linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_ddi.c
Paulo Zanoni 15b1d171d8 drm/i915: fix the "ghost eDP" encoder unwind path
Because calling intel_dp_encoder_destroy inside
intel_edp_init_connector is just wrong. This is the initialization
path, so we should properly unwind all the initialization through the
whole caller stack.

On the intel_dp_encoder_destroy function we do the following:
1 - Call i2c_del_adapter
2 - Call drm_encoder_cleanup
3 - If edp:
3.1 - Cancel panel_vdd_work
3.2 - Call ironlake_panel_vdd_of_sync
4 - Free the encoder

And here is how we unwind each specific step:
1 - We have intel_dp_init_connector -> intel_dp_i2c_init ->
    i2c_dp_aux_add_bus -> i2c_add_adapter, so we call
    i2c_del_dapter at intel_dp_init_connector
2 - Call it in the same function that called drm_encoder_init
3 - Call it in the same function that called INIT_DELAYED_WORK
4 - Free it in the same function that allocated it

Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Reviewed-by: Zoltan Nyul <zoltan.nyul@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-06-28 14:14:19 +02:00

1377 lines
38 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include "i915_drv.h"
#include "intel_drv.h"
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
* them for both DP and FDI transports, allowing those ports to
* automatically adapt to HDMI connections as well
*/
static const u32 hsw_ddi_translations_dp[] = {
0x00FFFFFF, 0x0006000E, /* DP parameters */
0x00D75FFF, 0x0005000A,
0x00C30FFF, 0x00040006,
0x80AAAFFF, 0x000B0000,
0x00FFFFFF, 0x0005000A,
0x00D75FFF, 0x000C0004,
0x80C30FFF, 0x000B0000,
0x00FFFFFF, 0x00040006,
0x80D75FFF, 0x000B0000,
0x00FFFFFF, 0x00040006 /* HDMI parameters */
};
static const u32 hsw_ddi_translations_fdi[] = {
0x00FFFFFF, 0x0007000E, /* FDI parameters */
0x00D75FFF, 0x000F000A,
0x00C30FFF, 0x00060006,
0x00AAAFFF, 0x001E0000,
0x00FFFFFF, 0x000F000A,
0x00D75FFF, 0x00160004,
0x00C30FFF, 0x001E0000,
0x00FFFFFF, 0x00060006,
0x00D75FFF, 0x001E0000,
0x00FFFFFF, 0x00040006 /* HDMI parameters */
};
static enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(encoder);
return intel_dig_port->port;
} else if (type == INTEL_OUTPUT_ANALOG) {
return PORT_E;
} else {
DRM_ERROR("Invalid DDI encoder type %d\n", type);
BUG();
}
}
/* On Haswell, DDI port buffers must be programmed with correct values
* in advance. The buffer values are different for FDI and DP modes,
* but the HDMI/DVI fields are shared among those. So we program the DDI
* in either FDI or DP modes only, as HDMI connections will work with both
* of those
*/
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
bool use_fdi_mode)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
int i;
const u32 *ddi_translations = ((use_fdi_mode) ?
hsw_ddi_translations_fdi :
hsw_ddi_translations_dp);
DRM_DEBUG_DRIVER("Initializing DDI buffers for port %c in %s mode\n",
port_name(port),
use_fdi_mode ? "FDI" : "DP");
WARN((use_fdi_mode && (port != PORT_E)),
"Programming port %c in FDI mode, this probably will not work.\n",
port_name(port));
for (i=0, reg=DDI_BUF_TRANS(port); i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
I915_WRITE(reg, ddi_translations[i]);
reg += 4;
}
}
/* Program DDI buffers translations for DP. By default, program ports A-D in DP
* mode and port E for FDI.
