|
|
|
write_sequnlock(&sde->head_lock);
|
|
spin_unlock_irqrestore(&sde->tail_lock, flags);
|
|
}
|
|
|
|
static void sdma_sw_tear_down(struct sdma_engine *sde)
|
|
{
|
|
struct sdma_state *ss = &sde->state;
|
|
|
|
/* Releasing this reference means the state machine has stopped. */
|
|
sdma_put(ss);
|
|
|
|
/* stop waiting for all unfreeze events to complete */
|
|
atomic_set(&sde->dd->sdma_unfreeze_count, -1);
|
|
wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
|
|
}
|
|
|
|
static void sdma_start_hw_clean_up(struct sdma_engine *sde)
|
|
{
|
|
tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
|
|
}
|
|
|
|
static void sdma_set_state(struct sdma_engine *sde,
|
|
enum sdma_states next_state)
|
|
{
|
|
struct sdma_state *ss = &sde->state;
|
|
const struct sdma_set_state_action *action = sdma_action_table;
|
|
unsigned op = 0;
|
|
|
|
trace_hfi1_sdma_state(
|
|
sde,
|
|
sdma_state_names[ss->current_state],
|
|
sdma_state_names[next_state]);
|
|
|
|
/* debugging bookkeeping */
|
|
ss->previous_state = ss->current_state;
|
|
ss->previous_op = ss->current_op;
|
|
ss->current_state = next_state;
|
|
|
|
if (ss->previous_state != sdma_state_s99_running &&
|
|
next_state == sdma_state_s99_running)
|
|
sdma_flush(sde);
|
|
|
|
if (action[next_state].op_enable)
|
|
op |= SDMA_SENDCTRL_OP_ENABLE;
|
|
|
|
if (action[next_state].op_intenable)
|
|
op |= SDMA_SENDCTRL_OP_INTENABLE;
|
|
|
|
if (action[next_state].op_halt)
|
|
op |= SDMA_SENDCTRL_OP_HALT;
|
|
|
|
if (action[next_state].op_cleanup)
|
|
op |= SDMA_SENDCTRL_OP_CLEANUP;
|
|
|
|
if (action[next_state].go_s99_running_tofalse)
|
|
ss->go_s99_running = 0;
|
|
|
|
if (action[next_state].go_s99_running_totrue)
|
|
ss->go_s99_running = 1;
|
|
|
|
ss->current_op = op;
|
|
sdma_sendctrl(sde, ss->current_op);
|
|
}
|
|
|
|
/**
|
|
* sdma_get_descq_cnt() - called when device probed
|
|
*
|
|
* Return a validated descq count.
|
|
*
|
|
* This is currently only used in the verbs initialization to build the tx
|
|
* list.
|
|
*
|
|
* This will probably be deleted in favor of a more scalable approach to
|
|
* alloc tx's.
|
|
*
|
|
*/
|
|
u16 sdma_get_descq_cnt(void)
|
|
{
|
|
u16 count = sdma_descq_cnt;
|
|
|
|
if (!count)
|
|
return SDMA_DESCQ_CNT;
|
|
/* count must be a power of 2 greater than 64 and less than
|
|
* 32768. Otherwise return default.
|
|
*/
|
|
if (!is_power_of_2(count))
|
|
return SDMA_DESCQ_CNT;
|
|
if (count < 64 || count > 32768)
|
|
return SDMA_DESCQ_CNT;
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* sdma_engine_get_vl() - return vl for a given sdma engine
|
|
* @sde: sdma engine
|
|
*
|
|
* This function returns the vl mapped to a given engine, or an error if
|
|
* the mapping can't be found. The mapping fields are protected by RCU.
|
|
*/
|
|
int sdma_engine_get_vl(struct sdma_engine *sde)
|
|
{
|
|
struct hfi1_devdata *dd = sde->dd;
|
|
struct sdma_vl_map *m;
|
|
u8 vl;
|
|
|
|
if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
|
|
return -EINVAL;
|
|
|
|
rcu_read_lock();
|
|
m = rcu_dereference(dd->sdma_map);
|
|
if (unlikely(!m)) {
|
|
rcu_read_unlock();
|
|
return -EINVAL;
|
|
}
|
|
vl = m->engine_to_vl[sde->this_idx];
|
|
rcu_read_unlock();
|
|
|
|
return vl;
|
|
}
|
|
|
|
/**
|
|
* sdma_select_engine_vl() - select sdma engine
|
|
* @dd: devdata
|
|
* @selector: a spreading factor
|
|
* @vl: this vl
|
|
*
|
|
*
|
|
* This function returns an engine based on the selector and a vl. The
|
|
* mapping fields are protected by RCU.
|
|
*/
|
|
struct sdma_engine *sdma_select_engine_vl(
|
|
struct hfi1_devdata *dd,
|
|
u32 selector,
|
|
u8 vl)
|
|
{
|
|
struct sdma_vl_map *m;
|
|
struct sdma_map_elem *e;
|
|
struct sdma_engine *rval;
|
|
|
|
/* NOTE This should only happen if SC->VL changed after the initial
|
|
* checks on the QP/AH
|
|
* Default will return engine 0 below
|
|
*/
|
|
if (vl >= num_vls) {
|
|
rval = NULL;
|
|
goto done;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
m = rcu_dereference(dd->sdma_map);
|
|
if (unlikely(!m)) {
|
|
rcu_read_unlock();
|
|
return &dd->per_sdma[0];
|
|
}
|
|
e = m->map[vl & m->mask];
|
|
rval = e->sde[selector & e->mask];
|
|
rcu_read_unlock();
|
|
|
|
done:
|
|
rval = !rval ? &dd->per_sdma[0] : rval;
|
|
trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
|
|
return rval;
|
|
}
|
|
|
|
/**
|
|
* sdma_select_engine_sc() - select sdma engine
|
|
* @dd: devdata
|
|
* @selector: a spreading factor
|
|
* @sc5: the 5 bit sc
|
|
*
|
|
*
|
|
* This function returns an engine based on the selector and an sc.
|
|
*/
|
|
struct sdma_engine *sdma_select_engine_sc(
|
|
struct hfi1_devdata *dd,
|
|
u32 selector,
|
|
u8 sc5)
|
|
{
|
|
u8 vl = sc_to_vlt(dd, sc5);
|
|
|
|
return sdma_select_engine_vl(dd, selector, vl);
|
|
}
|
|
|
|
struct sdma_rht_map_elem {
|
|
u32 mask;
|
|
u8 ctr;
|
|
struct sdma_engine *sde[0];
|
|
};
|
|
|
|
struct sdma_rht_node {
|
|
unsigned long cpu_id;
|
|
struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
|
|
struct rhash_head node;
|
|
};
|
|
|
|
#define NR_CPUS_HINT 192
|
|
|
|
static const struct rhashtable_params sdma_rht_params = {
|
|
.nelem_hint = NR_CPUS_HINT,
|
|
.head_offset = offsetof(struct sdma_rht_node, node),
|
|
.key_offset = offsetof(struct sdma_rht_node, cpu_id),
|
|
.key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
|
|
.max_size = NR_CPUS,
|
|
.min_size = 8,
|
|
.automatic_shrinking = true,
|
|
};
|
|
|
|
/*
|
|
* sdma_select_user_engine() - select sdma engine based on user setup
|
|
* @dd: devdata
|
|
* @selector: a spreading factor
|
|
* @vl: this vl
|
|
*
|
|
* This function returns an sdma engine for a user sdma request.
|
|
* User defined sdma engine affinity setting is honored when applicable,
|
|
* otherwise system default sdma engine mapping is used. To ensure correct
|
|
* ordering, the mapping from <selector, vl> to sde must remain unchanged.
|
|
*/
|
|
struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
|
|
u32 selector, u8 vl)
|
|
{
|
|
struct sdma_rht_node *rht_node;
|
|
struct sdma_engine *sde = NULL;
|
|
const struct cpumask *current_mask = ¤t->cpus_allowed;
|
|
unsigned long cpu_id;
|
|
|
|
/*
|
|
* To ensure that always the same sdma engine(s) will be
|
|
* selected make sure the process is pinned to this CPU only.
