mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 04:39:19 +07:00
2eb5f31bc4
UML is using an obsolete itimer call for all timers and "polls" for kernel space timer firing in its userspace portion resulting in a long list of bugs and incorrect behaviour(s). It also uses ITIMER_VIRTUAL for its timer which results in the timer being dependent on it running and the cpu load. This patch fixes this by moving to posix high resolution timers firing off CLOCK_MONOTONIC and relaying the timer correctly to the UML userspace. Fixes: - crashes when hosts suspends/resumes - broken userspace timers - effecive ~40Hz instead of what they should be. Note - this modifies skas behavior by no longer setting an itimer per clone(). Timer events are relayed instead. - kernel network packet scheduling disciplines - tcp behaviour especially under load - various timer related corner cases Finally, overall responsiveness of userspace is better. Signed-off-by: Thomas Meyer <thomas@m3y3r.de> Signed-off-by: Anton Ivanov <aivanov@brocade.com> [rw: massaged commit message] Signed-off-by: Richard Weinberger <richard@nod.at>
268 lines
5.9 KiB
C
268 lines
5.9 KiB
C
/*
|
|
* Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
|
|
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
|
|
* Licensed under the GPL
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <string.h>
|
|
#include <sys/resource.h>
|
|
#include <as-layout.h>
|
|
#include <init.h>
|
|
#include <kern_util.h>
|
|
#include <os.h>
|
|
#include <um_malloc.h>
|
|
|
|
#define PGD_BOUND (4 * 1024 * 1024)
|
|
#define STACKSIZE (8 * 1024 * 1024)
|
|
#define THREAD_NAME_LEN (256)
|
|
|
|
long elf_aux_hwcap;
|
|
|
|
static void set_stklim(void)
|
|
{
|
|
struct rlimit lim;
|
|
|
|
if (getrlimit(RLIMIT_STACK, &lim) < 0) {
|
|
perror("getrlimit");
|
|
exit(1);
|
|
}
|
|
if ((lim.rlim_cur == RLIM_INFINITY) || (lim.rlim_cur > STACKSIZE)) {
|
|
lim.rlim_cur = STACKSIZE;
|
|
if (setrlimit(RLIMIT_STACK, &lim) < 0) {
|
|
perror("setrlimit");
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static __init void do_uml_initcalls(void)
|
|
{
|
|
initcall_t *call;
|
|
|
|
call = &__uml_initcall_start;
|
|
while (call < &__uml_initcall_end) {
|
|
(*call)();
|
|
call++;
|
|
}
|
|
}
|
|
|
|
static void last_ditch_exit(int sig)
|
|
{
|
|
uml_cleanup();
|
|
exit(1);
|
|
}
|
|
|
|
static void install_fatal_handler(int sig)
|
|
{
|
|
struct sigaction action;
|
|
|
|
/* All signals are enabled in this handler ... */
|
|
sigemptyset(&action.sa_mask);
|
|
|
|
/*
|
|
* ... including the signal being handled, plus we want the
|
|
* handler reset to the default behavior, so that if an exit
|
|
* handler is hanging for some reason, the UML will just die
|
|
* after this signal is sent a second time.
|
|
*/
|
|
action.sa_flags = SA_RESETHAND | SA_NODEFER;
|
|
action.sa_restorer = NULL;
|
|
action.sa_handler = last_ditch_exit;
|
|
if (sigaction(sig, &action, NULL) < 0) {
|
|
printf("failed to install handler for signal %d - errno = %d\n",
|
|
sig, errno);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
#define UML_LIB_PATH ":" OS_LIB_PATH "/uml"
|
|
|
|
static void setup_env_path(void)
|
|
{
|
|
char *new_path = NULL;
|
|
char *old_path = NULL;
|
|
int path_len = 0;
|
|
|
|
old_path = getenv("PATH");
|
|
/*
|
|
* if no PATH variable is set or it has an empty value
|
|
* just use the default + /usr/lib/uml
|
|
*/
|
|
if (!old_path || (path_len = strlen(old_path)) == 0) {
|
|
if (putenv("PATH=:/bin:/usr/bin/" UML_LIB_PATH))
|
|
perror("couldn't putenv");
|
|
return;
|
|
}
|
|
|
|
/* append /usr/lib/uml to the existing path */
|
|
path_len += strlen("PATH=" UML_LIB_PATH) + 1;
|
|
new_path = malloc(path_len);
|
|
if (!new_path) {
|
|
perror("couldn't malloc to set a new PATH");
|
|
return;
|
|
}
|
|
snprintf(new_path, path_len, "PATH=%s" UML_LIB_PATH, old_path);
|
|
if (putenv(new_path)) {
|
|
perror("couldn't putenv to set a new PATH");
|
|
free(new_path);
|
|
}
|
|
}
|
|
|
|
extern void scan_elf_aux( char **envp);
|
|
|
|
int __init main(int argc, char **argv, char **envp)
|
|
{
|
|
char **new_argv;
|
|
int ret, i, err;
|
|
|
|
set_stklim();
|
|
|
|
setup_env_path();
|
|
|
|
setsid();
|
|
|
|
new_argv = malloc((argc + 1) * sizeof(char *));
|
|
if (new_argv == NULL) {
|
|
perror("Mallocing argv");
|
|
exit(1);
|
|
}
|
|
for (i = 0; i < argc; i++) {
|
|
new_argv[i] = strdup(argv[i]);
|
|
if (new_argv[i] == NULL) {
|
|
perror("Mallocing an arg");
|
|
exit(1);
|
|
}
|
|
}
|
|
new_argv[argc] = NULL;
|
|
|
|
/*
|
|
* Allow these signals to bring down a UML if all other
|
|
* methods of control fail.
