linux_dsm_epyc7002/drivers/iio/adc/ad7793.c
Alexandru Ardelean 1cfe38fc40 iio: adc: ad7793: use read_avail iio hook for scale available
This change uses the read_avail and '.info_mask_shared_by_type_available'
modifier to set the available scale.
Essentially, nothing changes to the driver's ABI.

The main idea for this patch is to remove the AD7793 driver from
checkpatch's radar. There have been about ~3 attempts to fix/break the
'in_voltage-voltage_scale_available' attribute, because checkpatch assumed
it to be an arithmetic operation and people were trying to change that.

Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2020-04-19 16:56:15 +01:00

894 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AD7785/AD7792/AD7793/AD7794/AD7795 SPI ADC driver
*
* Copyright 2011-2012 Analog Devices Inc.
*/
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/regulator/consumer.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/adc/ad_sigma_delta.h>
#include <linux/platform_data/ad7793.h>
/* Registers */
#define AD7793_REG_COMM 0 /* Communications Register (WO, 8-bit) */
#define AD7793_REG_STAT 0 /* Status Register (RO, 8-bit) */
#define AD7793_REG_MODE 1 /* Mode Register (RW, 16-bit */
#define AD7793_REG_CONF 2 /* Configuration Register (RW, 16-bit) */
#define AD7793_REG_DATA 3 /* Data Register (RO, 16-/24-bit) */
#define AD7793_REG_ID 4 /* ID Register (RO, 8-bit) */
#define AD7793_REG_IO 5 /* IO Register (RO, 8-bit) */
#define AD7793_REG_OFFSET 6 /* Offset Register (RW, 16-bit
* (AD7792)/24-bit (AD7793)) */
#define AD7793_REG_FULLSALE 7 /* Full-Scale Register
* (RW, 16-bit (AD7792)/24-bit (AD7793)) */
/* Communications Register Bit Designations (AD7793_REG_COMM) */
#define AD7793_COMM_WEN (1 << 7) /* Write Enable */
#define AD7793_COMM_WRITE (0 << 6) /* Write Operation */
#define AD7793_COMM_READ (1 << 6) /* Read Operation */
#define AD7793_COMM_ADDR(x) (((x) & 0x7) << 3) /* Register Address */
#define AD7793_COMM_CREAD (1 << 2) /* Continuous Read of Data Register */
/* Status Register Bit Designations (AD7793_REG_STAT) */
#define AD7793_STAT_RDY (1 << 7) /* Ready */
#define AD7793_STAT_ERR (1 << 6) /* Error (Overrange, Underrange) */
#define AD7793_STAT_CH3 (1 << 2) /* Channel 3 */
#define AD7793_STAT_CH2 (1 << 1) /* Channel 2 */
#define AD7793_STAT_CH1 (1 << 0) /* Channel 1 */
/* Mode Register Bit Designations (AD7793_REG_MODE) */
#define AD7793_MODE_SEL(x) (((x) & 0x7) << 13) /* Operation Mode Select */
#define AD7793_MODE_SEL_MASK (0x7 << 13) /* Operation Mode Select mask */
#define AD7793_MODE_CLKSRC(x) (((x) & 0x3) << 6) /* ADC Clock Source Select */
#define AD7793_MODE_RATE(x) ((x) & 0xF) /* Filter Update Rate Select */
#define AD7793_MODE_CONT 0 /* Continuous Conversion Mode */
#define AD7793_MODE_SINGLE 1 /* Single Conversion Mode */
#define AD7793_MODE_IDLE 2 /* Idle Mode */
#define AD7793_MODE_PWRDN 3 /* Power-Down Mode */
#define AD7793_MODE_CAL_INT_ZERO 4 /* Internal Zero-Scale Calibration */