*/
void intel_prepare_ddi(struct drm_device *dev)
{
int port;
if (!HAS_DDI(dev))
return;
for (port = PORT_A; port < PORT_E; port++)
intel_prepare_ddi_buffers(dev, port, false);
/* DDI E is the suggested one to work in FDI mode, so program is as such
* by default. It will have to be re-programmed in case a digital DP
* output will be detected on it
*/
intel_prepare_ddi_buffers(dev, PORT_E, true);
}
static const long hsw_ddi_buf_ctl_values[] = {
DDI_BUF_EMP_400MV_0DB_HSW,
DDI_BUF_EMP_400MV_3_5DB_HSW,
DDI_BUF_EMP_400MV_6DB_HSW,
DDI_BUF_EMP_400MV_9_5DB_HSW,
DDI_BUF_EMP_600MV_0DB_HSW,
DDI_BUF_EMP_600MV_3_5DB_HSW,
DDI_BUF_EMP_600MV_6DB_HSW,
DDI_BUF_EMP_800MV_0DB_HSW,
DDI_BUF_EMP_800MV_3_5DB_HSW
};
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
enum port port)
{
uint32_t reg = DDI_BUF_CTL(port);
int i;
for (i = 0; i < 8; i++) {
udelay(1);
if (I915_READ(reg) & DDI_BUF_IS_IDLE)
return;
}
DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
/* Starting with Haswell, different DDI ports can work in FDI mode for
* connection to the PCH-located connectors. For this, it is necessary to train
* both the DDI port and PCH receiver for the desired DDI buffer settings.
*
* The recommended port to work in FDI mode is DDI E, which we use here. Also,
* please note that when FDI mode is active on DDI E, it shares 2 lines with
* DDI A (which is used for eDP)
*/
void hsw_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 temp, i, rx_ctl_val;
/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
* mode set "sequence for CRT port" document:
* - TP1 to TP2 time with the default value
* - FDI delay to 90h
*
* WaFDIAutoLinkSetTimingOverrride:hsw
*/
I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
FDI_RX_PWRDN_LANE0_VAL(2) |
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
/* Enable the PCH Receiver FDI PLL */
rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
FDI_RX_PLL_ENABLE |
FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
POSTING_READ(_FDI_RXA_CTL);
udelay(220);
/* Switch from Rawclk to PCDclk */
rx_ctl_val |= FDI_PCDCLK;
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
/* Configure Port Clock Select */
I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel);
/* Start the training iterating through available voltages and emphasis,
* testing each value twice. */
for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
/* Configure DP_TP_CTL with auto-training */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 |
DP_TP_CTL_ENABLE);
/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
* DDI E does not support port reversal, the functionality is
* achieved on the PCH side in FDI_RX_CTL, so no need to set the
* port reversal bit */
I915_WRITE(DDI_BUF_CTL(PORT_E),
DDI_BUF_CTL_ENABLE |
((intel_crtc->config.fdi_lanes - 1) << 1) |
hsw_ddi_buf_ctl_values[i / 2]);
POSTING_READ(DDI_BUF_CTL(PORT_E));
udelay(600);
/* Program PCH FDI Receiver TU */
I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
/* Enable PCH FDI Receiver with auto-training */
rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
POSTING_READ(_FDI_RXA_CTL);
/* Wait for FDI receiver lane calibration */
udelay(30);
/* Unset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(_FDI_RXA_MISC);
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
I915_WRITE(_FDI_RXA_MISC, temp);
POSTING_READ(_FDI_RXA_MISC);
/* Wait for FDI auto training time */
udelay(5);
temp = I915_READ(DP_TP_STATUS(PORT_E));
if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
/* Enable normal pixel sending for FDI */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_LINK_TRAIN_NORMAL |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_ENABLE);
return;
}
temp = I915_READ(DDI_BUF_CTL(PORT_E));
temp &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
POSTING_READ(DDI_BUF_CTL(PORT_E));
/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
temp = I915_READ(DP_TP_CTL(PORT_E));
temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(PORT_E), temp);
POSTING_READ(DP_TP_CTL(PORT_E));
intel_wait_ddi_buf_idle(dev_priv, PORT_E);
rx_ctl_val &= ~FDI_RX_ENABLE;
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
POSTING_READ(_FDI_RXA_CTL);
/* Reset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(_FDI_RXA_MISC);
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(_FDI_RXA_MISC, temp);
POSTING_READ(_FDI_RXA_MISC);
}
DRM_ERROR("FDI link training failed!\n");
}
static void intel_ddi_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
int port = intel_ddi_get_encoder_port(intel_encoder);
int pipe = intel_crtc->pipe;
int type = intel_encoder->type;
DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n",
port_name(port), pipe_name(pipe));
intel_crtc->eld_vld = false;
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(encoder);
intel_dp->DP = intel_dig_port->port_reversal |
DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
if (intel_dp->has_audio) {
DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n",
pipe_name(intel_crtc->pipe));
/* write eld */
DRM_DEBUG_DRIVER("DP audio: write eld information\n");
intel_write_eld(encoder, adjusted_mode);
}
intel_dp_init_link_config(intel_dp);
} else if (type == INTEL_OUTPUT_HDMI) {
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
if (intel_hdmi->has_audio) {
/* Proper support for digital audio needs a new logic
* and a new set of registers, so we leave it for future
* patch bombing.
