mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 12:17:16 +07:00
e7ee96dfb8
Use -ECANCELED to signal "stop iterating" instead of these magical *_ITER_ABORT values, since it's duplicative. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
721 lines
19 KiB
C
721 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2019 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_iwalk.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_health.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_pwork.h"
|
|
|
|
/*
|
|
* Walking Inodes in the Filesystem
|
|
* ================================
|
|
*
|
|
* This iterator function walks a subset of filesystem inodes in increasing
|
|
* order from @startino until there are no more inodes. For each allocated
|
|
* inode it finds, it calls a walk function with the relevant inode number and
|
|
* a pointer to caller-provided data. The walk function can return the usual
|
|
* negative error code to stop the iteration; 0 to continue the iteration; or
|
|
* -ECANCELED to stop the iteration. This return value is returned to the
|
|
* caller.
|
|
*
|
|
* Internally, we allow the walk function to do anything, which means that we
|
|
* cannot maintain the inobt cursor or our lock on the AGI buffer. We
|
|
* therefore cache the inobt records in kernel memory and only call the walk
|
|
* function when our memory buffer is full. @nr_recs is the number of records
|
|
* that we've cached, and @sz_recs is the size of our cache.
|
|
*
|
|
* It is the responsibility of the walk function to ensure it accesses
|
|
* allocated inodes, as the inobt records may be stale by the time they are
|
|
* acted upon.
|
|
*/
|
|
|
|
struct xfs_iwalk_ag {
|
|
/* parallel work control data; will be null if single threaded */
|
|
struct xfs_pwork pwork;
|
|
|
|
struct xfs_mount *mp;
|
|
struct xfs_trans *tp;
|
|
|
|
/* Where do we start the traversal? */
|
|
xfs_ino_t startino;
|
|
|
|
/* Array of inobt records we cache. */
|
|
struct xfs_inobt_rec_incore *recs;
|
|
|
|
/* Number of entries allocated for the @recs array. */
|
|
unsigned int sz_recs;
|
|
|
|
/* Number of entries in the @recs array that are in use. */
|
|
unsigned int nr_recs;
|
|
|
|
/* Inode walk function and data pointer. */
|
|
xfs_iwalk_fn iwalk_fn;
|
|
xfs_inobt_walk_fn inobt_walk_fn;
|
|
void *data;
|
|
|
|
/*
|
|
* Make it look like the inodes up to startino are free so that
|
|
* bulkstat can start its inode iteration at the correct place without
|
|
* needing to special case everywhere.
|
|
*/
|
|
unsigned int trim_start:1;
|
|
|
|
/* Skip empty inobt records? */
|
|
unsigned int skip_empty:1;
|
|
};
|
|
|
|
/*
|
|
* Loop over all clusters in a chunk for a given incore inode allocation btree
|
|
* record. Do a readahead if there are any allocated inodes in that cluster.
|
|
*/
|
|
STATIC void
|
|
xfs_iwalk_ichunk_ra(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno,
|
|
struct xfs_inobt_rec_incore *irec)
|
|
{
|
|
struct xfs_ino_geometry *igeo = M_IGEO(mp);
|
|
xfs_agblock_t agbno;
|
|
struct blk_plug plug;
|
|
int i; /* inode chunk index */
|
|
|
|
agbno = XFS_AGINO_TO_AGBNO(mp, irec->ir_startino);
|
|
|
|
blk_start_plug(&plug);
|
|
for (i = 0; i < XFS_INODES_PER_CHUNK; i += igeo->inodes_per_cluster) {
|
|
xfs_inofree_t imask;
|
|
|
|
imask = xfs_inobt_maskn(i, igeo->inodes_per_cluster);
|
|
if (imask & ~irec->ir_free) {
|
|
xfs_btree_reada_bufs(mp, agno, agbno,
|
|
igeo->blocks_per_cluster,
|
|
&xfs_inode_buf_ops);
|
|
}
|
|
agbno += igeo->blocks_per_cluster;
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
/*
|
|
* Set the bits in @irec's free mask that correspond to the inodes before
|
|
* @agino so that we skip them. This is how we restart an inode walk that was
|
|
* interrupted in the middle of an inode record.