#define AD7793_MODE_CAL_INT_FULL 5 /* Internal Full-Scale Calibration */
#define AD7793_MODE_CAL_SYS_ZERO 6 /* System Zero-Scale Calibration */
#define AD7793_MODE_CAL_SYS_FULL 7 /* System Full-Scale Calibration */
#define AD7793_CLK_INT 0 /* Internal 64 kHz Clock not
* available at the CLK pin */
#define AD7793_CLK_INT_CO 1 /* Internal 64 kHz Clock available
* at the CLK pin */
#define AD7793_CLK_EXT 2 /* External 64 kHz Clock */
#define AD7793_CLK_EXT_DIV2 3 /* External Clock divided by 2 */
/* Configuration Register Bit Designations (AD7793_REG_CONF) */
#define AD7793_CONF_VBIAS(x) (((x) & 0x3) << 14) /* Bias Voltage
* Generator Enable */
#define AD7793_CONF_BO_EN (1 << 13) /* Burnout Current Enable */
#define AD7793_CONF_UNIPOLAR (1 << 12) /* Unipolar/Bipolar Enable */
#define AD7793_CONF_BOOST (1 << 11) /* Boost Enable */
#define AD7793_CONF_GAIN(x) (((x) & 0x7) << 8) /* Gain Select */
#define AD7793_CONF_REFSEL(x) ((x) << 6) /* INT/EXT Reference Select */
#define AD7793_CONF_BUF (1 << 4) /* Buffered Mode Enable */
#define AD7793_CONF_CHAN(x) ((x) & 0xf) /* Channel select */
#define AD7793_CONF_CHAN_MASK 0xf /* Channel select mask */
#define AD7793_CH_AIN1P_AIN1M 0 /* AIN1(+) - AIN1(-) */
#define AD7793_CH_AIN2P_AIN2M 1 /* AIN2(+) - AIN2(-) */
#define AD7793_CH_AIN3P_AIN3M 2 /* AIN3(+) - AIN3(-) */
#define AD7793_CH_AIN1M_AIN1M 3 /* AIN1(-) - AIN1(-) */
#define AD7793_CH_TEMP 6 /* Temp Sensor */
#define AD7793_CH_AVDD_MONITOR 7 /* AVDD Monitor */
#define AD7795_CH_AIN4P_AIN4M 4 /* AIN4(+) - AIN4(-) */
#define AD7795_CH_AIN5P_AIN5M 5 /* AIN5(+) - AIN5(-) */
#define AD7795_CH_AIN6P_AIN6M 6 /* AIN6(+) - AIN6(-) */
#define AD7795_CH_AIN1M_AIN1M 8 /* AIN1(-) - AIN1(-) */
/* ID Register Bit Designations (AD7793_REG_ID) */
#define AD7785_ID 0x3
#define AD7792_ID 0xA
#define AD7793_ID 0xB
#define AD7794_ID 0xF
#define AD7795_ID 0xF
#define AD7796_ID 0xA
#define AD7797_ID 0xB
#define AD7798_ID 0x8
#define AD7799_ID 0x9
#define AD7793_ID_MASK 0xF
/* IO (Excitation Current Sources) Register Bit Designations (AD7793_REG_IO) */
#define AD7793_IO_IEXC1_IOUT1_IEXC2_IOUT2 0 /* IEXC1 connect to IOUT1,
* IEXC2 connect to IOUT2 */
#define AD7793_IO_IEXC1_IOUT2_IEXC2_IOUT1 1 /* IEXC1 connect to IOUT2,
* IEXC2 connect to IOUT1 */
#define AD7793_IO_IEXC1_IEXC2_IOUT1 2 /* Both current sources
* IEXC1,2 connect to IOUT1 */
#define AD7793_IO_IEXC1_IEXC2_IOUT2 3 /* Both current sources
* IEXC1,2 connect to IOUT2 */
#define AD7793_IO_IXCEN_10uA (1 << 0) /* Excitation Current 10uA */
#define AD7793_IO_IXCEN_210uA (2 << 0) /* Excitation Current 210uA */
#define AD7793_IO_IXCEN_1mA (3 << 0) /* Excitation Current 1mA */
/* NOTE:
* The AD7792/AD7793 features a dual use data out ready DOUT/RDY output.
* In order to avoid contentions on the SPI bus, it's therefore necessary
* to use spi bus locking.
*
* The DOUT/RDY output must also be wired to an interrupt capable GPIO.