|
|
*/
|
|
install_fatal_handler(SIGINT);
|
|
install_fatal_handler(SIGTERM);
|
|
|
|
#ifdef CONFIG_ARCH_REUSE_HOST_VSYSCALL_AREA
|
|
scan_elf_aux(envp);
|
|
#endif
|
|
|
|
do_uml_initcalls();
|
|
change_sig(SIGPIPE, 0);
|
|
ret = linux_main(argc, argv);
|
|
|
|
/*
|
|
* Disable SIGPROF - I have no idea why libc doesn't do this or turn
|
|
* off the profiling time, but UML dies with a SIGPROF just before
|
|
* exiting when profiling is active.
|
|
*/
|
|
change_sig(SIGPROF, 0);
|
|
|
|
/*
|
|
* This signal stuff used to be in the reboot case. However,
|
|
* sometimes a timer signal can come in when we're halting (reproducably
|
|
* when writing out gcov information, presumably because that takes
|
|
* some time) and cause a segfault.
|
|
*/
|
|
|
|
/* stop timers and set timer signal to be ignored */
|
|
os_timer_disable();
|
|
|
|
/* disable SIGIO for the fds and set SIGIO to be ignored */
|
|
err = deactivate_all_fds();
|
|
if (err)
|
|
printf("deactivate_all_fds failed, errno = %d\n", -err);
|
|
|
|
/*
|
|
* Let any pending signals fire now. This ensures
|
|
* that they won't be delivered after the exec, when
|
|
* they are definitely not expected.
|
|
*/
|
|
unblock_signals();
|
|
|
|
/* Reboot */
|
|
if (ret) {
|
|
printf("\n");
|
|
execvp(new_argv[0], new_argv);
|
|
perror("Failed to exec kernel");
|
|
ret = 1;
|
|
}
|
|
printf("\n");
|
|
return uml_exitcode;
|
|
}
|
|
|
|
extern void *__real_malloc(int);
|
|
|
|
void *__wrap_malloc(int size)
|
|
{
|
|
void *ret;
|
|
|
|
if (!kmalloc_ok)
|
|
return __real_malloc(size);
|
|
else if (size <= UM_KERN_PAGE_SIZE)
|
|
/* finding contiguous pages can be hard*/
|
|
ret = uml_kmalloc(size, UM_GFP_KERNEL);
|
|
else ret = vmalloc(size);
|
|
|
|
/*
|
|
* glibc people insist that if malloc fails, errno should be
|
|
* set by malloc as well. So we do.
|
|
*/
|
|
if (ret == NULL)
|
|
errno = ENOMEM;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void *__wrap_calloc(int n, int size)
|
|
{
|
|
void *ptr = __wrap_malloc(n * size);
|
|
|
|
if (ptr == NULL)
|
|
return NULL;
|
|
memset(ptr, 0, n * size);
|
|
return ptr;
|
|
}
|
|
|
|
extern void __real_free(void *);
|
|
|
|
extern unsigned long high_physmem;
|
|
|
|
void __wrap_free(void *ptr)
|
|
{
|
|
unsigned long addr = (unsigned long) ptr;
|
|
|
|
/*
|
|
* We need to know how the allocation happened, so it can be correctly
|
|
* freed. This is done by seeing what region of memory the pointer is
|
|
* in -
|
|
* physical memory - kmalloc/kfree
|
|
* kernel virtual memory - vmalloc/vfree
|
|
* anywhere else - malloc/free
|
|
* If kmalloc is not yet possible, then either high_physmem and/or
|
|
* end_vm are still 0 (as at startup), in which case we call free, or
|
|
* we have set them, but anyway addr has not been allocated from those
|
|
* areas. So, in both cases __real_free is called.
|
|
*
|
|
* CAN_KMALLOC is checked because it would be bad to free a buffer
|
|
* with kmalloc/vmalloc after they have been turned off during
|
|
* shutdown.
|
|
* XXX: However, we sometimes shutdown CAN_KMALLOC temporarily, so
|
|
* there is a possibility for memory leaks.
|
|
*/
|
|
|
|
if ((addr >= uml_physmem) && (addr < high_physmem)) {
|
|
if (kmalloc_ok)
|
|
kfree(ptr);
|
|
}
|
|
else if ((addr >= start_vm) && (addr < end_vm)) {
|
|
if (kmalloc_ok)
|
|
vfree(ptr);
|
|
}
|
|
else __real_free(ptr);
|
|
}
|