|
|
*/
|
|
STATIC void
|
|
xfs_iwalk_adjust_start(
|
|
xfs_agino_t agino, /* starting inode of chunk */
|
|
struct xfs_inobt_rec_incore *irec) /* btree record */
|
|
{
|
|
int idx; /* index into inode chunk */
|
|
int i;
|
|
|
|
idx = agino - irec->ir_startino;
|
|
|
|
/*
|
|
* We got a right chunk with some left inodes allocated at it. Grab
|
|
* the chunk record. Mark all the uninteresting inodes free because
|
|
* they're before our start point.
|
|
*/
|
|
for (i = 0; i < idx; i++) {
|
|
if (XFS_INOBT_MASK(i) & ~irec->ir_free)
|
|
irec->ir_freecount++;
|
|
}
|
|
|
|
irec->ir_free |= xfs_inobt_maskn(0, idx);
|
|
}
|
|
|
|
/* Allocate memory for a walk. */
|
|
STATIC int
|
|
xfs_iwalk_alloc(
|
|
struct xfs_iwalk_ag *iwag)
|
|
{
|
|
size_t size;
|
|
|
|
ASSERT(iwag->recs == NULL);
|
|
iwag->nr_recs = 0;
|
|
|
|
/* Allocate a prefetch buffer for inobt records. */
|
|
size = iwag->sz_recs * sizeof(struct xfs_inobt_rec_incore);
|
|
iwag->recs = kmem_alloc(size, KM_MAYFAIL);
|
|
if (iwag->recs == NULL)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Free memory we allocated for a walk. */
|
|
STATIC void
|
|
xfs_iwalk_free(
|
|
struct xfs_iwalk_ag *iwag)
|
|
{
|
|
kmem_free(iwag->recs);
|
|
iwag->recs = NULL;
|
|
}
|
|
|
|
/* For each inuse inode in each cached inobt record, call our function. */
|
|
STATIC int
|
|
xfs_iwalk_ag_recs(
|
|
struct xfs_iwalk_ag *iwag)
|
|
{
|
|
struct xfs_mount *mp = iwag->mp;
|
|
struct xfs_trans *tp = iwag->tp;
|
|
xfs_ino_t ino;
|
|
unsigned int i, j;
|
|
xfs_agnumber_t agno;
|
|
int error;
|
|
|
|
agno = XFS_INO_TO_AGNO(mp, iwag->startino);
|
|
for (i = 0; i < iwag->nr_recs; i++) {
|
|
struct xfs_inobt_rec_incore *irec = &iwag->recs[i];
|
|
|
|
trace_xfs_iwalk_ag_rec(mp, agno, irec);
|
|
|
|
if (xfs_pwork_want_abort(&iwag->pwork))
|
|
return 0;
|
|
|
|
if (iwag->inobt_walk_fn) {
|
|
error = iwag->inobt_walk_fn(mp, tp, agno, irec,
|
|
iwag->data);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
if (!iwag->iwalk_fn)
|
|
continue;
|
|
|
|
for (j = 0; j < XFS_INODES_PER_CHUNK; j++) {
|
|
if (xfs_pwork_want_abort(&iwag->pwork))
|
|
return 0;
|
|
|
|
/* Skip if this inode is free */
|
|
if (XFS_INOBT_MASK(j) & irec->ir_free)
|
|
continue;
|
|
|
|
/* Otherwise call our function. */
|
|
ino = XFS_AGINO_TO_INO(mp, agno, irec->ir_startino + j);
|
|
error = iwag->iwalk_fn(mp, tp, ino, iwag->data);
|
|
if (error)
|
|
return error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Delete cursor and let go of AGI. */
|
|
static inline void
|
|
xfs_iwalk_del_inobt(
|
|
struct xfs_trans *tp,
|
|
struct xfs_btree_cur **curpp,
|
|
struct xfs_buf **agi_bpp,
|
|
int error)
|
|
{
|
|
if (*curpp) {
|
|
xfs_btree_del_cursor(*curpp, error);
|
|
*curpp = NULL;
|
|
}
|
|
if (*agi_bpp) {
|
|
xfs_trans_brelse(tp, *agi_bpp);
|
|
*agi_bpp = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set ourselves up for walking inobt records starting from a given point in
|
|
* the filesystem.