*/
#define AD7793_FLAG_HAS_CLKSEL BIT(0)
#define AD7793_FLAG_HAS_REFSEL BIT(1)
#define AD7793_FLAG_HAS_VBIAS BIT(2)
#define AD7793_HAS_EXITATION_CURRENT BIT(3)
#define AD7793_FLAG_HAS_GAIN BIT(4)
#define AD7793_FLAG_HAS_BUFFER BIT(5)
struct ad7793_chip_info {
unsigned int id;
const struct iio_chan_spec *channels;
unsigned int num_channels;
unsigned int flags;
const struct iio_info *iio_info;
const u16 *sample_freq_avail;
};
struct ad7793_state {
const struct ad7793_chip_info *chip_info;
struct regulator *reg;
u16 int_vref_mv;
u16 mode;
u16 conf;
u32 scale_avail[8][2];
struct ad_sigma_delta sd;
};
enum ad7793_supported_device_ids {
ID_AD7785,
ID_AD7792,
ID_AD7793,
ID_AD7794,
ID_AD7795,
ID_AD7796,
ID_AD7797,
ID_AD7798,
ID_AD7799,
};
static struct ad7793_state *ad_sigma_delta_to_ad7793(struct ad_sigma_delta *sd)
{
return container_of(sd, struct ad7793_state, sd);
}
static int ad7793_set_channel(struct ad_sigma_delta *sd, unsigned int channel)
{
struct ad7793_state *st = ad_sigma_delta_to_ad7793(sd);
st->conf &= ~AD7793_CONF_CHAN_MASK;
st->conf |= AD7793_CONF_CHAN(channel);
return ad_sd_write_reg(&st->sd, AD7793_REG_CONF, 2, st->conf);
}
static int ad7793_set_mode(struct ad_sigma_delta *sd,
enum ad_sigma_delta_mode mode)
{
struct ad7793_state *st = ad_sigma_delta_to_ad7793(sd);
st->mode &= ~AD7793_MODE_SEL_MASK;
st->mode |= AD7793_MODE_SEL(mode);
return ad_sd_write_reg(&st->sd, AD7793_REG_MODE, 2, st->mode);
}
static const struct ad_sigma_delta_info ad7793_sigma_delta_info = {
.set_channel = ad7793_set_channel,
.set_mode = ad7793_set_mode,
.has_registers = true,
.addr_shift = 3,
.read_mask = BIT(6),
.irq_flags = IRQF_TRIGGER_LOW,
};
static const struct ad_sd_calib_data ad7793_calib_arr[6] = {
{AD7793_MODE_CAL_INT_ZERO, AD7793_CH_AIN1P_AIN1M},
{AD7793_MODE_CAL_INT_FULL, AD7793_CH_AIN1P_AIN1M},
{AD7793_MODE_CAL_INT_ZERO, AD7793_CH_AIN2P_AIN2M},
{AD7793_MODE_CAL_INT_FULL, AD7793_CH_AIN2P_AIN2M},
{AD7793_MODE_CAL_INT_ZERO, AD7793_CH_AIN3P_AIN3M},
{AD7793_MODE_CAL_INT_FULL, AD7793_CH_AIN3P_AIN3M}
};
static int ad7793_calibrate_all(struct ad7793_state *st)
{
return ad_sd_calibrate_all(&st->sd, ad7793_calib_arr,
ARRAY_SIZE(ad7793_calib_arr));
}
static int ad7793_check_platform_data(struct ad7793_state *st,
const struct ad7793_platform_data *pdata)
{
if ((pdata->current_source_direction == AD7793_IEXEC1_IEXEC2_IOUT1 ||
pdata->current_source_direction == AD7793_IEXEC1_IEXEC2_IOUT2) &&
((pdata->exitation_current != AD7793_IX_10uA) &&
(pdata->exitation_current != AD7793_IX_210uA)))
return -EINVAL;
if (!(st->chip_info->flags & AD7793_FLAG_HAS_CLKSEL) &&
pdata->clock_src != AD7793_CLK_SRC_INT)
return -EINVAL;
if (!(st->chip_info->flags & AD7793_FLAG_HAS_REFSEL) &&
pdata->refsel != AD7793_REFSEL_REFIN1)
return -EINVAL;
if (!(st->chip_info->flags & AD7793_FLAG_HAS_VBIAS) &&
pdata->bias_voltage != AD7793_BIAS_VOLTAGE_DISABLED)
return -EINVAL;
if (!(st->chip_info->flags & AD7793_HAS_EXITATION_CURRENT) &&
pdata->exitation_current != AD7793_IX_DISABLED)
return -EINVAL;
return 0;
}
static int ad7793_setup(struct iio_dev *indio_dev,
const struct ad7793_platform_data *pdata,
unsigned int vref_mv)
{
struct ad7793_state *st = iio_priv(indio_dev);
int i, ret;
unsigned long long scale_uv;