|
|
*/
|
|
if (cpumask_weight(current_mask) != 1)
|
|
goto out;
|
|
|
|
cpu_id = smp_processor_id();
|
|
rcu_read_lock();
|
|
rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
|
|
sdma_rht_params);
|
|
|
|
if (rht_node && rht_node->map[vl]) {
|
|
struct sdma_rht_map_elem *map = rht_node->map[vl];
|
|
|
|
sde = map->sde[selector & map->mask];
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (sde)
|
|
return sde;
|
|
|
|
out:
|
|
return sdma_select_engine_vl(dd, selector, vl);
|
|
}
|
|
|
|
static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
|
|
map->sde[map->ctr + i] = map->sde[i];
|
|
}
|
|
|
|
static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
|
|
struct sdma_engine *sde)
|
|
{
|
|
unsigned int i, pow;
|
|
|
|
/* only need to check the first ctr entries for a match */
|
|
for (i = 0; i < map->ctr; i++) {
|
|
if (map->sde[i] == sde) {
|
|
memmove(&map->sde[i], &map->sde[i + 1],
|
|
(map->ctr - i - 1) * sizeof(map->sde[0]));
|
|
map->ctr--;
|
|
pow = roundup_pow_of_two(map->ctr ? : 1);
|
|
map->mask = pow - 1;
|
|
sdma_populate_sde_map(map);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prevents concurrent reads and writes of the sdma engine cpu_mask
|
|
*/
|
|
static DEFINE_MUTEX(process_to_sde_mutex);
|
|
|
|
ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct hfi1_devdata *dd = sde->dd;
|
|
cpumask_var_t mask, new_mask;
|
|
unsigned long cpu;
|
|
int ret, vl, sz;
|
|
|
|
vl = sdma_engine_get_vl(sde);
|
|
if (unlikely(vl < 0))
|
|
return -EINVAL;
|
|
|
|
ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
|
|
if (!ret)
|
|
return -ENOMEM;
|
|
|
|
ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
|
|
if (!ret) {
|
|
free_cpumask_var(mask);
|
|
return -ENOMEM;
|
|
}
|
|
ret = cpulist_parse(buf, mask);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
if (!cpumask_subset(mask, cpu_online_mask)) {
|
|
dd_dev_warn(sde->dd, "Invalid CPU mask\n");
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
sz = sizeof(struct sdma_rht_map_elem) +
|
|
(TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
|
|
|
|
mutex_lock(&process_to_sde_mutex);
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
struct sdma_rht_node *rht_node;
|
|
|
|
/* Check if we have this already mapped */
|
|
if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
|
|
cpumask_set_cpu(cpu, new_mask);
|
|
continue;
|
|
}
|
|
|
|
if (vl >= ARRAY_SIZE(rht_node->map)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
|
|
sdma_rht_params);
|
|
if (!rht_node) {
|
|
rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
|
|
if (!rht_node) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
|
|
if (!rht_node->map[vl]) {
|
|
kfree(rht_node);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
rht_node->cpu_id = cpu;
|
|
rht_node->map[vl]->mask = 0;
|
|
rht_node->map[vl]->ctr = 1;
|
|
rht_node->map[vl]->sde[0] = sde;
|
|
|
|
ret = rhashtable_insert_fast(dd->sdma_rht,
|
|
&rht_node->node,
|
|
sdma_rht_params);
|
|
if (ret) {
|
|
kfree(rht_node->map[vl]);
|
|
kfree(rht_node);
|
|
dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
|
|
cpu);
|
|
goto out;
|
|
}
|
|
|
|
} else {
|
|
int ctr, pow;
|
|
|
|
/* Add new user mappings */
|
|
if (!rht_node->map[vl])
|
|
rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
|
|
|
|
if (!rht_node->map[vl]) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
rht_node->map[vl]->ctr++;
|
|
ctr = rht_node->map[vl]->ctr;
|
|
rht_node->map[vl]->sde[ctr - 1] = sde;
|
|
pow = roundup_pow_of_two(ctr);
|
|
rht_node->map[vl]->mask = pow - 1;
|
|
|
|
/* Populate the sde map table */
|
|
sdma_populate_sde_map(rht_node->map[vl]);
|
|
}
|
|
cpumask_set_cpu(cpu, new_mask);
|
|
}
|
|
|
|
/* Clean up old mappings */
|
|
for_each_cpu(cpu, cpu_online_mask) {
|
|
struct sdma_rht_node *rht_node;
|
|
|
|
/* Don't cleanup sdes that are set in the new mask */
|
|
if (cpumask_test_cpu(cpu, mask))
|
|
continue;
|
|
|
|
rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
|
|
sdma_rht_params);
|
|
if (rht_node) {
|
|
bool empty = true;
|
|
int i;
|
|
|
|
/* Remove mappings for old sde */
|
|
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
|
|
if (rht_node->map[i])
|
|
sdma_cleanup_sde_map(rht_node->map[i],
|
|
sde);
|
|
|
|
/* Free empty hash table entries */
|
|
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
|
|
if (!rht_node->map[i])
|
|
continue;
|
|
|
|
if (rht_node->map[i]->ctr) {
|
|
empty = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (empty) {
|
|
ret = rhashtable_remove_fast(dd->sdma_rht,
|
|
&rht_node->node,
|
|
sdma_rht_params);
|
|
WARN_ON(ret);
|
|
|
|
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
|
|
kfree(rht_node->map[i]);
|
|
|
|
kfree(rht_node);
|
|
}
|
|
}
|
|
}
|
|
|
|
cpumask_copy(&sde->cpu_mask, new_mask);
|
|
out:
|
|
mutex_unlock(&process_to_sde_mutex);
|
|
out_free:
|
|
free_cpumask_var(mask);
|
|
free_cpumask_var(new_mask);
|
|
return ret ? : strnlen(buf, PAGE_SIZE);
|
|
}
|
|
|
|
ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
|
|
{
|
|
mutex_lock(&process_to_sde_mutex);
|
|
if (cpumask_empty(&sde->cpu_mask))
|
|
snprintf(buf, PAGE_SIZE, "%s\n", "empty");
|
|
else
|
|
cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
|
|
mutex_unlock(&process_to_sde_mutex);
|
|
return strnlen(buf, PAGE_SIZE);
|
|
}
|
|
|
|
static void sdma_rht_free(void *ptr, void *arg)
|
|
{
|
|
struct sdma_rht_node *rht_node = ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
|
|
kfree(rht_node->map[i]);
|
|
|
|
kfree(rht_node);
|
|
}
|
|
|
|
/**
|
|
* sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
|
|
* @s: seq file
|
|
* @dd: hfi1_devdata
|
|
* @cpuid: cpu id
|
|
*
|
|
* This routine dumps the process to sde mappings per cpu
|
|
*/
|
|
void sdma_seqfile_dump_cpu_list(struct seq_file *s,
|
|
struct hfi1_devdata *dd,
|
|
unsigned long cpuid)
|
|
{
|
|
struct sdma_rht_node *rht_node;
|
|
int i, j;
|
|
|
|
rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
|
|
sdma_rht_params);
|
|
if (!rht_node)
|
|
return;
|
|
|
|
seq_printf(s, "cpu%3lu: ", cpuid);
|
|
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
|
|
if (!rht_node->map[i] || !rht_node->map[i]->ctr)
|
|
continue;
|
|
|
|
seq_printf(s, " vl%d: [", i);
|
|
|
|
for (j = 0; j < rht_node->map[i]->ctr; j++) {
|
|
if (!rht_node->map[i]->sde[j])
|
|
continue;
|
|
|
|
if (j > 0)
|
|
seq_puts(s, ",");
|
|
|
|
seq_printf(s, " sdma%2d",
|
|
rht_node->map[i]->sde[j]->this_idx);
|
|
}
|
|
seq_puts(s, " ]");
|
|
}
|
|
|
|
seq_puts(s, "\n");
|
|
}
|
|
|
|
/*
|
|
* Free the indicated map struct
|
|
*/
|
|
static void sdma_map_free(struct sdma_vl_map *m)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; m && i < m->actual_vls; i++)
|
|
kfree(m->map[i]);
|
|
kfree(m);
|
|
}
|
|
|
|
/*
|
|
* Handle RCU callback
|
|
*/
|
|
static void sdma_map_rcu_callback(struct rcu_head *list)
|
|
{
|
|
struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
|
|
|
|
sdma_map_free(m);
|
|
}
|
|
|
|
/**
|
|
* sdma_map_init - called when # vls change
|
|
* @dd: hfi1_devdata
|
|
* @port: port number
|
|
* @num_vls: number of vls
|
|
* @vl_engines: per vl engine mapping (optional)
|
|
*
|
|
* This routine changes the mapping based on the number of vls.
|
|
*
|
|
* vl_engines is used to specify a non-uniform vl/engine loading. NULL
|
|
* implies auto computing the loading and giving each VLs a uniform
|
|
* distribution of engines per VL.
|
|
*
|
|
* The auto algorithm computes the sde_per_vl and the number of extra
|
|
* engines. Any extra engines are added from the last VL on down.
|
|
*
|
|
* rcu locking is used here to control access to the mapping fields.
|
|
*
|
|
* If either the num_vls or num_sdma are non-power of 2, the array sizes
|
|
* in the struct sdma_vl_map and the struct sdma_map_elem are rounded
|
|
* up to the next highest power of 2 and the first entry is reused
|
|
* in a round robin fashion.
|
|
*
|
|
* If an error occurs the map change is not done and the mapping is
|
|
* not changed.
|
|
*
|
|
*/
|
|
int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
|
|
{
|
|
int i, j;
|
|
int extra, sde_per_vl;
|
|
int engine = 0;
|
|
u8 lvl_engines[OPA_MAX_VLS];
|
|
struct sdma_vl_map *oldmap, *newmap;
|
|
|
|
if (!(dd->flags & HFI1_HAS_SEND_DMA))
|
|
return 0;
|
|
|
|
if (!vl_engines) {
|
|
/* truncate divide */
|
|
sde_per_vl = dd->num_sdma / num_vls;
|
|
/* extras */
|
|
extra = dd->num_sdma % num_vls;
|
|
vl_engines = lvl_engines;
|
|
/* add extras from last vl down */
|
|
for (i = num_vls - 1; i >= 0; i--, extra--)
|
|
vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
|
|
}
|
|
/* build new map */
|
|
newmap = kzalloc(
|
|
sizeof(struct sdma_vl_map) +
|
|
roundup_pow_of_two(num_vls) *
|
|
sizeof(struct sdma_map_elem *),
|
|
GFP_KERNEL);
|
|
if (!newmap)
|
|
goto bail;
|
|
newmap->actual_vls = num_vls;
|
|
newmap->vls = roundup_pow_of_two(num_vls);
|
|
newmap->mask = (1 << ilog2(newmap->vls)) - 1;
|
|
/* initialize back-map */
|
|
for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
|
|
newmap->engine_to_vl[i] = -1;
|
|
for (i = 0; i < newmap->vls; i++) {
|
|
/* save for wrap around */
|
|
int first_engine = engine;
|
|
|
|
if (i < newmap->actual_vls) {
|
|
int sz = roundup_pow_of_two(vl_engines[i]);
|
|
|
|
/* only allocate once */
|
|
newmap->map[i] = kzalloc(
|
|
sizeof(struct sdma_map_elem) +
|
|
sz * sizeof(struct sdma_engine *),
|
|
GFP_KERNEL);
|
|
if (!newmap->map[i])
|
|
goto bail;
|
|
newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
|
|
/* assign engines */
|
|
for (j = 0; j < sz; j++) {
|
|
newmap->map[i]->sde[j] =
|
|
&dd->per_sdma[engine];
|
|
if (++engine >= first_engine + vl_engines[i])
|
|
/* wrap back to first engine */
|
|
engine = first_engine;
|
|
}
|
|
/* assign back-map */
|
|
for (j = 0; j < vl_engines[i]; j++)
|
|
newmap->engine_to_vl[first_engine + j] = i;
|
|
} else {
|
|
/* just re-use entry without allocating */
|
|
newmap->map[i] = newmap->map[i % num_vls];
|
|
}
|
|
engine = first_engine + vl_engines[i];
|
|
}
|
|
/* newmap in hand, save old map */
|
|
spin_lock_irq(&dd->sde_map_lock);
|
|
oldmap = rcu_dereference_protected(dd->sdma_map,
|
|
lockdep_is_held(&dd->sde_map_lock));
|
|
|
|
/* publish newmap */
|
|
rcu_assign_pointer(dd->sdma_map, newmap);
|
|
|
|
spin_unlock_irq(&dd->sde_map_lock);
|
|
/* success, free any old map after grace period */
|
|
if (oldmap)
|
|
call_rcu(&oldmap->list, sdma_map_rcu_callback);
|
|
return 0;
|
|
bail:
|
|
/* free any partial allocation */
|
|
sdma_map_free(newmap);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Clean up allocated memory.