|
|
*
|
|
* If caller passed in a nonzero start inode number, load the record from the
|
|
* inobt and make the record look like all the inodes before agino are free so
|
|
* that we skip them, and then move the cursor to the next inobt record. This
|
|
* is how we support starting an iwalk in the middle of an inode chunk.
|
|
*
|
|
* If the caller passed in a start number of zero, move the cursor to the first
|
|
* inobt record.
|
|
*
|
|
* The caller is responsible for cleaning up the cursor and buffer pointer
|
|
* regardless of the error status.
|
|
*/
|
|
STATIC int
|
|
xfs_iwalk_ag_start(
|
|
struct xfs_iwalk_ag *iwag,
|
|
xfs_agnumber_t agno,
|
|
xfs_agino_t agino,
|
|
struct xfs_btree_cur **curpp,
|
|
struct xfs_buf **agi_bpp,
|
|
int *has_more)
|
|
{
|
|
struct xfs_mount *mp = iwag->mp;
|
|
struct xfs_trans *tp = iwag->tp;
|
|
struct xfs_inobt_rec_incore *irec;
|
|
int error;
|
|
|
|
/* Set up a fresh cursor and empty the inobt cache. */
|
|
iwag->nr_recs = 0;
|
|
error = xfs_inobt_cur(mp, tp, agno, XFS_BTNUM_INO, curpp, agi_bpp);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Starting at the beginning of the AG? That's easy! */
|
|
if (agino == 0)
|
|
return xfs_inobt_lookup(*curpp, 0, XFS_LOOKUP_GE, has_more);
|
|
|
|
/*
|
|
* Otherwise, we have to grab the inobt record where we left off, stuff
|
|
* the record into our cache, and then see if there are more records.
|
|
* We require a lookup cache of at least two elements so that the
|
|
* caller doesn't have to deal with tearing down the cursor to walk the
|
|
* records.
|
|
*/
|
|
error = xfs_inobt_lookup(*curpp, agino, XFS_LOOKUP_LE, has_more);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* If the LE lookup at @agino yields no records, jump ahead to the
|
|
* inobt cursor increment to see if there are more records to process.
|
|
*/
|
|
if (!*has_more)
|
|
goto out_advance;
|
|
|
|
/* Get the record, should always work */
|
|
irec = &iwag->recs[iwag->nr_recs];
|
|
error = xfs_inobt_get_rec(*curpp, irec, has_more);
|
|
if (error)
|
|
return error;
|
|
XFS_WANT_CORRUPTED_RETURN(mp, *has_more == 1);
|
|
|
|
/*
|
|
* If the LE lookup yielded an inobt record before the cursor position,
|
|
* skip it and see if there's another one after it.
|
|
*/
|
|
if (irec->ir_startino + XFS_INODES_PER_CHUNK <= agino)
|
|
goto out_advance;
|
|
|
|
/*
|
|
* If agino fell in the middle of the inode record, make it look like
|
|
* the inodes up to agino are free so that we don't return them again.
|
|
*/
|
|
if (iwag->trim_start)
|
|
xfs_iwalk_adjust_start(agino, irec);
|
|
|
|
/*
|
|
* The prefetch calculation is supposed to give us a large enough inobt
|
|
* record cache that grab_ichunk can stage a partial first record and
|
|
* the loop body can cache a record without having to check for cache
|
|
* space until after it reads an inobt record.