u32 id;
ret = ad7793_check_platform_data(st, pdata);
if (ret)
return ret;
/* reset the serial interface */
ret = ad_sd_reset(&st->sd, 32);
if (ret < 0)
goto out;
usleep_range(500, 2000); /* Wait for at least 500us */
/* write/read test for device presence */
ret = ad_sd_read_reg(&st->sd, AD7793_REG_ID, 1, &id);
if (ret)
goto out;
id &= AD7793_ID_MASK;
if (id != st->chip_info->id) {
dev_err(&st->sd.spi->dev, "device ID query failed\n");
goto out;
}
st->mode = AD7793_MODE_RATE(1);
st->conf = 0;
if (st->chip_info->flags & AD7793_FLAG_HAS_CLKSEL)
st->mode |= AD7793_MODE_CLKSRC(pdata->clock_src);
if (st->chip_info->flags & AD7793_FLAG_HAS_REFSEL)
st->conf |= AD7793_CONF_REFSEL(pdata->refsel);
if (st->chip_info->flags & AD7793_FLAG_HAS_VBIAS)
st->conf |= AD7793_CONF_VBIAS(pdata->bias_voltage);
if (pdata->buffered || !(st->chip_info->flags & AD7793_FLAG_HAS_BUFFER))
st->conf |= AD7793_CONF_BUF;
if (pdata->boost_enable &&
(st->chip_info->flags & AD7793_FLAG_HAS_VBIAS))
st->conf |= AD7793_CONF_BOOST;
if (pdata->burnout_current)
st->conf |= AD7793_CONF_BO_EN;
if (pdata->unipolar)
st->conf |= AD7793_CONF_UNIPOLAR;
if (!(st->chip_info->flags & AD7793_FLAG_HAS_GAIN))
st->conf |= AD7793_CONF_GAIN(7);
ret = ad7793_set_mode(&st->sd, AD_SD_MODE_IDLE);
if (ret)
goto out;
ret = ad7793_set_channel(&st->sd, 0);
if (ret)
goto out;
if (st->chip_info->flags & AD7793_HAS_EXITATION_CURRENT) {
ret = ad_sd_write_reg(&st->sd, AD7793_REG_IO, 1,
pdata->exitation_current |
(pdata->current_source_direction << 2));
if (ret)
goto out;
}
ret = ad7793_calibrate_all(st);
if (ret)
goto out;
/* Populate available ADC input ranges */
for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) {
scale_uv = ((u64)vref_mv * 100000000)
>> (st->chip_info->channels[0].scan_type.realbits -
(!!(st->conf & AD7793_CONF_UNIPOLAR) ? 0 : 1));
scale_uv >>= i;
st->scale_avail[i][1] = do_div(scale_uv, 100000000) * 10;
st->scale_avail[i][0] = scale_uv;
}
return 0;
out:
dev_err(&st->sd.spi->dev, "setup failed\n");
return ret;
}
static const u16 ad7793_sample_freq_avail[16] = {0, 470, 242, 123, 62, 50, 39,
33, 19, 17, 16, 12, 10, 8, 6, 4};
static const u16 ad7797_sample_freq_avail[16] = {0, 0, 0, 123, 62, 50, 0,
33, 0, 17, 16, 12, 10, 8, 6, 4};
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
"470 242 123 62 50 39 33 19 17 16 12 10 8 6 4");
static IIO_CONST_ATTR_NAMED(sampling_frequency_available_ad7797,
sampling_frequency_available, "123 62 50 33 17 16 12 10 8 6 4");
static int ad7793_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct ad7793_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
*vals = (int *)st->scale_avail;
*type = IIO_VAL_INT_PLUS_NANO;
/* Values are stored in a 2D matrix */
*length = ARRAY_SIZE(st->scale_avail) * 2;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static struct attribute *ad7793_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL
};
static const struct attribute_group ad7793_attribute_group = {
.attrs = ad7793_attributes,
};
static struct attribute *ad7797_attributes[] = {
&iio_const_attr_sampling_frequency_available_ad7797.dev_attr.attr,
NULL
};
static const struct attribute_group ad7797_attribute_group = {
.attrs = ad7797_attributes,
};