*/
DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n",
pipe_name(intel_crtc->pipe));
/* write eld */
DRM_DEBUG_DRIVER("HDMI audio: write eld information\n");
intel_write_eld(encoder, adjusted_mode);
}
intel_hdmi->set_infoframes(encoder, adjusted_mode);
}
}
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder, *ret = NULL;
int num_encoders = 0;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
ret = intel_encoder;
num_encoders++;
}
if (num_encoders != 1)
WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(intel_crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
void intel_ddi_put_crtc_pll(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t val;
switch (intel_crtc->ddi_pll_sel) {
case PORT_CLK_SEL_SPLL:
plls->spll_refcount--;
if (plls->spll_refcount == 0) {
DRM_DEBUG_KMS("Disabling SPLL\n");
val = I915_READ(SPLL_CTL);
WARN_ON(!(val & SPLL_PLL_ENABLE));
I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
POSTING_READ(SPLL_CTL);
}
break;
case PORT_CLK_SEL_WRPLL1:
plls->wrpll1_refcount--;
if (plls->wrpll1_refcount == 0) {
DRM_DEBUG_KMS("Disabling WRPLL 1\n");
val = I915_READ(WRPLL_CTL1);
WARN_ON(!(val & WRPLL_PLL_ENABLE));
I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE);
POSTING_READ(WRPLL_CTL1);
}
break;
case PORT_CLK_SEL_WRPLL2:
plls->wrpll2_refcount--;
if (plls->wrpll2_refcount == 0) {
DRM_DEBUG_KMS("Disabling WRPLL 2\n");
val = I915_READ(WRPLL_CTL2);
WARN_ON(!(val & WRPLL_PLL_ENABLE));
I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE);
POSTING_READ(WRPLL_CTL2);
}
break;
}
WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n");
WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n");
WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n");
intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
}
#define LC_FREQ 2700
#define LC_FREQ_2K (LC_FREQ * 2000)
#define P_MIN 2
#define P_MAX 64
#define P_INC 2
/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800
#define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
struct wrpll_rnp {
unsigned p, n2, r2;
};
static unsigned wrpll_get_budget_for_freq(int clock)
{
unsigned budget;
switch (clock) {
case 25175000:
case 25200000:
case 27000000:
case 27027000:
case 37762500:
case 37800000:
case 40500000:
case 40541000:
case 54000000:
case 54054000:
case 59341000:
case 59400000:
case 72000000:
case 74176000:
case 74250000:
case 81000000:
case 81081000:
case 89012000:
case 89100000:
case 108000000:
case 108108000:
case 111264000:
case 111375000:
case 148352000:
case 148500000:
case 162000000:
case 162162000:
case 222525000:
case 222750000:
case 296703000:
case 297000000:
budget = 0;
break;
case 233500000:
case 245250000:
case 247750000:
case 253250000:
case 298000000:
budget = 1500;
break;
case 169128000:
case 169500000:
case 179500000:
case 202000000:
budget = 2000;
break;
case 256250000:
case 262500000:
case 270000000:
case 272500000:
case 273750000:
case 280750000:
case 281250000:
case 286000000:
case 291750000:
budget = 4000;
break;
case 267250000:
case 268500000:
budget = 5000;
break;
default:
budget = 1000;
break;
}
return budget;
}
static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
unsigned r2, unsigned n2, unsigned p,
struct wrpll_rnp *best)
{
uint64_t a, b, c, d, diff, diff_best;
/* No best (r,n,p) yet */
if (best->p == 0) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
return;
}
/*
* Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
* freq2k.