|
|
*/
|
|
iwag->nr_recs++;
|
|
ASSERT(iwag->nr_recs < iwag->sz_recs);
|
|
|
|
out_advance:
|
|
return xfs_btree_increment(*curpp, 0, has_more);
|
|
}
|
|
|
|
/*
|
|
* The inobt record cache is full, so preserve the inobt cursor state and
|
|
* run callbacks on the cached inobt records. When we're done, restore the
|
|
* cursor state to wherever the cursor would have been had the cache not been
|
|
* full (and therefore we could've just incremented the cursor) if *@has_more
|
|
* is true. On exit, *@has_more will indicate whether or not the caller should
|
|
* try for more inode records.
|
|
*/
|
|
STATIC int
|
|
xfs_iwalk_run_callbacks(
|
|
struct xfs_iwalk_ag *iwag,
|
|
xfs_agnumber_t agno,
|
|
struct xfs_btree_cur **curpp,
|
|
struct xfs_buf **agi_bpp,
|
|
int *has_more)
|
|
{
|
|
struct xfs_mount *mp = iwag->mp;
|
|
struct xfs_trans *tp = iwag->tp;
|
|
struct xfs_inobt_rec_incore *irec;
|
|
xfs_agino_t restart;
|
|
int error;
|
|
|
|
ASSERT(iwag->nr_recs > 0);
|
|
|
|
/* Delete cursor but remember the last record we cached... */
|
|
xfs_iwalk_del_inobt(tp, curpp, agi_bpp, 0);
|
|
irec = &iwag->recs[iwag->nr_recs - 1];
|
|
restart = irec->ir_startino + XFS_INODES_PER_CHUNK - 1;
|
|
|
|
error = xfs_iwalk_ag_recs(iwag);
|
|
if (error)
|
|
return error;
|
|
|
|
/* ...empty the cache... */
|
|
iwag->nr_recs = 0;
|
|
|
|
if (!has_more)
|
|
return 0;
|
|
|
|
/* ...and recreate the cursor just past where we left off. */
|
|
error = xfs_inobt_cur(mp, tp, agno, XFS_BTNUM_INO, curpp, agi_bpp);
|
|
if (error)
|
|
return error;
|
|
|
|
return xfs_inobt_lookup(*curpp, restart, XFS_LOOKUP_GE, has_more);
|
|
}
|
|
|
|
/* Walk all inodes in a single AG, from @iwag->startino to the end of the AG. */
|
|
STATIC int
|
|
xfs_iwalk_ag(
|
|
struct xfs_iwalk_ag *iwag)
|
|
{
|
|
struct xfs_mount *mp = iwag->mp;
|
|
struct xfs_trans *tp = iwag->tp;
|
|
struct xfs_buf *agi_bp = NULL;
|
|
struct xfs_btree_cur *cur = NULL;
|
|
xfs_agnumber_t agno;
|
|
xfs_agino_t agino;
|
|
int has_more;
|
|
int error = 0;
|
|
|
|
/* Set up our cursor at the right place in the inode btree. */
|
|
agno = XFS_INO_TO_AGNO(mp, iwag->startino);
|
|
agino = XFS_INO_TO_AGINO(mp, iwag->startino);
|
|
error = xfs_iwalk_ag_start(iwag, agno, agino, &cur, &agi_bp, &has_more);
|
|
|
|
while (!error && has_more) {
|
|
struct xfs_inobt_rec_incore *irec;
|
|
|
|
cond_resched();
|
|
if (xfs_pwork_want_abort(&iwag->pwork))
|
|
goto out;
|
|
|
|
/* Fetch the inobt record. */
|
|
irec = &iwag->recs[iwag->nr_recs];
|
|
error = xfs_inobt_get_rec(cur, irec, &has_more);
|
|
if (error || !has_more)
|
|
break;
|
|
|
|
/* No allocated inodes in this chunk; skip it. */
|
|
if (iwag->skip_empty && irec->ir_freecount == irec->ir_count) {
|
|
error = xfs_btree_increment(cur, 0, &has_more);
|
|
if (error)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Start readahead for this inode chunk in anticipation of
|
|
* walking the inodes.