static int ad7793_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad7793_state *st = iio_priv(indio_dev);
int ret;
unsigned long long scale_uv;
bool unipolar = !!(st->conf & AD7793_CONF_UNIPOLAR);
switch (m) {
case IIO_CHAN_INFO_RAW:
ret = ad_sigma_delta_single_conversion(indio_dev, chan, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_VOLTAGE:
if (chan->differential) {
*val = st->
scale_avail[(st->conf >> 8) & 0x7][0];
*val2 = st->
scale_avail[(st->conf >> 8) & 0x7][1];
return IIO_VAL_INT_PLUS_NANO;
}
/* 1170mV / 2^23 * 6 */
scale_uv = (1170ULL * 1000000000ULL * 6ULL);
break;
case IIO_TEMP:
/* 1170mV / 0.81 mV/C / 2^23 */
scale_uv = 1444444444444444ULL;
break;
default:
return -EINVAL;
}
scale_uv >>= (chan->scan_type.realbits - (unipolar ? 0 : 1));
*val = 0;
*val2 = scale_uv;
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_OFFSET:
if (!unipolar)
*val = -(1 << (chan->scan_type.realbits - 1));
else
*val = 0;
/* Kelvin to Celsius */
if (chan->type == IIO_TEMP) {
unsigned long long offset;
unsigned int shift;
shift = chan->scan_type.realbits - (unipolar ? 0 : 1);
offset = 273ULL << shift;
do_div(offset, 1444);
*val -= offset;
}
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = st->chip_info
->sample_freq_avail[AD7793_MODE_RATE(st->mode)];
return IIO_VAL_INT;
}
return -EINVAL;
}
static int ad7793_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct ad7793_state *st = iio_priv(indio_dev);
int ret, i;
unsigned int tmp;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
if (val2 == st->scale_avail[i][1]) {
ret = 0;
tmp = st->conf;
st->conf &= ~AD7793_CONF_GAIN(-1);
st->conf |= AD7793_CONF_GAIN(i);
if (tmp == st->conf)
break;
ad_sd_write_reg(&st->sd, AD7793_REG_CONF,
sizeof(st->conf), st->conf);
ad7793_calibrate_all(st);
break;
}
break;
case IIO_CHAN_INFO_SAMP_FREQ:
if (!val) {
ret = -EINVAL;
break;
}
for (i = 0; i < 16; i++)
if (val == st->chip_info->sample_freq_avail[i])
break;
if (i == 16) {
ret = -EINVAL;
break;
}
st->mode &= ~AD7793_MODE_RATE(-1);
st->mode |= AD7793_MODE_RATE(i);
ad_sd_write_reg(&st->sd, AD7793_REG_MODE, sizeof(st->mode),
st->mode);
break;
default:
ret = -EINVAL;
}
iio_device_release_direct_mode(indio_dev);
return ret;
}
static int ad7793_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
return IIO_VAL_INT_PLUS_NANO;
}
static const struct iio_info ad7793_info = {
.read_raw = &ad7793_read_raw,
.write_raw = &ad7793_write_raw,
.write_raw_get_fmt = &ad7793_write_raw_get_fmt,
.read_avail = ad7793_read_avail,
.attrs = &ad7793_attribute_group,
.validate_trigger = ad_sd_validate_trigger,
};
static const struct iio_info ad7797_info = {
.read_raw = &ad7793_read_raw,
.write_raw = &ad7793_write_raw,
.write_raw_get_fmt = &ad7793_write_raw_get_fmt,
.attrs = &ad7793_attribute_group,
.validate_trigger = ad_sd_validate_trigger,
};
#define __AD7793_CHANNEL(_si, _channel1, _channel2, _address, _bits, \
_storagebits, _shift, _extend_name, _type, _mask_type_av, _mask_all) \
{ \
.type = (_type), \
.differential = (_channel2 == -1 ? 0 : 1), \
.indexed = 1, \
.channel = (_channel1), \
.channel2 = (_channel2), \
.address = (_address), \
.extend_name = (_extend_name), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_OFFSET), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_type_available = (_mask_type_av), \