|
|
*
|
|
* This routine is can be called regardless of the success of sdma_init()
|
|
*
|
|
*/
|
|
static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
|
|
{
|
|
size_t i;
|
|
struct sdma_engine *sde;
|
|
|
|
if (dd->sdma_pad_dma) {
|
|
dma_free_coherent(&dd->pcidev->dev, 4,
|
|
(void *)dd->sdma_pad_dma,
|
|
dd->sdma_pad_phys);
|
|
dd->sdma_pad_dma = NULL;
|
|
dd->sdma_pad_phys = 0;
|
|
}
|
|
if (dd->sdma_heads_dma) {
|
|
dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
|
|
(void *)dd->sdma_heads_dma,
|
|
dd->sdma_heads_phys);
|
|
dd->sdma_heads_dma = NULL;
|
|
dd->sdma_heads_phys = 0;
|
|
}
|
|
for (i = 0; dd->per_sdma && i < num_engines; ++i) {
|
|
sde = &dd->per_sdma[i];
|
|
|
|
sde->head_dma = NULL;
|
|
sde->head_phys = 0;
|
|
|
|
if (sde->descq) {
|
|
dma_free_coherent(
|
|
&dd->pcidev->dev,
|
|
sde->descq_cnt * sizeof(u64[2]),
|
|
sde->descq,
|
|
sde->descq_phys
|
|
);
|
|
sde->descq = NULL;
|
|
sde->descq_phys = 0;
|
|
}
|
|
kvfree(sde->tx_ring);
|
|
sde->tx_ring = NULL;
|
|
}
|
|
spin_lock_irq(&dd->sde_map_lock);
|
|
sdma_map_free(rcu_access_pointer(dd->sdma_map));
|
|
RCU_INIT_POINTER(dd->sdma_map, NULL);
|
|
spin_unlock_irq(&dd->sde_map_lock);
|
|
synchronize_rcu();
|
|
kfree(dd->per_sdma);
|
|
dd->per_sdma = NULL;
|
|
|
|
if (dd->sdma_rht) {
|
|
rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
|
|
kfree(dd->sdma_rht);
|
|
dd->sdma_rht = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_init() - called when device probed
|
|
* @dd: hfi1_devdata
|
|
* @port: port number (currently only zero)
|
|
*
|
|
* sdma_init initializes the specified number of engines.
|
|
*
|
|
* The code initializes each sde, its csrs. Interrupts
|
|
* are not required to be enabled.
|
|
*
|
|
* Returns:
|
|
* 0 - success, -errno on failure
|
|
*/
|
|
int sdma_init(struct hfi1_devdata *dd, u8 port)
|
|
{
|
|
unsigned this_idx;
|
|
struct sdma_engine *sde;
|
|
struct rhashtable *tmp_sdma_rht;
|
|
u16 descq_cnt;
|
|
void *curr_head;
|
|
struct hfi1_pportdata *ppd = dd->pport + port;
|
|
u32 per_sdma_credits;
|
|
uint idle_cnt = sdma_idle_cnt;
|
|
size_t num_engines = dd->chip_sdma_engines;
|
|
int ret = -ENOMEM;
|
|
|
|
if (!HFI1_CAP_IS_KSET(SDMA)) {
|
|
HFI1_CAP_CLEAR(SDMA_AHG);
|
|
return 0;
|
|
}
|
|
if (mod_num_sdma &&
|
|
/* can't exceed chip support */
|
|
mod_num_sdma <= dd->chip_sdma_engines &&
|
|
/* count must be >= vls */
|
|
mod_num_sdma >= num_vls)
|
|
num_engines = mod_num_sdma;
|
|
|
|
dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
|
|
dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
|
|
dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
|
|
dd->chip_sdma_mem_size);
|
|
|
|
per_sdma_credits =
|
|
dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
|
|
|
|
/* set up freeze waitqueue */
|
|
init_waitqueue_head(&dd->sdma_unfreeze_wq);
|
|
atomic_set(&dd->sdma_unfreeze_count, 0);
|
|
|
|
descq_cnt = sdma_get_descq_cnt();
|
|
dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
|
|
num_engines, descq_cnt);
|
|
|
|
/* alloc memory for array of send engines */
|
|
dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
|
|
if (!dd->per_sdma)
|
|
return ret;
|
|
|
|
idle_cnt = ns_to_cclock(dd, idle_cnt);
|
|
if (!sdma_desct_intr)
|
|
sdma_desct_intr = SDMA_DESC_INTR;
|
|
|
|
/* Allocate memory for SendDMA descriptor FIFOs */
|
|
for (this_idx = 0; this_idx < num_engines; ++this_idx) {
|
|
sde = &dd->per_sdma[this_idx];
|
|
sde->dd = dd;
|
|
sde->ppd = ppd;
|
|
sde->this_idx = this_idx;
|
|
sde->descq_cnt = descq_cnt;
|
|
sde->desc_avail = sdma_descq_freecnt(sde);
|
|
sde->sdma_shift = ilog2(descq_cnt);
|
|
sde->sdma_mask = (1 << sde->sdma_shift) - 1;
|
|
|
|
/* Create a mask specifically for each interrupt source */
|
|
sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
|
|
this_idx);
|
|
sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
|
|
this_idx);
|
|
sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
|
|
this_idx);
|
|
/* Create a combined mask to cover all 3 interrupt sources */
|
|
sde->imask = sde->int_mask | sde->progress_mask |
|
|
sde->idle_mask;
|
|
|
|
spin_lock_init(&sde->tail_lock);
|
|
seqlock_init(&sde->head_lock);
|
|
spin_lock_init(&sde->senddmactrl_lock);
|
|
spin_lock_init(&sde->flushlist_lock);
|
|
/* insure there is always a zero bit */
|
|
sde->ahg_bits = 0xfffffffe00000000ULL;
|
|
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
|
|
/* set up reference counting */
|
|
kref_init(&sde->state.kref);
|
|
init_completion(&sde->state.comp);
|
|
|
|
INIT_LIST_HEAD(&sde->flushlist);
|
|
INIT_LIST_HEAD(&sde->dmawait);
|
|
|
|
sde->tail_csr =
|
|
get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
|
|
|
|
if (idle_cnt)
|
|
dd->default_desc1 =
|
|
SDMA_DESC1_HEAD_TO_HOST_FLAG;
|
|
else
|
|
dd->default_desc1 =
|
|
SDMA_DESC1_INT_REQ_FLAG;
|
|
|
|
tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
|
|
(unsigned long)sde);
|
|
|
|
tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
|
|
(unsigned long)sde);
|
|
INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
|
|
INIT_WORK(&sde->flush_worker, sdma_field_flush);
|
|
|
|
sde->progress_check_head = 0;
|
|
|
|
setup_timer(&sde->err_progress_check_timer,
|
|
sdma_err_progress_check, (unsigned long)sde);
|
|
|
|
sde->descq = dma_zalloc_coherent(
|
|
&dd->pcidev->dev,
|
|
descq_cnt * sizeof(u64[2]),
|
|
&sde->descq_phys,
|
|
GFP_KERNEL
|
|
);
|
|
if (!sde->descq)
|
|
goto bail;
|
|
sde->tx_ring =
|
|
kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
|
|
GFP_KERNEL);
|
|
if (!sde->tx_ring)
|
|
sde->tx_ring =
|
|
vzalloc(
|
|
sizeof(struct sdma_txreq *) *
|
|
descq_cnt);
|
|
if (!sde->tx_ring)
|
|
goto bail;
|
|
}
|
|
|
|
dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
|
|
/* Allocate memory for DMA of head registers to memory */
|
|
dd->sdma_heads_dma = dma_zalloc_coherent(
|
|
&dd->pcidev->dev,
|
|
dd->sdma_heads_size,
|
|
&dd->sdma_heads_phys,
|
|
GFP_KERNEL
|
|
);
|
|
if (!dd->sdma_heads_dma) {
|
|
dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
|
|
goto bail;
|
|
}
|
|
|
|
/* Allocate memory for pad */
|
|
dd->sdma_pad_dma = dma_zalloc_coherent(
|
|
&dd->pcidev->dev,
|
|
sizeof(u32),
|
|
&dd->sdma_pad_phys,
|
|
GFP_KERNEL
|
|
);
|
|
if (!dd->sdma_pad_dma) {
|
|
dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
|
|
goto bail;
|
|
}
|
|
|
|
/* assign each engine to different cacheline and init registers */
|
|
curr_head = (void *)dd->sdma_heads_dma;
|
|
for (this_idx = 0; this_idx < num_engines; ++this_idx) {
|
|
unsigned long phys_offset;
|
|
|
|
sde = &dd->per_sdma[this_idx];
|
|
|
|
sde->head_dma = curr_head;
|
|
curr_head += L1_CACHE_BYTES;
|
|
phys_offset = (unsigned long)sde->head_dma -
|
|
(unsigned long)dd->sdma_heads_dma;
|
|
sde->head_phys = dd->sdma_heads_phys + phys_offset;
|
|
init_sdma_regs(sde, per_sdma_credits, idle_cnt);
|
|
}
|
|
dd->flags |= HFI1_HAS_SEND_DMA;
|
|
dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
|
|
dd->num_sdma = num_engines;
|
|
ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
|
|
if (ret < 0)
|
|
goto bail;
|
|
|
|
tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
|
|
if (!tmp_sdma_rht) {
|
|
ret = -ENOMEM;
|
|
goto bail;
|
|
}
|
|
|
|
ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
|
|
if (ret < 0)
|
|
goto bail;
|
|
dd->sdma_rht = tmp_sdma_rht;
|
|
|
|
dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
|
|
return 0;
|
|
|
|
bail:
|
|
sdma_clean(dd, num_engines);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sdma_all_running() - called when the link goes up
|
|
* @dd: hfi1_devdata
|
|
*
|
|
* This routine moves all engines to the running state.
|
|
*/
|
|
void sdma_all_running(struct hfi1_devdata *dd)
|
|
{
|
|
struct sdma_engine *sde;
|
|
unsigned int i;
|
|
|
|
/* move all engines to running */
|
|
for (i = 0; i < dd->num_sdma; ++i) {
|
|
sde = &dd->per_sdma[i];
|
|
sdma_process_event(sde, sdma_event_e30_go_running);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_all_idle() - called when the link goes down
|
|
* @dd: hfi1_devdata
|
|
*
|
|
* This routine moves all engines to the idle state.
|
|
*/
|
|
void sdma_all_idle(struct hfi1_devdata *dd)
|
|
{
|
|
struct sdma_engine *sde;
|
|
unsigned int i;
|
|
|
|
/* idle all engines */
|
|
for (i = 0; i < dd->num_sdma; ++i) {
|
|
sde = &dd->per_sdma[i];
|
|
sdma_process_event(sde, sdma_event_e70_go_idle);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_start() - called to kick off state processing for all engines
|
|
* @dd: hfi1_devdata
|
|
*
|
|
* This routine is for kicking off the state processing for all required
|
|
* sdma engines. Interrupts need to be working at this point.