|
|
*/
|
|
if (iwag->iwalk_fn)
|
|
xfs_iwalk_ichunk_ra(mp, agno, irec);
|
|
|
|
/*
|
|
* If there's space in the buffer for more records, increment
|
|
* the btree cursor and grab more.
|
|
*/
|
|
if (++iwag->nr_recs < iwag->sz_recs) {
|
|
error = xfs_btree_increment(cur, 0, &has_more);
|
|
if (error || !has_more)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we need to save cursor state and run the callback
|
|
* function on the cached records. The run_callbacks function
|
|
* is supposed to return a cursor pointing to the record where
|
|
* we would be if we had been able to increment like above.
|
|
*/
|
|
ASSERT(has_more);
|
|
error = xfs_iwalk_run_callbacks(iwag, agno, &cur, &agi_bp,
|
|
&has_more);
|
|
}
|
|
|
|
if (iwag->nr_recs == 0 || error)
|
|
goto out;
|
|
|
|
/* Walk the unprocessed records in the cache. */
|
|
error = xfs_iwalk_run_callbacks(iwag, agno, &cur, &agi_bp, &has_more);
|
|
|
|
out:
|
|
xfs_iwalk_del_inobt(tp, &cur, &agi_bp, error);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* We experimentally determined that the reduction in ioctl call overhead
|
|
* diminishes when userspace asks for more than 2048 inodes, so we'll cap
|
|
* prefetch at this point.
|
|
*/
|
|
#define IWALK_MAX_INODE_PREFETCH (2048U)
|
|
|
|
/*
|
|
* Given the number of inodes to prefetch, set the number of inobt records that
|
|
* we cache in memory, which controls the number of inodes we try to read
|
|
* ahead. Set the maximum if @inodes == 0.
|
|
*/
|
|
static inline unsigned int
|
|
xfs_iwalk_prefetch(
|
|
unsigned int inodes)
|
|
{
|
|
unsigned int inobt_records;
|
|
|
|
/*
|
|
* If the caller didn't tell us the number of inodes they wanted,
|
|
* assume the maximum prefetch possible for best performance.
|
|
* Otherwise, cap prefetch at that maximum so that we don't start an
|
|
* absurd amount of prefetch.
|
|
*/
|
|
if (inodes == 0)
|
|
inodes = IWALK_MAX_INODE_PREFETCH;
|
|
inodes = min(inodes, IWALK_MAX_INODE_PREFETCH);
|
|
|
|
/* Round the inode count up to a full chunk. */
|
|
inodes = round_up(inodes, XFS_INODES_PER_CHUNK);
|
|
|
|
/*
|
|
* In order to convert the number of inodes to prefetch into an
|
|
* estimate of the number of inobt records to cache, we require a
|
|
* conversion factor that reflects our expectations of the average
|
|
* loading factor of an inode chunk. Based on data gathered, most
|
|
* (but not all) filesystems manage to keep the inode chunks totally
|
|
* full, so we'll underestimate slightly so that our readahead will
|
|
* still deliver the performance we want on aging filesystems:
|
|
*
|
|
* inobt = inodes / (INODES_PER_CHUNK * (4 / 5));
|
|
*
|
|
* The funny math is to avoid integer division.
|
|
*/
|
|
inobt_records = (inodes * 5) / (4 * XFS_INODES_PER_CHUNK);
|
|
|
|
/*
|
|
* Allocate enough space to prefetch at least two inobt records so that
|
|
* we can cache both the record where the iwalk started and the next
|
|
* record. This simplifies the AG inode walk loop setup code.
|
|
*/
|
|
return max(inobt_records, 2U);
|
|
}
|
|
|
|
/*
|
|
* Walk all inodes in the filesystem starting from @startino. The @iwalk_fn
|
|
* will be called for each allocated inode, being passed the inode's number and
|
|
* @data. @max_prefetch controls how many inobt records' worth of inodes we
|
|
* try to readahead.