*
* delta = 1e6 *
* abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
* freq2k;
*
* and we would like delta <= budget.
*
* If the discrepancy is above the PPM-based budget, always prefer to
* improve upon the previous solution. However, if you're within the
* budget, try to maximize Ref * VCO, that is N / (P * R^2).
*/
a = freq2k * budget * p * r2;
b = freq2k * budget * best->p * best->r2;
diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
diff_best = ABS_DIFF((freq2k * best->p * best->r2),
(LC_FREQ_2K * best->n2));
c = 1000000 * diff;
d = 1000000 * diff_best;
if (a < c && b < d) {
/* If both are above the budget, pick the closer */
if (best->p * best->r2 * diff < p * r2 * diff_best) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
} else if (a >= c && b < d) {
/* If A is below the threshold but B is above it? Update. */
best->p = p;
best->n2 = n2;
best->r2 = r2;
} else if (a >= c && b >= d) {
/* Both are below the limit, so pick the higher n2/(r2*r2) */
if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
}
/* Otherwise a < c && b >= d, do nothing */
}
static void
intel_ddi_calculate_wrpll(int clock /* in Hz */,
unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
{
uint64_t freq2k;
unsigned p, n2, r2;
struct wrpll_rnp best = { 0, 0, 0 };
unsigned budget;
freq2k = clock / 100;
budget = wrpll_get_budget_for_freq(clock);
/* Special case handling for 540 pixel clock: bypass WR PLL entirely
* and directly pass the LC PLL to it. */
if (freq2k == 5400000) {
*n2_out = 2;
*p_out = 1;
*r2_out = 2;
return;
}
/*
* Ref = LC_FREQ / R, where Ref is the actual reference input seen by
* the WR PLL.
*
* We want R so that REF_MIN <= Ref <= REF_MAX.
* Injecting R2 = 2 * R gives:
* REF_MAX * r2 > LC_FREQ * 2 and
* REF_MIN * r2 < LC_FREQ * 2
*
* Which means the desired boundaries for r2 are:
* LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
*
*/
for (r2 = LC_FREQ * 2 / REF_MAX + 1;
r2 <= LC_FREQ * 2 / REF_MIN;
r2++) {
/*
* VCO = N * Ref, that is: VCO = N * LC_FREQ / R
*
* Once again we want VCO_MIN <= VCO <= VCO_MAX.
* Injecting R2 = 2 * R and N2 = 2 * N, we get:
* VCO_MAX * r2 > n2 * LC_FREQ and
* VCO_MIN * r2 < n2 * LC_FREQ)
*
* Which means the desired boundaries for n2 are:
* VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
*/
for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
n2 <= VCO_MAX * r2 / LC_FREQ;
n2++) {
for (p = P_MIN; p <= P_MAX; p += P_INC)
wrpll_update_rnp(freq2k, budget,
r2, n2, p, &best);
}
}
*n2_out = best.n2;
*p_out = best.p;
*r2_out = best.r2;
DRM_DEBUG_KMS("WRPLL: %dHz refresh rate with p=%d, n2=%d r2=%d\n",
clock, *p_out, *n2_out, *r2_out);
}
bool intel_ddi_pll_mode_set(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
int type = intel_encoder->type;
enum pipe pipe = intel_crtc->pipe;
uint32_t reg, val;
int clock = intel_crtc->config.port_clock;
/* TODO: reuse PLLs when possible (compare values) */
intel_ddi_put_crtc_pll(crtc);
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
switch (intel_dp->link_bw) {
case DP_LINK_BW_1_62:
intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
break;
case DP_LINK_BW_2_7:
intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
break;
case DP_LINK_BW_5_4:
intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
break;
default:
DRM_ERROR("Link bandwidth %d unsupported\n",
intel_dp->link_bw);
return false;
}
/* We don't need to turn any PLL on because we'll use LCPLL. */
return true;
} else if (type == INTEL_OUTPUT_HDMI) {
unsigned p, n2, r2;
if (plls->wrpll1_refcount == 0) {
DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n",
pipe_name(pipe));
plls->wrpll1_refcount++;
reg = WRPLL_CTL1;
intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1;
} else if (plls->wrpll2_refcount == 0) {
DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n",
pipe_name(pipe));
plls->wrpll2_refcount++;
reg = WRPLL_CTL2;
intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2;
} else {
DRM_ERROR("No WRPLLs available!\n");
return false;
}
WARN(I915_READ(reg) & WRPLL_PLL_ENABLE,