|
|
*
|
|
*/
|
|
void sdma_start(struct hfi1_devdata *dd)
|
|
{
|
|
unsigned i;
|
|
struct sdma_engine *sde;
|
|
|
|
/* kick off the engines state processing */
|
|
for (i = 0; i < dd->num_sdma; ++i) {
|
|
sde = &dd->per_sdma[i];
|
|
sdma_process_event(sde, sdma_event_e10_go_hw_start);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_exit() - used when module is removed
|
|
* @dd: hfi1_devdata
|
|
*/
|
|
void sdma_exit(struct hfi1_devdata *dd)
|
|
{
|
|
unsigned this_idx;
|
|
struct sdma_engine *sde;
|
|
|
|
for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
|
|
++this_idx) {
|
|
sde = &dd->per_sdma[this_idx];
|
|
if (!list_empty(&sde->dmawait))
|
|
dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
|
|
sde->this_idx);
|
|
sdma_process_event(sde, sdma_event_e00_go_hw_down);
|
|
|
|
del_timer_sync(&sde->err_progress_check_timer);
|
|
|
|
/*
|
|
* This waits for the state machine to exit so it is not
|
|
* necessary to kill the sdma_sw_clean_up_task to make sure
|
|
* it is not running.
|
|
*/
|
|
sdma_finalput(&sde->state);
|
|
}
|
|
sdma_clean(dd, dd->num_sdma);
|
|
}
|
|
|
|
/*
|
|
* unmap the indicated descriptor
|
|
*/
|
|
static inline void sdma_unmap_desc(
|
|
struct hfi1_devdata *dd,
|
|
struct sdma_desc *descp)
|
|
{
|
|
switch (sdma_mapping_type(descp)) {
|
|
case SDMA_MAP_SINGLE:
|
|
dma_unmap_single(
|
|
&dd->pcidev->dev,
|
|
sdma_mapping_addr(descp),
|
|
sdma_mapping_len(descp),
|
|
DMA_TO_DEVICE);
|
|
break;
|
|
case SDMA_MAP_PAGE:
|
|
dma_unmap_page(
|
|
&dd->pcidev->dev,
|
|
sdma_mapping_addr(descp),
|
|
sdma_mapping_len(descp),
|
|
DMA_TO_DEVICE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* return the mode as indicated by the first
|
|
* descriptor in the tx.
|
|
*/
|
|
static inline u8 ahg_mode(struct sdma_txreq *tx)
|
|
{
|
|
return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
|
|
>> SDMA_DESC1_HEADER_MODE_SHIFT;
|
|
}
|
|
|
|
/**
|
|
* __sdma_txclean() - clean tx of mappings, descp *kmalloc's
|
|
* @dd: hfi1_devdata for unmapping
|
|
* @tx: tx request to clean
|
|
*
|
|
* This is used in the progress routine to clean the tx or
|
|
* by the ULP to toss an in-process tx build.
|
|
*
|
|
* The code can be called multiple times without issue.
|
|
*
|
|
*/
|
|
void __sdma_txclean(
|
|
struct hfi1_devdata *dd,
|
|
struct sdma_txreq *tx)
|
|
{
|
|
u16 i;
|
|
|
|
if (tx->num_desc) {
|
|
u8 skip = 0, mode = ahg_mode(tx);
|
|
|
|
/* unmap first */
|
|
sdma_unmap_desc(dd, &tx->descp[0]);
|
|
/* determine number of AHG descriptors to skip */
|
|
if (mode > SDMA_AHG_APPLY_UPDATE1)
|
|
skip = mode >> 1;
|
|
for (i = 1 + skip; i < tx->num_desc; i++)
|
|
sdma_unmap_desc(dd, &tx->descp[i]);
|
|
tx->num_desc = 0;
|
|
}
|
|
kfree(tx->coalesce_buf);
|
|
tx->coalesce_buf = NULL;
|
|
/* kmalloc'ed descp */
|
|
if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
|
|
tx->desc_limit = ARRAY_SIZE(tx->descs);
|
|
kfree(tx->descp);
|
|
}
|
|
}
|
|
|
|
static inline u16 sdma_gethead(struct sdma_engine *sde)
|
|
{
|
|
struct hfi1_devdata *dd = sde->dd;
|
|
int use_dmahead;
|
|
u16 hwhead;
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
|
|
sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
|
|
#endif
|
|
|
|
retry:
|
|
use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
|
|
(dd->flags & HFI1_HAS_SDMA_TIMEOUT);
|
|
hwhead = use_dmahead ?
|
|
(u16)le64_to_cpu(*sde->head_dma) :
|
|
(u16)read_sde_csr(sde, SD(HEAD));
|
|
|
|
if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
|
|
u16 cnt;
|
|
u16 swtail;
|
|
u16 swhead;
|
|
int sane;
|
|
|
|
swhead = sde->descq_head & sde->sdma_mask;
|
|
/* this code is really bad for cache line trading */
|
|
swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
|
|
cnt = sde->descq_cnt;
|
|
|
|
if (swhead < swtail)
|
|
/* not wrapped */
|
|
sane = (hwhead >= swhead) & (hwhead <= swtail);
|
|
else if (swhead > swtail)
|
|
/* wrapped around */
|
|
sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
|
|
(hwhead <= swtail);
|
|
else
|
|
/* empty */
|
|
sane = (hwhead == swhead);
|
|
|
|
if (unlikely(!sane)) {
|
|
dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
|
|
sde->this_idx,
|
|
use_dmahead ? "dma" : "kreg",
|
|
hwhead, swhead, swtail, cnt);
|
|
if (use_dmahead) {
|
|
/* try one more time, using csr */
|
|
use_dmahead = 0;
|
|
goto retry;
|
|
}
|
|
/* proceed as if no progress */
|
|
hwhead = swhead;
|
|
}
|
|
}
|
|
return hwhead;
|
|
}
|
|
|
|
/*
|
|
* This is called when there are send DMA descriptors that might be
|
|
* available.
|
|
*
|
|
* This is called with head_lock held.
|
|
*/
|
|
static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
|
|
{
|
|
struct iowait *wait, *nw;
|
|
struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
|
|
unsigned i, n = 0, seq;
|
|
struct sdma_txreq *stx;
|
|
struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
|
|
slashstrip(__FILE__), __LINE__, __func__);
|
|
dd_dev_err(sde->dd, "avail: %u\n", avail);
|
|
#endif
|
|
|
|
do {
|
|
seq = read_seqbegin(&dev->iowait_lock);
|
|
if (!list_empty(&sde->dmawait)) {
|
|
/* at least one item */
|
|
write_seqlock(&dev->iowait_lock);
|
|
/* Harvest waiters wanting DMA descriptors */
|
|
list_for_each_entry_safe(
|
|
wait,
|
|
nw,
|
|
&sde->dmawait,
|
|
list) {
|
|
u16 num_desc = 0;
|
|
|
|
if (!wait->wakeup)
|
|
continue;
|
|
if (n == ARRAY_SIZE(waits))
|
|
break;
|
|
if (!list_empty(&wait->tx_head)) {
|
|
stx = list_first_entry(
|
|
&wait->tx_head,
|
|
struct sdma_txreq,
|
|
list);
|
|
num_desc = stx->num_desc;
|
|
}
|
|
if (num_desc > avail)
|
|
break;
|
|
avail -= num_desc;
|
|
list_del_init(&wait->list);
|
|
waits[n++] = wait;
|
|
}
|
|
write_sequnlock(&dev->iowait_lock);
|
|
break;
|
|
}
|
|
} while (read_seqretry(&dev->iowait_lock, seq));
|
|
|
|
for (i = 0; i < n; i++)
|
|
waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
|
|
}
|
|
|
|
/* head_lock must be held */
|
|
static void sdma_make_progress(struct sdma_engine *sde, u64 status)
|
|
{
|
|
struct sdma_txreq *txp = NULL;
|
|
int progress = 0;
|
|
u16 hwhead, swhead;
|
|
int idle_check_done = 0;
|
|
|
|
hwhead = sdma_gethead(sde);
|
|
|
|
/* The reason for some of the complexity of this code is that
|
|
* not all descriptors have corresponding txps. So, we have to
|
|
* be able to skip over descs until we wander into the range of
|
|
* the next txp on the list.
|
|
*/
|
|
|
|
retry:
|
|
txp = get_txhead(sde);
|
|
swhead = sde->descq_head & sde->sdma_mask;
|
|
trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
|
|
while (swhead != hwhead) {
|
|
/* advance head, wrap if needed */
|
|
swhead = ++sde->descq_head & sde->sdma_mask;
|
|
|
|
/* if now past this txp's descs, do the callback */
|
|
if (txp && txp->next_descq_idx == swhead) {
|
|
/* remove from list */
|
|
sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
|
|
complete_tx(sde, txp, SDMA_TXREQ_S_OK);
|
|
/* see if there is another txp */
|
|
txp = get_txhead(sde);
|
|
}
|
|
trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
|
|
progress++;
|
|
}
|
|
|
|
/*
|
|
* The SDMA idle interrupt is not guaranteed to be ordered with respect
|
|
* to updates to the the dma_head location in host memory. The head
|
|
* value read might not be fully up to date. If there are pending
|
|
* descriptors and the SDMA idle interrupt fired then read from the
|
|
* CSR SDMA head instead to get the latest value from the hardware.
|
|
* The hardware SDMA head should be read at most once in this invocation
|
|
* of sdma_make_progress(..) which is ensured by idle_check_done flag
|
|
*/
|
|
if ((status & sde->idle_mask) && !idle_check_done) {
|
|
u16 swtail;
|
|
|
|
swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
|
|
if (swtail != hwhead) {
|
|
hwhead = (u16)read_sde_csr(sde, SD(HEAD));
|
|
idle_check_done = 1;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
sde->last_status = status;
|
|
if (progress)
|
|
sdma_desc_avail(sde, sdma_descq_freecnt(sde));
|
|
}
|
|
|
|
/*
|
|
* sdma_engine_interrupt() - interrupt handler for engine
|
|
* @sde: sdma engine
|
|
* @status: sdma interrupt reason
|
|
*
|
|
* Status is a mask of the 3 possible interrupts for this engine. It will
|
|
* contain bits _only_ for this SDMA engine. It will contain at least one
|
|
* bit, it may contain more.