|
|
*/
|
|
int
|
|
xfs_iwalk(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t startino,
|
|
unsigned int flags,
|
|
xfs_iwalk_fn iwalk_fn,
|
|
unsigned int inode_records,
|
|
void *data)
|
|
{
|
|
struct xfs_iwalk_ag iwag = {
|
|
.mp = mp,
|
|
.tp = tp,
|
|
.iwalk_fn = iwalk_fn,
|
|
.data = data,
|
|
.startino = startino,
|
|
.sz_recs = xfs_iwalk_prefetch(inode_records),
|
|
.trim_start = 1,
|
|
.skip_empty = 1,
|
|
.pwork = XFS_PWORK_SINGLE_THREADED,
|
|
};
|
|
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, startino);
|
|
int error;
|
|
|
|
ASSERT(agno < mp->m_sb.sb_agcount);
|
|
ASSERT(!(flags & ~XFS_IWALK_FLAGS_ALL));
|
|
|
|
error = xfs_iwalk_alloc(&iwag);
|
|
if (error)
|
|
return error;
|
|
|
|
for (; agno < mp->m_sb.sb_agcount; agno++) {
|
|
error = xfs_iwalk_ag(&iwag);
|
|
if (error)
|
|
break;
|
|
iwag.startino = XFS_AGINO_TO_INO(mp, agno + 1, 0);
|
|
if (flags & XFS_INOBT_WALK_SAME_AG)
|
|
break;
|
|
}
|
|
|
|
xfs_iwalk_free(&iwag);
|
|
return error;
|
|
}
|
|
|
|
/* Run per-thread iwalk work. */
|
|
static int
|
|
xfs_iwalk_ag_work(
|
|
struct xfs_mount *mp,
|
|
struct xfs_pwork *pwork)
|
|
{
|
|
struct xfs_iwalk_ag *iwag;
|
|
int error = 0;
|
|
|
|
iwag = container_of(pwork, struct xfs_iwalk_ag, pwork);
|
|
if (xfs_pwork_want_abort(pwork))
|
|
goto out;
|
|
|
|
error = xfs_iwalk_alloc(iwag);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = xfs_iwalk_ag(iwag);
|
|
xfs_iwalk_free(iwag);
|
|
out:
|
|
kmem_free(iwag);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Walk all the inodes in the filesystem using multiple threads to process each
|
|
* AG.
|
|
*/
|
|
int
|
|
xfs_iwalk_threaded(
|
|
struct xfs_mount *mp,
|
|
xfs_ino_t startino,
|
|
unsigned int flags,
|
|
xfs_iwalk_fn iwalk_fn,
|
|
unsigned int inode_records,
|
|
bool polled,
|
|
void *data)
|
|
{
|
|
struct xfs_pwork_ctl pctl;
|
|
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, startino);
|
|
unsigned int nr_threads;
|
|
int error;
|
|
|
|
ASSERT(agno < mp->m_sb.sb_agcount);
|
|
ASSERT(!(flags & ~XFS_IWALK_FLAGS_ALL));
|
|
|
|
nr_threads = xfs_pwork_guess_datadev_parallelism(mp);
|
|
error = xfs_pwork_init(mp, &pctl, xfs_iwalk_ag_work, "xfs_iwalk",
|
|
nr_threads);
|
|
if (error)
|
|
return error;
|
|
|
|
for (; agno < mp->m_sb.sb_agcount; agno++) {
|
|
struct xfs_iwalk_ag *iwag;
|
|
|
|
if (xfs_pwork_ctl_want_abort(&pctl))
|
|
break;
|
|
|
|
iwag = kmem_zalloc(sizeof(struct xfs_iwalk_ag), 0);
|
|
iwag->mp = mp;
|
|
iwag->iwalk_fn = iwalk_fn;
|
|
iwag->data = data;
|
|
iwag->startino = startino;
|
|
iwag->sz_recs = xfs_iwalk_prefetch(inode_records);
|
|
xfs_pwork_queue(&pctl, &iwag->pwork);
|
|
startino = XFS_AGINO_TO_INO(mp, agno + 1, 0);
|
|
if (flags & XFS_INOBT_WALK_SAME_AG)
|
|
break;
|
|
}
|
|
|
|
if (polled)
|
|
xfs_pwork_poll(&pctl);
|
|
return xfs_pwork_destroy(&pctl);
|
|
}
|
|
|
|
/*
|
|
* Allow callers to cache up to a page's worth of inobt records. This reflects
|
|
* the existing inumbers prefetching behavior. Since the inobt walk does not
|
|
* itself do anything with the inobt records, we can set a fairly high limit
|
|
* here.