.info_mask_shared_by_all = _mask_all, \
.scan_index = (_si), \
.scan_type = { \
.sign = 'u', \
.realbits = (_bits), \
.storagebits = (_storagebits), \
.shift = (_shift), \
.endianness = IIO_BE, \
}, \
}
#define AD7793_DIFF_CHANNEL(_si, _channel1, _channel2, _address, _bits, \
_storagebits, _shift) \
__AD7793_CHANNEL(_si, _channel1, _channel2, _address, _bits, \
_storagebits, _shift, NULL, IIO_VOLTAGE, \
BIT(IIO_CHAN_INFO_SCALE), \
BIT(IIO_CHAN_INFO_SAMP_FREQ))
#define AD7793_SHORTED_CHANNEL(_si, _channel, _address, _bits, \
_storagebits, _shift) \
__AD7793_CHANNEL(_si, _channel, _channel, _address, _bits, \
_storagebits, _shift, "shorted", IIO_VOLTAGE, \
BIT(IIO_CHAN_INFO_SCALE), \
BIT(IIO_CHAN_INFO_SAMP_FREQ))
#define AD7793_TEMP_CHANNEL(_si, _address, _bits, _storagebits, _shift) \
__AD7793_CHANNEL(_si, 0, -1, _address, _bits, \
_storagebits, _shift, NULL, IIO_TEMP, \
0, \
BIT(IIO_CHAN_INFO_SAMP_FREQ))
#define AD7793_SUPPLY_CHANNEL(_si, _channel, _address, _bits, _storagebits, \
_shift) \
__AD7793_CHANNEL(_si, _channel, -1, _address, _bits, \
_storagebits, _shift, "supply", IIO_VOLTAGE, \
0, \
BIT(IIO_CHAN_INFO_SAMP_FREQ))
#define AD7797_DIFF_CHANNEL(_si, _channel1, _channel2, _address, _bits, \
_storagebits, _shift) \
__AD7793_CHANNEL(_si, _channel1, _channel2, _address, _bits, \
_storagebits, _shift, NULL, IIO_VOLTAGE, \
0, \
BIT(IIO_CHAN_INFO_SAMP_FREQ))
#define AD7797_SHORTED_CHANNEL(_si, _channel, _address, _bits, \
_storagebits, _shift) \
__AD7793_CHANNEL(_si, _channel, _channel, _address, _bits, \
_storagebits, _shift, "shorted", IIO_VOLTAGE, \
0, \
BIT(IIO_CHAN_INFO_SAMP_FREQ))
#define DECLARE_AD7793_CHANNELS(_name, _b, _sb, _s) \
const struct iio_chan_spec _name##_channels[] = { \
AD7793_DIFF_CHANNEL(0, 0, 0, AD7793_CH_AIN1P_AIN1M, (_b), (_sb), (_s)), \
AD7793_DIFF_CHANNEL(1, 1, 1, AD7793_CH_AIN2P_AIN2M, (_b), (_sb), (_s)), \
AD7793_DIFF_CHANNEL(2, 2, 2, AD7793_CH_AIN3P_AIN3M, (_b), (_sb), (_s)), \
AD7793_SHORTED_CHANNEL(3, 0, AD7793_CH_AIN1M_AIN1M, (_b), (_sb), (_s)), \
AD7793_TEMP_CHANNEL(4, AD7793_CH_TEMP, (_b), (_sb), (_s)), \
AD7793_SUPPLY_CHANNEL(5, 3, AD7793_CH_AVDD_MONITOR, (_b), (_sb), (_s)), \
IIO_CHAN_SOFT_TIMESTAMP(6), \
}
#define DECLARE_AD7795_CHANNELS(_name, _b, _sb) \
const struct iio_chan_spec _name##_channels[] = { \
AD7793_DIFF_CHANNEL(0, 0, 0, AD7793_CH_AIN1P_AIN1M, (_b), (_sb), 0), \
AD7793_DIFF_CHANNEL(1, 1, 1, AD7793_CH_AIN2P_AIN2M, (_b), (_sb), 0), \
AD7793_DIFF_CHANNEL(2, 2, 2, AD7793_CH_AIN3P_AIN3M, (_b), (_sb), 0), \
AD7793_DIFF_CHANNEL(3, 3, 3, AD7795_CH_AIN4P_AIN4M, (_b), (_sb), 0), \
AD7793_DIFF_CHANNEL(4, 4, 4, AD7795_CH_AIN5P_AIN5M, (_b), (_sb), 0), \
AD7793_DIFF_CHANNEL(5, 5, 5, AD7795_CH_AIN6P_AIN6M, (_b), (_sb), 0), \
AD7793_SHORTED_CHANNEL(6, 0, AD7795_CH_AIN1M_AIN1M, (_b), (_sb), 0), \
AD7793_TEMP_CHANNEL(7, AD7793_CH_TEMP, (_b), (_sb), 0), \
AD7793_SUPPLY_CHANNEL(8, 3, AD7793_CH_AVDD_MONITOR, (_b), (_sb), 0), \
IIO_CHAN_SOFT_TIMESTAMP(9), \
}
#define DECLARE_AD7797_CHANNELS(_name, _b, _sb) \
const struct iio_chan_spec _name##_channels[] = { \
AD7797_DIFF_CHANNEL(0, 0, 0, AD7793_CH_AIN1P_AIN1M, (_b), (_sb), 0), \
AD7797_SHORTED_CHANNEL(1, 0, AD7793_CH_AIN1M_AIN1M, (_b), (_sb), 0), \