"WRPLL already enabled\n");
intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
WRPLL_DIVIDER_POST(p);
} else if (type == INTEL_OUTPUT_ANALOG) {
if (plls->spll_refcount == 0) {
DRM_DEBUG_KMS("Using SPLL on pipe %c\n",
pipe_name(pipe));
plls->spll_refcount++;
reg = SPLL_CTL;
intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL;
} else {
DRM_ERROR("SPLL already in use\n");
return false;
}
WARN(I915_READ(reg) & SPLL_PLL_ENABLE,
"SPLL already enabled\n");
val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
} else {
WARN(1, "Invalid DDI encoder type %d\n", type);
return false;
}
I915_WRITE(reg, val);
udelay(20);
return true;
}
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
int type = intel_encoder->type;
uint32_t temp;
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
temp = TRANS_MSA_SYNC_CLK;
switch (intel_crtc->config.pipe_bpp) {
case 18:
temp |= TRANS_MSA_6_BPC;
break;
case 24:
temp |= TRANS_MSA_8_BPC;
break;
case 30:
temp |= TRANS_MSA_10_BPC;
break;
case 36:
temp |= TRANS_MSA_12_BPC;
break;
default:
BUG();
}
I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
}
}
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
uint32_t temp;
/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
temp = TRANS_DDI_FUNC_ENABLE;
temp |= TRANS_DDI_SELECT_PORT(port);
switch (intel_crtc->config.pipe_bpp) {
case 18:
temp |= TRANS_DDI_BPC_6;
break;
case 24:
temp |= TRANS_DDI_BPC_8;
break;
case 30:
temp |= TRANS_DDI_BPC_10;
break;
case 36:
temp |= TRANS_DDI_BPC_12;
break;
default:
BUG();
}
if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DDI_PVSYNC;
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DDI_PHSYNC;
if (cpu_transcoder == TRANSCODER_EDP) {
switch (pipe) {
case PIPE_A:
/* Can only use the always-on power well for eDP when
* not using the panel fitter, and when not using motion
* blur mitigation (which we don't support). */
if (intel_crtc->config.pch_pfit.size)
temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
else
temp |= TRANS_DDI_EDP_INPUT_A_ON;
break;
case PIPE_B:
temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
break;
case PIPE_C:
temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
break;
default:
BUG();
break;
}
}
if (type == INTEL_OUTPUT_HDMI) {
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
if (intel_hdmi->has_hdmi_sink)
temp |= TRANS_DDI_MODE_SELECT_HDMI;
else
temp |= TRANS_DDI_MODE_SELECT_DVI;
} else if (type == INTEL_OUTPUT_ANALOG) {
temp |= TRANS_DDI_MODE_SELECT_FDI;
temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
} else {
WARN(1, "Invalid encoder type %d for pipe %c\n",
intel_encoder->type, pipe_name(pipe));
}
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
uint32_t val = I915_READ(reg);
val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK);
val |= TRANS_DDI_PORT_NONE;
I915_WRITE(reg, val);
}
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
struct drm_device *dev = intel_connector->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder = intel_connector->encoder;
int type = intel_connector->base.connector_type;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
enum pipe pipe = 0;
enum transcoder cpu_transcoder;
uint32_t tmp;
if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
return false;
if (port == PORT_A)
cpu_transcoder = TRANSCODER_EDP;
else
cpu_transcoder = (enum transcoder) pipe;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
case TRANS_DDI_MODE_SELECT_DVI:
return (type == DRM_MODE_CONNECTOR_HDMIA);
case TRANS_DDI_MODE_SELECT_DP_SST:
if (type == DRM_MODE_CONNECTOR_eDP)
return true;
case TRANS_DDI_MODE_SELECT_DP_MST:
return (type == DRM_MODE_CONNECTOR_DisplayPort);
case TRANS_DDI_MODE_SELECT_FDI:
return (type == DRM_MODE_CONNECTOR_VGA);
default:
return false;
}
}
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_ddi_get_encoder_port(encoder);
u32 tmp;
int i;
tmp = I915_READ(DDI_BUF_CTL(port));
if (!(tmp & DDI_BUF_CTL_ENABLE))
return false;
if (port == PORT_A) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
case TRANS_DDI_EDP_INPUT_A_ON:
case TRANS_DDI_EDP_INPUT_A_ONOFF:
*pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
*pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
*pipe = PIPE_C;
break;
}
return true;
} else {
for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
if ((tmp & TRANS_DDI_PORT_MASK)
== TRANS_DDI_SELECT_PORT(port)) {
*pipe = i;
return true;
}
}
}
DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
return false;
}
static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
uint32_t temp, ret;
enum port port = I915_MAX_PORTS;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
int i;
if (cpu_transcoder == TRANSCODER_EDP) {
port = PORT_A;
} else {
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
temp &= TRANS_DDI_PORT_MASK;
for (i = PORT_B; i <= PORT_E; i++)
if (temp == TRANS_DDI_SELECT_PORT(i))
port = i;
}
if (port == I915_MAX_PORTS) {
WARN(1, "Pipe %c enabled on an unknown port\n",
pipe_name(pipe));
ret = PORT_CLK_SEL_NONE;
} else {
ret = I915_READ(PORT_CLK_SEL(port));
DRM_DEBUG_KMS("Pipe %c connected to port %c using clock "
"0x%08x\n", pipe_name(pipe), port_name(port),
ret);
}
return ret;
}
void intel_ddi_setup_hw_pll_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
struct intel_crtc *intel_crtc;
for_each_pipe(pipe) {
intel_crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
if (!intel_crtc->active)
continue;
intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv,
pipe);
switch (intel_crtc->ddi_pll_sel) {
case PORT_CLK_SEL_SPLL:
dev_priv->ddi_plls.spll_refcount++;
break;
case PORT_CLK_SEL_WRPLL1:
dev_priv->ddi_plls.wrpll1_refcount++;
break;
case PORT_CLK_SEL_WRPLL2:
dev_priv->ddi_plls.wrpll2_refcount++;
break;
}
}
}
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
struct drm_crtc *crtc = &intel_crtc->base;
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_PORT(port));
}
void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_DISABLED);
}
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
ironlake_edp_panel_vdd_on(intel_dp);
ironlake_edp_panel_on(intel_dp);
ironlake_edp_panel_vdd_off(intel_dp, true);
}
WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE);
I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel);
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
intel_dp_complete_link_train(intel_dp);
if (port != PORT_A)
intel_dp_stop_link_train(intel_dp);
}
}
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
uint32_t val;
bool wait = false;
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
ironlake_edp_panel_vdd_on(intel_dp);
ironlake_edp_panel_off(intel_dp);
}
I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
}
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
uint32_t tmp;
if (type == INTEL_OUTPUT_HDMI) {
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(encoder);
/* In HDMI/DVI mode, the port width, and swing/emphasis values
* are ignored so nothing special needs to be done besides
* enabling the port.
*/
I915_WRITE(DDI_BUF_CTL(port),
intel_dig_port->port_reversal | DDI_BUF_CTL_ENABLE);
} else if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (port == PORT_A)
intel_dp_stop_link_train(intel_dp);
ironlake_edp_backlight_on(intel_dp);
}
if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
}
}
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int type = intel_encoder->type;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
(pipe * 4));
I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
}
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
ironlake_edp_backlight_off(intel_dp);
}
}
int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
{
if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT)
return 450000;
else if ((I915_READ(LCPLL_CTL) & LCPLL_CLK_FREQ_MASK) ==
LCPLL_CLK_FREQ_450)
return 450000;
else if (IS_ULT(dev_priv->dev))
return 337500;
else
return 540000;
}
void intel_ddi_pll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val = I915_READ(LCPLL_CTL);
/* The LCPLL register should be turned on by the BIOS. For now let's
* just check its state and print errors in case something is wrong.