|
|
*/
|
|
#define MAX_INOBT_WALK_PREFETCH \
|
|
(PAGE_SIZE / sizeof(struct xfs_inobt_rec_incore))
|
|
|
|
/*
|
|
* Given the number of records that the user wanted, set the number of inobt
|
|
* records that we buffer in memory. Set the maximum if @inobt_records == 0.
|
|
*/
|
|
static inline unsigned int
|
|
xfs_inobt_walk_prefetch(
|
|
unsigned int inobt_records)
|
|
{
|
|
/*
|
|
* If the caller didn't tell us the number of inobt records they
|
|
* wanted, assume the maximum prefetch possible for best performance.
|
|
*/
|
|
if (inobt_records == 0)
|
|
inobt_records = MAX_INOBT_WALK_PREFETCH;
|
|
|
|
/*
|
|
* Allocate enough space to prefetch at least two inobt records so that
|
|
* we can cache both the record where the iwalk started and the next
|
|
* record. This simplifies the AG inode walk loop setup code.
|
|
*/
|
|
inobt_records = max(inobt_records, 2U);
|
|
|
|
/*
|
|
* Cap prefetch at that maximum so that we don't use an absurd amount
|
|
* of memory.
|
|
*/
|
|
return min_t(unsigned int, inobt_records, MAX_INOBT_WALK_PREFETCH);
|
|
}
|
|
|
|
/*
|
|
* Walk all inode btree records in the filesystem starting from @startino. The
|
|
* @inobt_walk_fn will be called for each btree record, being passed the incore
|
|
* record and @data. @max_prefetch controls how many inobt records we try to
|
|
* cache ahead of time.
|
|
*/
|
|
int
|
|
xfs_inobt_walk(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t startino,
|
|
unsigned int flags,
|
|
xfs_inobt_walk_fn inobt_walk_fn,
|
|
unsigned int inobt_records,
|
|
void *data)
|
|
{
|
|
struct xfs_iwalk_ag iwag = {
|
|
.mp = mp,
|
|
.tp = tp,
|
|
.inobt_walk_fn = inobt_walk_fn,
|
|
.data = data,
|
|
.startino = startino,
|
|
.sz_recs = xfs_inobt_walk_prefetch(inobt_records),
|
|
.pwork = XFS_PWORK_SINGLE_THREADED,
|
|
};
|
|
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, startino);
|
|
int error;
|
|
|
|
ASSERT(agno < mp->m_sb.sb_agcount);
|
|
ASSERT(!(flags & ~XFS_INOBT_WALK_FLAGS_ALL));
|
|
|
|
error = xfs_iwalk_alloc(&iwag);
|
|
if (error)
|
|
return error;
|
|
|
|
for (; agno < mp->m_sb.sb_agcount; agno++) {
|
|
error = xfs_iwalk_ag(&iwag);
|
|
if (error)
|
|
break;
|
|
iwag.startino = XFS_AGINO_TO_INO(mp, agno + 1, 0);
|
|
if (flags & XFS_INOBT_WALK_SAME_AG)
|
|
break;
|
|
}
|
|
|
|
xfs_iwalk_free(&iwag);
|
|
return error;
|
|
}
|