|
|
*/
|
|
void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
|
|
{
|
|
trace_hfi1_sdma_engine_interrupt(sde, status);
|
|
write_seqlock(&sde->head_lock);
|
|
sdma_set_desc_cnt(sde, sdma_desct_intr);
|
|
if (status & sde->idle_mask)
|
|
sde->idle_int_cnt++;
|
|
else if (status & sde->progress_mask)
|
|
sde->progress_int_cnt++;
|
|
else if (status & sde->int_mask)
|
|
sde->sdma_int_cnt++;
|
|
sdma_make_progress(sde, status);
|
|
write_sequnlock(&sde->head_lock);
|
|
}
|
|
|
|
/**
|
|
* sdma_engine_error() - error handler for engine
|
|
* @sde: sdma engine
|
|
* @status: sdma interrupt reason
|
|
*/
|
|
void sdma_engine_error(struct sdma_engine *sde, u64 status)
|
|
{
|
|
unsigned long flags;
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
|
|
sde->this_idx,
|
|
(unsigned long long)status,
|
|
sdma_state_names[sde->state.current_state]);
|
|
#endif
|
|
spin_lock_irqsave(&sde->tail_lock, flags);
|
|
write_seqlock(&sde->head_lock);
|
|
if (status & ALL_SDMA_ENG_HALT_ERRS)
|
|
__sdma_process_event(sde, sdma_event_e60_hw_halted);
|
|
if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
|
|
dd_dev_err(sde->dd,
|
|
"SDMA (%u) engine error: 0x%llx state %s\n",
|
|
sde->this_idx,
|
|
(unsigned long long)status,
|
|
sdma_state_names[sde->state.current_state]);
|
|
dump_sdma_state(sde);
|
|
}
|
|
write_sequnlock(&sde->head_lock);
|
|
spin_unlock_irqrestore(&sde->tail_lock, flags);
|
|
}
|
|
|
|
static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
|
|
{
|
|
u64 set_senddmactrl = 0;
|
|
u64 clr_senddmactrl = 0;
|
|
unsigned long flags;
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
|
|
sde->this_idx,
|
|
(op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
|
|
(op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
|
|
(op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
|
|
(op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
|
|
#endif
|
|
|
|
if (op & SDMA_SENDCTRL_OP_ENABLE)
|
|
set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
|
|
else
|
|
clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
|
|
|
|
if (op & SDMA_SENDCTRL_OP_INTENABLE)
|
|
set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
|
|
else
|
|
clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
|
|
|
|
if (op & SDMA_SENDCTRL_OP_HALT)
|
|
set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
|
|
else
|
|
clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
|
|
|
|
spin_lock_irqsave(&sde->senddmactrl_lock, flags);
|
|
|
|
sde->p_senddmactrl |= set_senddmactrl;
|
|
sde->p_senddmactrl &= ~clr_senddmactrl;
|
|
|
|
if (op & SDMA_SENDCTRL_OP_CLEANUP)
|
|
write_sde_csr(sde, SD(CTRL),
|
|
sde->p_senddmactrl |
|
|
SD(CTRL_SDMA_CLEANUP_SMASK));
|
|
else
|
|
write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
|
|
|
|
spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
sdma_dumpstate(sde);
|
|
#endif
|
|
}
|
|
|
|
static void sdma_setlengen(struct sdma_engine *sde)
|
|
{
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
|
|
sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
|
|
#endif
|
|
|
|
/*
|
|
* Set SendDmaLenGen and clear-then-set the MSB of the generation
|
|
* count to enable generation checking and load the internal
|
|
* generation counter.
|
|
*/
|
|
write_sde_csr(sde, SD(LEN_GEN),
|
|
(sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
|
|
write_sde_csr(sde, SD(LEN_GEN),
|
|
((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
|
|
(4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
|
|
}
|
|
|
|
static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
|
|
{
|
|
/* Commit writes to memory and advance the tail on the chip */
|
|
smp_wmb(); /* see get_txhead() */
|
|
writeq(tail, sde->tail_csr);
|
|
}
|
|
|
|
/*
|
|
* This is called when changing to state s10_hw_start_up_halt_wait as
|
|
* a result of send buffer errors or send DMA descriptor errors.
|
|
*/
|
|
static void sdma_hw_start_up(struct sdma_engine *sde)
|
|
{
|
|
u64 reg;
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
|
|
sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
|
|
#endif
|
|
|
|
sdma_setlengen(sde);
|
|
sdma_update_tail(sde, 0); /* Set SendDmaTail */
|
|
*sde->head_dma = 0;
|
|
|
|
reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
|
|
SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
|
|
write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
|
|
}
|
|
|
|
/*
|
|
* set_sdma_integrity
|
|
*
|
|
* Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
|
|
*/
|
|
static void set_sdma_integrity(struct sdma_engine *sde)
|
|
{
|
|
struct hfi1_devdata *dd = sde->dd;
|
|
|
|
write_sde_csr(sde, SD(CHECK_ENABLE),
|
|
hfi1_pkt_base_sdma_integrity(dd));
|
|
}
|
|
|
|
static void init_sdma_regs(
|
|
struct sdma_engine *sde,
|
|
u32 credits,
|
|
uint idle_cnt)
|
|
{
|
|
u8 opval, opmask;
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
struct hfi1_devdata *dd = sde->dd;
|
|
|
|
dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
|
|
sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
|
|
#endif
|
|
|
|
write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
|
|
sdma_setlengen(sde);
|
|
sdma_update_tail(sde, 0); /* Set SendDmaTail */
|
|
write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
|
|
write_sde_csr(sde, SD(DESC_CNT), 0);
|
|
write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
|
|
write_sde_csr(sde, SD(MEMORY),
|
|
((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
|
|
((u64)(credits * sde->this_idx) <<
|
|
SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
|
|
write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
|
|
set_sdma_integrity(sde);
|
|
opmask = OPCODE_CHECK_MASK_DISABLED;
|
|
opval = OPCODE_CHECK_VAL_DISABLED;
|
|
write_sde_csr(sde, SD(CHECK_OPCODE),
|
|
(opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
|
|
(opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
|
|
}
|
|
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
|
|
#define sdma_dumpstate_helper0(reg) do { \
|
|
csr = read_csr(sde->dd, reg); \
|
|
dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
|
|
} while (0)
|
|
|
|
#define sdma_dumpstate_helper(reg) do { \
|
|
csr = read_sde_csr(sde, reg); \
|
|
dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
|
|
#reg, sde->this_idx, csr); \
|
|
} while (0)
|
|
|
|
#define sdma_dumpstate_helper2(reg) do { \
|
|
csr = read_csr(sde->dd, reg + (8 * i)); \
|
|
dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
|
|
#reg, i, csr); \
|
|
} while (0)
|
|
|
|
void sdma_dumpstate(struct sdma_engine *sde)
|
|
{
|
|
u64 csr;
|
|
unsigned i;
|
|
|
|
sdma_dumpstate_helper(SD(CTRL));
|
|
sdma_dumpstate_helper(SD(STATUS));
|
|
sdma_dumpstate_helper0(SD(ERR_STATUS));
|
|
sdma_dumpstate_helper0(SD(ERR_MASK));
|
|
sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
|
|
sdma_dumpstate_helper(SD(ENG_ERR_MASK));
|
|
|
|
for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
|
|
sdma_dumpstate_helper2(CCE_INT_STATUS);
|
|
sdma_dumpstate_helper2(CCE_INT_MASK);
|
|
sdma_dumpstate_helper2(CCE_INT_BLOCKED);
|
|
}
|
|
|
|
sdma_dumpstate_helper(SD(TAIL));
|
|
sdma_dumpstate_helper(SD(HEAD));
|
|
sdma_dumpstate_helper(SD(PRIORITY_THLD));
|
|
sdma_dumpstate_helper(SD(IDLE_CNT));
|
|
sdma_dumpstate_helper(SD(RELOAD_CNT));
|
|
sdma_dumpstate_helper(SD(DESC_CNT));
|
|
sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
|
|
sdma_dumpstate_helper(SD(MEMORY));
|
|
sdma_dumpstate_helper0(SD(ENGINES));
|
|
sdma_dumpstate_helper0(SD(MEM_SIZE));
|
|
/* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
|
|
sdma_dumpstate_helper(SD(BASE_ADDR));
|
|
sdma_dumpstate_helper(SD(LEN_GEN));
|
|
sdma_dumpstate_helper(SD(HEAD_ADDR));
|
|
sdma_dumpstate_helper(SD(CHECK_ENABLE));
|
|
sdma_dumpstate_helper(SD(CHECK_VL));
|
|
sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
|
|
sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
|
|
sdma_dumpstate_helper(SD(CHECK_SLID));
|
|
sdma_dumpstate_helper(SD(CHECK_OPCODE));
|
|
}
|
|
#endif
|
|
|
|
static void dump_sdma_state(struct sdma_engine *sde)
|
|
{
|
|
struct hw_sdma_desc *descq;
|
|
struct hw_sdma_desc *descqp;
|
|
u64 desc[2];
|
|
u64 addr;
|
|
u8 gen;
|
|
u16 len;
|
|
u16 head, tail, cnt;
|
|
|
|
head = sde->descq_head & sde->sdma_mask;
|
|
tail = sde->descq_tail & sde->sdma_mask;
|
|
cnt = sdma_descq_freecnt(sde);
|
|
descq = sde->descq;
|
|
|
|
dd_dev_err(sde->dd,
|
|
"SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
|
|
sde->this_idx, head, tail, cnt,
|
|
!list_empty(&sde->flushlist));
|
|
|
|
/* print info for each entry in the descriptor queue */
|
|
while (head != tail) {
|
|
char flags[6] = { 'x', 'x', 'x', 'x', 0 };
|
|
|
|
descqp = &sde->descq[head];
|
|
desc[0] = le64_to_cpu(descqp->qw[0]);
|
|
desc[1] = le64_to_cpu(descqp->qw[1]);
|
|
flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
|
|
flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
|
|
'H' : '-';
|
|
flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
|
|
flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
|
|
addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
|
|
& SDMA_DESC0_PHY_ADDR_MASK;
|
|
gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
|
|
& SDMA_DESC1_GENERATION_MASK;
|
|
len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
|
|
& SDMA_DESC0_BYTE_COUNT_MASK;
|
|
dd_dev_err(sde->dd,
|
|
"SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
|
|
head, flags, addr, gen, len);
|
|
dd_dev_err(sde->dd,
|
|
"\tdesc0:0x%016llx desc1 0x%016llx\n",
|
|
desc[0], desc[1]);
|
|
if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
|
|
dd_dev_err(sde->dd,
|
|
"\taidx: %u amode: %u alen: %u\n",
|
|
(u8)((desc[1] &
|
|
SDMA_DESC1_HEADER_INDEX_SMASK) >>
|
|
SDMA_DESC1_HEADER_INDEX_SHIFT),
|
|
(u8)((desc[1] &
|
|
SDMA_DESC1_HEADER_MODE_SMASK) >>
|
|
SDMA_DESC1_HEADER_MODE_SHIFT),
|
|
(u8)((desc[1] &
|
|
SDMA_DESC1_HEADER_DWS_SMASK) >>
|
|
SDMA_DESC1_HEADER_DWS_SHIFT));
|
|
head++;
|
|
head &= sde->sdma_mask;
|
|
}
|
|
}
|
|
|
|
#define SDE_FMT \
|
|
"SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
|
|
/**
|
|
* sdma_seqfile_dump_sde() - debugfs dump of sde
|
|
* @s: seq file
|
|
* @sde: send dma engine to dump
|
|
*
|
|
* This routine dumps the sde to the indicated seq file.