* Don't even try to turn it on.
*/
DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
intel_ddi_get_cdclk_freq(dev_priv));
if (val & LCPLL_CD_SOURCE_FCLK)
DRM_ERROR("CDCLK source is not LCPLL\n");
if (val & LCPLL_PLL_DISABLE)
DRM_ERROR("LCPLL is disabled\n");
}
void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
enum port port = intel_dig_port->port;
uint32_t val;
bool wait = false;
if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
}
val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST |
DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
intel_dp->DP |= DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
POSTING_READ(DDI_BUF_CTL(port));
udelay(600);
}
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
uint32_t val;
intel_ddi_post_disable(intel_encoder);
val = I915_READ(_FDI_RXA_CTL);
val &= ~FDI_RX_ENABLE;
I915_WRITE(_FDI_RXA_CTL, val);
val = I915_READ(_FDI_RXA_MISC);
val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(_FDI_RXA_MISC, val);
val = I915_READ(_FDI_RXA_CTL);
val &= ~FDI_PCDCLK;
I915_WRITE(_FDI_RXA_CTL, val);
val = I915_READ(_FDI_RXA_CTL);
val &= ~FDI_RX_PLL_ENABLE;
I915_WRITE(_FDI_RXA_CTL, val);
}
static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP)
intel_dp_check_link_status(intel_dp);
}
static void intel_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_config *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
u32 temp, flags = 0;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (temp & TRANS_DDI_PHSYNC)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (temp & TRANS_DDI_PVSYNC)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
pipe_config->adjusted_mode.flags |= flags;
}
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
/* HDMI has nothing special to destroy, so we can go with this. */
intel_dp_encoder_destroy(encoder);
}
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_config *pipe_config)
{
int type = encoder->type;
int port = intel_ddi_get_encoder_port(encoder);
WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
if (port == PORT_A)
pipe_config->cpu_transcoder = TRANSCODER_EDP;
if (type == INTEL_OUTPUT_HDMI)
return intel_hdmi_compute_config(encoder, pipe_config);
else
return intel_dp_compute_config(encoder, pipe_config);
}
static const struct drm_encoder_funcs intel_ddi_funcs = {
.destroy = intel_ddi_destroy,
};
static const struct drm_encoder_helper_funcs intel_ddi_helper_funcs = {
.mode_set = intel_ddi_mode_set,
};
void intel_ddi_init(struct drm_device *dev, enum port port)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
struct intel_connector *hdmi_connector = NULL;
struct intel_connector *dp_connector = NULL;
intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
if (!intel_dig_port)
return;
dp_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
if (!dp_connector) {
kfree(intel_dig_port);
return;
}
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
drm_encoder_init(dev, encoder, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(encoder, &intel_ddi_helper_funcs);
intel_encoder->compute_config = intel_ddi_compute_config;
intel_encoder->enable = intel_enable_ddi;
intel_encoder->pre_enable = intel_ddi_pre_enable;
intel_encoder->disable = intel_disable_ddi;
intel_encoder->post_disable = intel_ddi_post_disable;
intel_encoder->get_hw_state = intel_ddi_get_hw_state;
intel_encoder->get_config = intel_ddi_get_config;
intel_dig_port->port = port;
intel_dig_port->port_reversal = I915_READ(DDI_BUF_CTL(port)) &
DDI_BUF_PORT_REVERSAL;
intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
intel_encoder->cloneable = false;
intel_encoder->hot_plug = intel_ddi_hot_plug;
if (!intel_dp_init_connector(intel_dig_port, dp_connector)) {
drm_encoder_cleanup(encoder);
kfree(intel_dig_port);
kfree(dp_connector);
return;
}
if (intel_encoder->type != INTEL_OUTPUT_EDP) {
hdmi_connector = kzalloc(sizeof(struct intel_connector),
GFP_KERNEL);
if (!hdmi_connector) {
return;
}
intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
intel_hdmi_init_connector(intel_dig_port, hdmi_connector);
}
}