AD7793_TEMP_CHANNEL(2, AD7793_CH_TEMP, (_b), (_sb), 0), \
AD7793_SUPPLY_CHANNEL(3, 3, AD7793_CH_AVDD_MONITOR, (_b), (_sb), 0), \
IIO_CHAN_SOFT_TIMESTAMP(4), \
}
#define DECLARE_AD7799_CHANNELS(_name, _b, _sb) \
const struct iio_chan_spec _name##_channels[] = { \
AD7793_DIFF_CHANNEL(0, 0, 0, AD7793_CH_AIN1P_AIN1M, (_b), (_sb), 0), \
AD7793_DIFF_CHANNEL(1, 1, 1, AD7793_CH_AIN2P_AIN2M, (_b), (_sb), 0), \
AD7793_DIFF_CHANNEL(2, 2, 2, AD7793_CH_AIN3P_AIN3M, (_b), (_sb), 0), \
AD7793_SHORTED_CHANNEL(3, 0, AD7793_CH_AIN1M_AIN1M, (_b), (_sb), 0), \
AD7793_SUPPLY_CHANNEL(4, 3, AD7793_CH_AVDD_MONITOR, (_b), (_sb), 0), \
IIO_CHAN_SOFT_TIMESTAMP(5), \
}
static DECLARE_AD7793_CHANNELS(ad7785, 20, 32, 4);
static DECLARE_AD7793_CHANNELS(ad7792, 16, 32, 0);
static DECLARE_AD7793_CHANNELS(ad7793, 24, 32, 0);
static DECLARE_AD7795_CHANNELS(ad7794, 16, 32);
static DECLARE_AD7795_CHANNELS(ad7795, 24, 32);
static DECLARE_AD7797_CHANNELS(ad7796, 16, 16);
static DECLARE_AD7797_CHANNELS(ad7797, 24, 32);
static DECLARE_AD7799_CHANNELS(ad7798, 16, 16);
static DECLARE_AD7799_CHANNELS(ad7799, 24, 32);
static const struct ad7793_chip_info ad7793_chip_info_tbl[] = {
[ID_AD7785] = {
.id = AD7785_ID,
.channels = ad7785_channels,
.num_channels = ARRAY_SIZE(ad7785_channels),
.iio_info = &ad7793_info,
.sample_freq_avail = ad7793_sample_freq_avail,
.flags = AD7793_FLAG_HAS_CLKSEL |
AD7793_FLAG_HAS_REFSEL |
AD7793_FLAG_HAS_VBIAS |
AD7793_HAS_EXITATION_CURRENT |
AD7793_FLAG_HAS_GAIN |
AD7793_FLAG_HAS_BUFFER,
},
[ID_AD7792] = {
.id = AD7792_ID,
.channels = ad7792_channels,
.num_channels = ARRAY_SIZE(ad7792_channels),
.iio_info = &ad7793_info,
.sample_freq_avail = ad7793_sample_freq_avail,
.flags = AD7793_FLAG_HAS_CLKSEL |
AD7793_FLAG_HAS_REFSEL |
AD7793_FLAG_HAS_VBIAS |
AD7793_HAS_EXITATION_CURRENT |
AD7793_FLAG_HAS_GAIN |
AD7793_FLAG_HAS_BUFFER,
},
[ID_AD7793] = {
.id = AD7793_ID,
.channels = ad7793_channels,
.num_channels = ARRAY_SIZE(ad7793_channels),
.iio_info = &ad7793_info,
.sample_freq_avail = ad7793_sample_freq_avail,
.flags = AD7793_FLAG_HAS_CLKSEL |
AD7793_FLAG_HAS_REFSEL |
AD7793_FLAG_HAS_VBIAS |
AD7793_HAS_EXITATION_CURRENT |
AD7793_FLAG_HAS_GAIN |
AD7793_FLAG_HAS_BUFFER,
},
[ID_AD7794] = {
.id = AD7794_ID,
.channels = ad7794_channels,
.num_channels = ARRAY_SIZE(ad7794_channels),
.iio_info = &ad7793_info,
.sample_freq_avail = ad7793_sample_freq_avail,
.flags = AD7793_FLAG_HAS_CLKSEL |
AD7793_FLAG_HAS_REFSEL |
AD7793_FLAG_HAS_VBIAS |
AD7793_HAS_EXITATION_CURRENT |
AD7793_FLAG_HAS_GAIN |
AD7793_FLAG_HAS_BUFFER,
},
[ID_AD7795] = {
.id = AD7795_ID,
.channels = ad7795_channels,
.num_channels = ARRAY_SIZE(ad7795_channels),
.iio_info = &ad7793_info,
.sample_freq_avail = ad7793_sample_freq_avail,
.flags = AD7793_FLAG_HAS_CLKSEL |
AD7793_FLAG_HAS_REFSEL |
AD7793_FLAG_HAS_VBIAS |
AD7793_HAS_EXITATION_CURRENT |
AD7793_FLAG_HAS_GAIN |
AD7793_FLAG_HAS_BUFFER,
},
[ID_AD7796] = {
.id = AD7796_ID,
.channels = ad7796_channels,
.num_channels = ARRAY_SIZE(ad7796_channels),
.iio_info = &ad7797_info,
.sample_freq_avail = ad7797_sample_freq_avail,
.flags = AD7793_FLAG_HAS_CLKSEL,
},
[ID_AD7797] = {
.id = AD7797_ID,
.channels = ad7797_channels,
.num_channels = ARRAY_SIZE(ad7797_channels),