|
|
*/
|
|
void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
|
|
{
|
|
u16 head, tail;
|
|
struct hw_sdma_desc *descqp;
|
|
u64 desc[2];
|
|
u64 addr;
|
|
u8 gen;
|
|
u16 len;
|
|
|
|
head = sde->descq_head & sde->sdma_mask;
|
|
tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
|
|
seq_printf(s, SDE_FMT, sde->this_idx,
|
|
sde->cpu,
|
|
sdma_state_name(sde->state.current_state),
|
|
(unsigned long long)read_sde_csr(sde, SD(CTRL)),
|
|
(unsigned long long)read_sde_csr(sde, SD(STATUS)),
|
|
(unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
|
|
(unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
|
|
(unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
|
|
(unsigned long long)le64_to_cpu(*sde->head_dma),
|
|
(unsigned long long)read_sde_csr(sde, SD(MEMORY)),
|
|
(unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
|
|
(unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
|
|
(unsigned long long)sde->last_status,
|
|
(unsigned long long)sde->ahg_bits,
|
|
sde->tx_tail,
|
|
sde->tx_head,
|
|
sde->descq_tail,
|
|
sde->descq_head,
|
|
!list_empty(&sde->flushlist),
|
|
sde->descq_full_count,
|
|
(unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
|
|
|
|
/* print info for each entry in the descriptor queue */
|
|
while (head != tail) {
|
|
char flags[6] = { 'x', 'x', 'x', 'x', 0 };
|
|
|
|
descqp = &sde->descq[head];
|
|
desc[0] = le64_to_cpu(descqp->qw[0]);
|
|
desc[1] = le64_to_cpu(descqp->qw[1]);
|
|
flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
|
|
flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
|
|
'H' : '-';
|
|
flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
|
|
flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
|
|
addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
|
|
& SDMA_DESC0_PHY_ADDR_MASK;
|
|
gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
|
|
& SDMA_DESC1_GENERATION_MASK;
|
|
len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
|
|
& SDMA_DESC0_BYTE_COUNT_MASK;
|
|
seq_printf(s,
|
|
"\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
|
|
head, flags, addr, gen, len);
|
|
if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
|
|
seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
|
|
(u8)((desc[1] &
|
|
SDMA_DESC1_HEADER_INDEX_SMASK) >>
|
|
SDMA_DESC1_HEADER_INDEX_SHIFT),
|
|
(u8)((desc[1] &
|
|
SDMA_DESC1_HEADER_MODE_SMASK) >>
|
|
SDMA_DESC1_HEADER_MODE_SHIFT));
|
|
head = (head + 1) & sde->sdma_mask;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add the generation number into
|
|
* the qw1 and return
|
|
*/
|
|
static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
|
|
{
|
|
u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
|
|
|
|
qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
|
|
qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
|
|
<< SDMA_DESC1_GENERATION_SHIFT;
|
|
return qw1;
|
|
}
|
|
|
|
/*
|
|
* This routine submits the indicated tx
|
|
*
|
|
* Space has already been guaranteed and
|
|
* tail side of ring is locked.
|
|
*
|
|
* The hardware tail update is done
|
|
* in the caller and that is facilitated
|
|
* by returning the new tail.
|
|
*
|
|
* There is special case logic for ahg
|
|
* to not add the generation number for
|
|
* up to 2 descriptors that follow the
|
|
* first descriptor.
|
|
*
|
|
*/
|
|
static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
|
|
{
|
|
int i;
|
|
u16 tail;
|
|
struct sdma_desc *descp = tx->descp;
|
|
u8 skip = 0, mode = ahg_mode(tx);
|
|
|
|
tail = sde->descq_tail & sde->sdma_mask;
|
|
sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
|
|
sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
|
|
trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
|
|
tail, &sde->descq[tail]);
|
|
tail = ++sde->descq_tail & sde->sdma_mask;
|
|
descp++;
|
|
if (mode > SDMA_AHG_APPLY_UPDATE1)
|
|
skip = mode >> 1;
|
|
for (i = 1; i < tx->num_desc; i++, descp++) {
|
|
u64 qw1;
|
|
|
|
sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
|
|
if (skip) {
|
|
/* edits don't have generation */
|
|
qw1 = descp->qw[1];
|
|
skip--;
|
|
} else {
|
|
/* replace generation with real one for non-edits */
|
|
qw1 = add_gen(sde, descp->qw[1]);
|
|
}
|
|
sde->descq[tail].qw[1] = cpu_to_le64(qw1);
|
|
trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
|
|
tail, &sde->descq[tail]);
|
|
tail = ++sde->descq_tail & sde->sdma_mask;
|
|
}
|
|
tx->next_descq_idx = tail;
|
|
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
|
|
tx->sn = sde->tail_sn++;
|
|
trace_hfi1_sdma_in_sn(sde, tx->sn);
|
|
WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
|
|
#endif
|
|
sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
|
|
sde->desc_avail -= tx->num_desc;
|
|
return tail;
|
|
}
|
|
|
|
/*
|
|
* Check for progress
|
|
*/
|
|
static int sdma_check_progress(
|
|
struct sdma_engine *sde,
|
|
struct iowait *wait,
|
|
struct sdma_txreq *tx)
|
|
{
|
|
int ret;
|
|
|
|
sde->desc_avail = sdma_descq_freecnt(sde);
|
|
if (tx->num_desc <= sde->desc_avail)
|
|
return -EAGAIN;
|
|
/* pulse the head_lock */
|
|
if (wait && wait->sleep) {
|
|
unsigned seq;
|
|
|
|
seq = raw_seqcount_begin(
|
|
(const seqcount_t *)&sde->head_lock.seqcount);
|
|
ret = wait->sleep(sde, wait, tx, seq);
|
|
if (ret == -EAGAIN)
|
|
sde->desc_avail = sdma_descq_freecnt(sde);
|
|
} else {
|
|
ret = -EBUSY;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sdma_send_txreq() - submit a tx req to ring
|
|
* @sde: sdma engine to use
|
|
* @wait: wait structure to use when full (may be NULL)
|
|
* @tx: sdma_txreq to submit
|
|
*
|
|
* The call submits the tx into the ring. If a iowait structure is non-NULL
|
|
* the packet will be queued to the list in wait.
|
|
*
|
|
* Return:
|
|
* 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
|
|
* ring (wait == NULL)
|
|
* -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
|
|
*/
|
|
int sdma_send_txreq(struct sdma_engine *sde,
|
|
struct iowait *wait,
|
|
struct sdma_txreq *tx)
|
|
{
|
|
int ret = 0;
|
|
u16 tail;
|
|
unsigned long flags;
|
|
|
|
/* user should have supplied entire packet */
|
|
if (unlikely(tx->tlen))
|
|
return -EINVAL;
|
|
tx->wait = wait;
|
|
spin_lock_irqsave(&sde->tail_lock, flags);
|
|
retry:
|
|
if (unlikely(!__sdma_running(sde)))
|
|
goto unlock_noconn;
|
|
if (unlikely(tx->num_desc > sde->desc_avail))
|
|
goto nodesc;
|
|
tail = submit_tx(sde, tx);
|
|
if (wait)
|
|
iowait_sdma_inc(wait);
|
|
sdma_update_tail(sde, tail);
|
|
unlock:
|
|
spin_unlock_irqrestore(&sde->tail_lock, flags);
|
|
return ret;
|
|
unlock_noconn:
|
|
if (wait)
|
|
iowait_sdma_inc(wait);
|
|
tx->next_descq_idx = 0;
|
|
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
|
|
tx->sn = sde->tail_sn++;
|
|
trace_hfi1_sdma_in_sn(sde, tx->sn);
|
|
#endif
|
|
spin_lock(&sde->flushlist_lock);
|
|
list_add_tail(&tx->list, &sde->flushlist);
|
|
spin_unlock(&sde->flushlist_lock);
|
|
if (wait) {
|
|
wait->tx_count++;
|
|
wait->count += tx->num_desc;
|
|
}
|
|
schedule_work(&sde->flush_worker);
|
|
ret = -ECOMM;
|
|
goto unlock;
|
|
nodesc:
|
|
ret = sdma_check_progress(sde, wait, tx);
|
|
if (ret == -EAGAIN) {
|
|
ret = 0;
|
|
goto retry;
|
|
}
|
|
sde->descq_full_count++;
|
|
goto unlock;
|
|
}
|
|
|
|
/**
|
|
* sdma_send_txlist() - submit a list of tx req to ring
|
|
* @sde: sdma engine to use
|
|
* @wait: wait structure to use when full (may be NULL)
|
|
* @tx_list: list of sdma_txreqs to submit
|
|
* @count: pointer to a u32 which, after return will contain the total number of
|
|
* sdma_txreqs removed from the tx_list. This will include sdma_txreqs
|
|
* whose SDMA descriptors are submitted to the ring and the sdma_txreqs
|
|
* which are added to SDMA engine flush list if the SDMA engine state is
|
|
* not running.
|
|
*
|
|
* The call submits the list into the ring.
|
|
*
|
|
* If the iowait structure is non-NULL and not equal to the iowait list
|
|
* the unprocessed part of the list will be appended to the list in wait.
|
|
*
|
|
* In all cases, the tx_list will be updated so the head of the tx_list is
|
|
* the list of descriptors that have yet to be transmitted.
|
|
*
|
|
* The intent of this call is to provide a more efficient
|
|
* way of submitting multiple packets to SDMA while holding the tail
|
|
* side locking.
|
|
*
|
|
* Return:
|
|
* 0 - Success,
|
|
* -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
|
|
* -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
|
|
*/
|
|
int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
|
|
struct list_head *tx_list, u32 *count_out)
|
|
{
|
|
struct sdma_txreq *tx, *tx_next;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
u16 tail = INVALID_TAIL;
|
|
u32 submit_count = 0, flush_count = 0, total_count;
|
|
|
|
spin_lock_irqsave(&sde->tail_lock, flags);
|
|
retry:
|
|
list_for_each_entry_safe(tx, tx_next, tx_list, list) {
|
|
tx->wait = wait;
|
|
if (unlikely(!__sdma_running(sde)))
|
|
goto unlock_noconn;
|
|
if (unlikely(tx->num_desc > sde->desc_avail))
|
|
goto nodesc;
|
|
if (unlikely(tx->tlen)) {
|
|
ret = -EINVAL;
|
|
goto update_tail;
|
|
}
|
|
list_del_init(&tx->list);
|
|
tail = submit_tx(sde, tx);
|
|
submit_count++;
|
|
if (tail != INVALID_TAIL &&
|
|
(submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
|
|
sdma_update_tail(sde, tail);
|
|
tail = INVALID_TAIL;
|
|
}
|
|
}
|
|
update_tail:
|
|
total_count = submit_count + flush_count;
|
|
if (wait)
|
|
iowait_sdma_add(wait, total_count);
|
|
if (tail != INVALID_TAIL)
|
|
sdma_update_tail(sde, tail);
|
|
spin_unlock_irqrestore(&sde->tail_lock, flags);
|
|
*count_out = total_count;
|
|
return ret;
|
|
unlock_noconn:
|
|
spin_lock(&sde->flushlist_lock);
|
|
list_for_each_entry_safe(tx, tx_next, tx_list, list) {
|
|
tx->wait = wait;
|
|
list_del_init(&tx->list);
|
|
tx->next_descq_idx = 0;
|
|
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
|
|
tx->sn = sde->tail_sn++;
|
|
trace_hfi1_sdma_in_sn(sde, tx->sn);
|
|
#endif
|
|
list_add_tail(&tx->list, &sde->flushlist);
|
|
flush_count++;
|
|
if (wait) {
|
|
wait->tx_count++;
|
|
wait->count += tx->num_desc;
|
|
}
|
|
}
|
|
spin_unlock(&sde->flushlist_lock);
|
|
schedule_work(&sde->flush_worker);
|
|
ret = -ECOMM;
|
|
goto update_tail;
|
|
nodesc:
|
|
ret = sdma_check_progress(sde, wait, tx);
|
|
if (ret == -EAGAIN) {
|
|
ret = 0;
|
|
goto retry;
|
|
}
|
|
sde->descq_full_count++;
|
|
goto update_tail;
|
|
}
|
|
|
|
static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sde->tail_lock, flags);
|
|
write_seqlock(&sde->head_lock);
|
|
|
|
__sdma_process_event(sde, event);
|
|
|
|
if (sde->state.current_state == sdma_state_s99_running)
|
|
sdma_desc_avail(sde, sdma_descq_freecnt(sde));
|
|
|
|
write_sequnlock(&sde->head_lock);
|
|
spin_unlock_irqrestore(&sde->tail_lock, flags);
|
|
}
|
|
|
|
static void __sdma_process_event(struct sdma_engine *sde,
|
|
enum sdma_events event)
|
|
{
|
|
struct sdma_state *ss = &sde->state;
|
|
int need_progress = 0;
|
|
|
|
/* CONFIG SDMA temporary */
|
|
#ifdef CONFIG_SDMA_VERBOSITY
|
|
dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
|
|
sdma_state_names[ss->current_state],
|
|
sdma_event_names[event]);
|
|
#endif
|
|
|
|
switch (ss->current_state) {
|
|
case sdma_state_s00_hw_down:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
/*
|
|
* If down, but running requested (usually result
|
|
* of link up, then we need to start up.
|
|
* This can happen when hw down is requested while
|
|
* bringing the link up with traffic active on
|
|
* 7220, e.g.
|
|
*/
|
|
ss->go_s99_running = 1;
|
|
/* fall through and start dma engine */
|
|
case sdma_event_e10_go_hw_start:
|
|
/* This reference means the state machine is started */
|
|
sdma_get(&sde->state);
|
|
sdma_set_state(sde,
|
|
sdma_state_s10_hw_start_up_halt_wait);
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
sdma_sw_tear_down(sde);
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
break;
|
|
case sdma_event_e80_hw_freeze:
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s10_hw_start_up_halt_wait:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
sdma_sw_tear_down(sde);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
sdma_set_state(sde,
|
|
sdma_state_s15_hw_start_up_clean_wait);
|
|
sdma_start_hw_clean_up(sde);
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
ss->go_s99_running = 1;
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
schedule_work(&sde->err_halt_worker);
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e80_hw_freeze:
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s15_hw_start_up_clean_wait:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
sdma_sw_tear_down(sde);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
sdma_hw_start_up(sde);
|
|
sdma_set_state(sde, ss->go_s99_running ?
|
|
sdma_state_s99_running :
|
|
sdma_state_s20_idle);
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
ss->go_s99_running = 1;
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e80_hw_freeze:
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s20_idle:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
sdma_sw_tear_down(sde);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
sdma_set_state(sde, sdma_state_s99_running);
|
|
ss->go_s99_running = 1;
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
|
|
schedule_work(&sde->err_halt_worker);
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
/* fall through */
|
|
case sdma_event_e80_hw_freeze:
|
|
sdma_set_state(sde, sdma_state_s80_hw_freeze);
|
|
atomic_dec(&sde->dd->sdma_unfreeze_count);
|
|
wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s30_sw_clean_up_wait:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
ss->go_s99_running = 1;
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
|
|
sdma_start_hw_clean_up(sde);
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e80_hw_freeze:
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s40_hw_clean_up_wait:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
sdma_hw_start_up(sde);
|
|
sdma_set_state(sde, ss->go_s99_running ?
|
|
sdma_state_s99_running :
|
|
sdma_state_s20_idle);
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
ss->go_s99_running = 1;
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e80_hw_freeze:
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s50_hw_halt_wait:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
|
|
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
ss->go_s99_running = 1;
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
schedule_work(&sde->err_halt_worker);
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e80_hw_freeze:
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s60_idle_halt_wait:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
|
|
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
ss->go_s99_running = 1;
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
schedule_work(&sde->err_halt_worker);
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e80_hw_freeze:
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s80_hw_freeze:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
ss->go_s99_running = 1;
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e80_hw_freeze:
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
|
|
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s82_freeze_sw_clean:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
ss->go_s99_running = 1;
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
/* notify caller this engine is done cleaning */
|
|
atomic_dec(&sde->dd->sdma_unfreeze_count);
|
|
wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
ss->go_s99_running = 0;
|
|
break;
|
|
case sdma_event_e80_hw_freeze:
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
sdma_hw_start_up(sde);
|
|
sdma_set_state(sde, ss->go_s99_running ?
|
|
sdma_state_s99_running :
|
|
sdma_state_s20_idle);
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
break;
|
|
case sdma_event_e90_sw_halted:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case sdma_state_s99_running:
|
|
switch (event) {
|
|
case sdma_event_e00_go_hw_down:
|
|
sdma_set_state(sde, sdma_state_s00_hw_down);
|
|
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
|
|
break;
|
|
case sdma_event_e10_go_hw_start:
|
|
break;
|
|
case sdma_event_e15_hw_halt_done:
|
|
break;
|
|
case sdma_event_e25_hw_clean_up_done:
|
|
break;
|
|
case sdma_event_e30_go_running:
|
|
break;
|
|
case sdma_event_e40_sw_cleaned:
|
|
break;
|
|
case sdma_event_e50_hw_cleaned:
|
|
break;
|
|
case sdma_event_e60_hw_halted:
|
|
need_progress = 1;
|
|
sdma_err_progress_check_schedule(sde);
|
|
case sdma_event_e90_sw_halted:
|
|
/*
|
|
* SW initiated halt does not perform engines
|
|
* progress check
|
|
*/
|
|
sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
|
|
schedule_work(&sde->err_halt_worker);
|
|
break;
|
|
case sdma_event_e70_go_idle:
|
|
sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
|
|
break;
|
|
case sdma_event_e85_link_down:
|
|
ss->go_s99_running = 0;
|
|
/* fall through */
|
|
case sdma_event_e80_hw_freeze:
|
|
sdma_set_state(sde, sdma_state_s80_hw_freeze);
|
|
atomic_dec(&sde->dd->sdma_unfreeze_count);
|
|
wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
|
|
break;
|
|
case sdma_event_e81_hw_frozen:
|
|
break;
|
|
case sdma_event_e82_hw_unfreeze:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
ss->last_event = event;
|
|
if (need_progress)
|
|
sdma_make_progress(sde, 0);
|
|
}
|
|
|
|
/*
|
|
* _extend_sdma_tx_descs() - helper to extend txreq
|
|
*
|
|
* This is called once the initial nominal allocation
|
|
* of descriptors in the sdma_txreq is exhausted.
|
|
*
|
|
* The code will bump the allocation up to the max
|
|
* of MAX_DESC (64) descriptors. There doesn't seem
|
|
* much point in an interim step. The last descriptor
|
|
* is reserved for coalesce buffer in order to support
|
|
* cases where input packet has >MAX_DESC iovecs.
|
|
*
|
|
*/
|
|
static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
|
|
{
|
|
int i;
|
|
|
|
/* Handle last descriptor */
|
|
if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
|
|
/* if tlen is 0, it is for padding, release last descriptor */
|
|
if (!tx->tlen) {
|
|
tx->desc_limit = MAX_DESC;
|
|
} else if (!tx->coalesce_buf) {
|
|
/* allocate coalesce buffer with space for padding */
|
|
tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
|
|
GFP_ATOMIC);
|
|
if (!tx->coalesce_buf)
|
|
goto enomem;
|
|
tx->coalesce_idx = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(tx->num_desc == MAX_DESC))
|
|
goto enomem;
|
|
|
|
tx->descp = kmalloc_array(
|
|
MAX_DESC,
|
|
sizeof(struct sdma_desc),
|
|
GFP_ATOMIC);
|
|
if (!tx->descp)
|
|
goto enomem;
|
|
|
|
/* reserve last descriptor for coalescing */
|
|
tx->desc_limit = MAX_DESC - 1;
|
|
/* copy ones already built */
|
|
for (i = 0; i < tx->num_desc; i++)
|
|
tx->descp[i] = tx->descs[i];
|
|
return 0;
|
|
enomem:
|
|
__sdma_txclean(dd, tx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
|
|
*
|
|
* This is called once the initial nominal allocation of descriptors
|
|
* in the sdma_txreq is exhausted.
|
|
*
|
|
* This function calls _extend_sdma_tx_descs to extend or allocate
|
|
* coalesce buffer. If there is a allocated coalesce buffer, it will
|
|
* copy the input packet data into the coalesce buffer. It also adds
|
|
* coalesce buffer descriptor once when whole packet is received.