.iio_info = &ad7797_info,
.sample_freq_avail = ad7797_sample_freq_avail,
.flags = AD7793_FLAG_HAS_CLKSEL,
},
[ID_AD7798] = {
.id = AD7798_ID,
.channels = ad7798_channels,
.num_channels = ARRAY_SIZE(ad7798_channels),
.iio_info = &ad7793_info,
.sample_freq_avail = ad7793_sample_freq_avail,
.flags = AD7793_FLAG_HAS_GAIN |
AD7793_FLAG_HAS_BUFFER,
},
[ID_AD7799] = {
.id = AD7799_ID,
.channels = ad7799_channels,
.num_channels = ARRAY_SIZE(ad7799_channels),
.iio_info = &ad7793_info,
.sample_freq_avail = ad7793_sample_freq_avail,
.flags = AD7793_FLAG_HAS_GAIN |
AD7793_FLAG_HAS_BUFFER,
},
};
static int ad7793_probe(struct spi_device *spi)
{
const struct ad7793_platform_data *pdata = spi->dev.platform_data;
struct ad7793_state *st;
struct iio_dev *indio_dev;
int ret, vref_mv = 0;
if (!pdata) {
dev_err(&spi->dev, "no platform data?\n");
return -ENODEV;
}
if (!spi->irq) {
dev_err(&spi->dev, "no IRQ?\n");
return -ENODEV;
}
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (indio_dev == NULL)
return -ENOMEM;
st = iio_priv(indio_dev);
ad_sd_init(&st->sd, indio_dev, spi, &ad7793_sigma_delta_info);
if (pdata->refsel != AD7793_REFSEL_INTERNAL) {
st->reg = devm_regulator_get(&spi->dev, "refin");
if (IS_ERR(st->reg))
return PTR_ERR(st->reg);
ret = regulator_enable(st->reg);
if (ret)
return ret;
vref_mv = regulator_get_voltage(st->reg);
if (vref_mv < 0) {
ret = vref_mv;
goto error_disable_reg;
}
vref_mv /= 1000;
} else {
vref_mv = 1170; /* Build-in ref */
}
st->chip_info =
&ad7793_chip_info_tbl[spi_get_device_id(spi)->driver_data];
spi_set_drvdata(spi, indio_dev);
indio_dev->dev.parent = &spi->dev;
indio_dev->dev.of_node = spi->dev.of_node;
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = st->chip_info->channels;
indio_dev->num_channels = st->chip_info->num_channels;
indio_dev->info = st->chip_info->iio_info;
ret = ad_sd_setup_buffer_and_trigger(indio_dev);
if (ret)
goto error_disable_reg;
ret = ad7793_setup(indio_dev, pdata, vref_mv);
if (ret)
goto error_remove_trigger;
ret = iio_device_register(indio_dev);
if (ret)
goto error_remove_trigger;
return 0;
error_remove_trigger:
ad_sd_cleanup_buffer_and_trigger(indio_dev);
error_disable_reg:
if (pdata->refsel != AD7793_REFSEL_INTERNAL)
regulator_disable(st->reg);
return ret;
}
static int ad7793_remove(struct spi_device *spi)
{
const struct ad7793_platform_data *pdata = spi->dev.platform_data;
struct iio_dev *indio_dev = spi_get_drvdata(spi);
struct ad7793_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
ad_sd_cleanup_buffer_and_trigger(indio_dev);
if (pdata->refsel != AD7793_REFSEL_INTERNAL)
regulator_disable(st->reg);
return 0;
}
static const struct spi_device_id ad7793_id[] = {
{"ad7785", ID_AD7785},
{"ad7792", ID_AD7792},
{"ad7793", ID_AD7793},
{"ad7794", ID_AD7794},
{"ad7795", ID_AD7795},
{"ad7796", ID_AD7796},
{"ad7797", ID_AD7797},
{"ad7798", ID_AD7798},
{"ad7799", ID_AD7799},
{}
};
MODULE_DEVICE_TABLE(spi, ad7793_id);
static struct spi_driver ad7793_driver = {
.driver = {
.name = "ad7793",
},
.probe = ad7793_probe,
.remove = ad7793_remove,
.id_table = ad7793_id,
};
module_spi_driver(ad7793_driver);
MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7793 and similar ADCs");
MODULE_LICENSE("GPL v2");