|
|
*
|
|
* Return:
|
|
* <0 - error
|
|
* 0 - coalescing, don't populate descriptor
|
|
* 1 - continue with populating descriptor
|
|
*/
|
|
int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
|
|
int type, void *kvaddr, struct page *page,
|
|
unsigned long offset, u16 len)
|
|
{
|
|
int pad_len, rval;
|
|
dma_addr_t addr;
|
|
|
|
rval = _extend_sdma_tx_descs(dd, tx);
|
|
if (rval) {
|
|
__sdma_txclean(dd, tx);
|
|
return rval;
|
|
}
|
|
|
|
/* If coalesce buffer is allocated, copy data into it */
|
|
if (tx->coalesce_buf) {
|
|
if (type == SDMA_MAP_NONE) {
|
|
__sdma_txclean(dd, tx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (type == SDMA_MAP_PAGE) {
|
|
kvaddr = kmap(page);
|
|
kvaddr += offset;
|
|
} else if (WARN_ON(!kvaddr)) {
|
|
__sdma_txclean(dd, tx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
|
|
tx->coalesce_idx += len;
|
|
if (type == SDMA_MAP_PAGE)
|
|
kunmap(page);
|
|
|
|
/* If there is more data, return */
|
|
if (tx->tlen - tx->coalesce_idx)
|
|
return 0;
|
|
|
|
/* Whole packet is received; add any padding */
|
|
pad_len = tx->packet_len & (sizeof(u32) - 1);
|
|
if (pad_len) {
|
|
pad_len = sizeof(u32) - pad_len;
|
|
memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
|
|
/* padding is taken care of for coalescing case */
|
|
tx->packet_len += pad_len;
|
|
tx->tlen += pad_len;
|
|
}
|
|
|
|
/* dma map the coalesce buffer */
|
|
addr = dma_map_single(&dd->pcidev->dev,
|
|
tx->coalesce_buf,
|
|
tx->tlen,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
|
|
__sdma_txclean(dd, tx);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/* Add descriptor for coalesce buffer */
|
|
tx->desc_limit = MAX_DESC;
|
|
return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
|
|
addr, tx->tlen);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Update sdes when the lmc changes */
|
|
void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
|
|
{
|
|
struct sdma_engine *sde;
|
|
int i;
|
|
u64 sreg;
|
|
|
|
sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
|
|
SD(CHECK_SLID_MASK_SHIFT)) |
|
|
(((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
|
|
SD(CHECK_SLID_VALUE_SHIFT));
|
|
|
|
for (i = 0; i < dd->num_sdma; i++) {
|
|
hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
|
|
i, (u32)sreg);
|
|
sde = &dd->per_sdma[i];
|
|
write_sde_csr(sde, SD(CHECK_SLID), sreg);
|
|
}
|
|
}
|
|
|
|
/* tx not dword sized - pad */
|
|
int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
|
|
{
|
|
int rval = 0;
|
|
|
|
tx->num_desc++;
|
|
if ((unlikely(tx->num_desc == tx->desc_limit))) {
|
|
rval = _extend_sdma_tx_descs(dd, tx);
|
|
if (rval) {
|
|
__sdma_txclean(dd, tx);
|
|
return rval;
|
|
}
|
|
}
|
|
/* finish the one just added */
|
|
make_tx_sdma_desc(
|
|
tx,
|
|
SDMA_MAP_NONE,
|
|
dd->sdma_pad_phys,
|
|
sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
|
|
_sdma_close_tx(dd, tx);
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* Add ahg to the sdma_txreq
|
|
*
|
|
* The logic will consume up to 3
|
|
* descriptors at the beginning of
|
|
* sdma_txreq.
|
|
*/
|
|
void _sdma_txreq_ahgadd(
|
|
struct sdma_txreq *tx,
|
|
u8 num_ahg,
|
|
u8 ahg_entry,
|
|
u32 *ahg,
|
|
u8 ahg_hlen)
|
|
{
|
|
u32 i, shift = 0, desc = 0;
|
|
u8 mode;
|
|
|
|
WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
|
|
/* compute mode */
|
|
if (num_ahg == 1)
|
|
mode = SDMA_AHG_APPLY_UPDATE1;
|
|
else if (num_ahg <= 5)
|
|
mode = SDMA_AHG_APPLY_UPDATE2;
|
|
else
|
|
mode = SDMA_AHG_APPLY_UPDATE3;
|
|
tx->num_desc++;
|
|
/* initialize to consumed descriptors to zero */
|
|
switch (mode) {
|
|
case SDMA_AHG_APPLY_UPDATE3:
|
|
tx->num_desc++;
|
|
tx->descs[2].qw[0] = 0;
|
|
tx->descs[2].qw[1] = 0;
|
|
/* FALLTHROUGH */
|
|
case SDMA_AHG_APPLY_UPDATE2:
|
|
tx->num_desc++;
|
|
tx->descs[1].qw[0] = 0;
|
|
tx->descs[1].qw[1] = 0;
|
|
break;
|
|
}
|
|
ahg_hlen >>= 2;
|
|
tx->descs[0].qw[1] |=
|
|
(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
|
|
<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
|
|
(((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
|
|
<< SDMA_DESC1_HEADER_DWS_SHIFT) |
|
|
(((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
|
|
<< SDMA_DESC1_HEADER_MODE_SHIFT) |
|
|
(((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
|
|
<< SDMA_DESC1_HEADER_UPDATE1_SHIFT);
|
|
for (i = 0; i < (num_ahg - 1); i++) {
|
|
if (!shift && !(i & 2))
|
|
desc++;
|
|
tx->descs[desc].qw[!!(i & 2)] |=
|
|
(((u64)ahg[i + 1])
|
|
<< shift);
|
|
shift = (shift + 32) & 63;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_ahg_alloc - allocate an AHG entry
|
|
* @sde: engine to allocate from
|
|
*
|
|
* Return:
|
|
* 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
|
|
* -ENOSPC if an entry is not available
|
|
*/
|
|
int sdma_ahg_alloc(struct sdma_engine *sde)
|
|
{
|
|
int nr;
|
|
int oldbit;
|
|
|
|
if (!sde) {
|
|
trace_hfi1_ahg_allocate(sde, -EINVAL);
|
|
return -EINVAL;
|
|
}
|
|
while (1) {
|
|
nr = ffz(ACCESS_ONCE(sde->ahg_bits));
|
|
if (nr > 31) {
|
|
trace_hfi1_ahg_allocate(sde, -ENOSPC);
|
|
return -ENOSPC;
|
|
}
|
|
oldbit = test_and_set_bit(nr, &sde->ahg_bits);
|
|
if (!oldbit)
|
|
break;
|
|
cpu_relax();
|
|
}
|
|
trace_hfi1_ahg_allocate(sde, nr);
|
|
return nr;
|
|
}
|
|
|
|
/**
|
|
* sdma_ahg_free - free an AHG entry
|
|
* @sde: engine to return AHG entry
|
|
* @ahg_index: index to free
|
|
*
|
|
* This routine frees the indicate AHG entry.
|
|
*/
|
|
void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
|
|
{
|
|
if (!sde)
|
|
return;
|
|
trace_hfi1_ahg_deallocate(sde, ahg_index);
|
|
if (ahg_index < 0 || ahg_index > 31)
|
|
return;
|
|
clear_bit(ahg_index, &sde->ahg_bits);
|
|
}
|
|
|
|
/*
|
|
* SPC freeze handling for SDMA engines. Called when the driver knows
|
|
* the SPC is going into a freeze but before the freeze is fully
|
|
* settled. Generally an error interrupt.
|
|
*
|
|
* This event will pull the engine out of running so no more entries can be
|
|
* added to the engine's queue.
|
|
*/
|
|
void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
|
|
{
|
|
int i;
|
|
enum sdma_events event = link_down ? sdma_event_e85_link_down :
|
|
sdma_event_e80_hw_freeze;
|
|
|
|
/* set up the wait but do not wait here */
|
|
atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
|
|
|
|
/* tell all engines to stop running and wait */
|
|
for (i = 0; i < dd->num_sdma; i++)
|
|
sdma_process_event(&dd->per_sdma[i], event);
|
|
|
|
/* sdma_freeze() will wait for all engines to have stopped */
|
|
}
|
|
|
|
/*
|
|
* SPC freeze handling for SDMA engines. Called when the driver knows
|
|
* the SPC is fully frozen.
|
|
*/
|
|
void sdma_freeze(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
/*
|
|
* Make sure all engines have moved out of the running state before
|
|
* continuing.
|
|
*/
|
|
ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
|
|
atomic_read(&dd->sdma_unfreeze_count) <=
|
|
0);
|
|
/* interrupted or count is negative, then unloading - just exit */
|
|
if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
|
|
return;
|
|
|
|
/* set up the count for the next wait */
|
|
atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
|
|
|
|
/* tell all engines that the SPC is frozen, they can start cleaning */
|
|
for (i = 0; i < dd->num_sdma; i++)
|
|
sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
|
|
|
|
/*
|
|
* Wait for everyone to finish software clean before exiting. The
|
|
* software clean will read engine CSRs, so must be completed before
|
|
* the next step, which will clear the engine CSRs.
|
|
*/
|
|
(void)wait_event_interruptible(dd->sdma_unfreeze_wq,
|
|
atomic_read(&dd->sdma_unfreeze_count) <= 0);
|
|
/* no need to check results - done no matter what */
|
|
}
|
|
|
|
/*
|
|
* SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
|
|
*
|
|
* The SPC freeze acts like a SDMA halt and a hardware clean combined. All
|
|
* that is left is a software clean. We could do it after the SPC is fully
|
|
* frozen, but then we'd have to add another state to wait for the unfreeze.
|
|
* Instead, just defer the software clean until the unfreeze step.
|
|
*/
|
|
void sdma_unfreeze(struct hfi1_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/* tell all engines start freeze clean up */
|
|
for (i = 0; i < dd->num_sdma; i++)
|
|
sdma_process_event(&dd->per_sdma[i],
|
|
sdma_event_e82_hw_unfreeze);
|
|
}
|
|
|
|
/**
|
|
* _sdma_engine_progress_schedule() - schedule progress on engine
|
|
* @sde: sdma_engine to schedule progress
|
|
*
|
|
*/
|
|
void _sdma_engine_progress_schedule(
|
|
struct sdma_engine *sde)
|
|
{
|
|
trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
|
|
/* assume we have selected a good cpu */
|
|
write_csr(sde->dd,
|
|
CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
|
|
sde->progress_mask);
|
|
}
|