mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 14:46:55 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
682 lines
17 KiB
C
682 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* This is included from relocs_32/64.c */
|
|
|
|
#define ElfW(type) _ElfW(ELF_BITS, type)
|
|
#define _ElfW(bits, type) __ElfW(bits, type)
|
|
#define __ElfW(bits, type) Elf##bits##_##type
|
|
|
|
#define Elf_Addr ElfW(Addr)
|
|
#define Elf_Ehdr ElfW(Ehdr)
|
|
#define Elf_Phdr ElfW(Phdr)
|
|
#define Elf_Shdr ElfW(Shdr)
|
|
#define Elf_Sym ElfW(Sym)
|
|
|
|
static Elf_Ehdr ehdr;
|
|
|
|
struct relocs {
|
|
uint32_t *offset;
|
|
unsigned long count;
|
|
unsigned long size;
|
|
};
|
|
|
|
static struct relocs relocs;
|
|
|
|
struct section {
|
|
Elf_Shdr shdr;
|
|
struct section *link;
|
|
Elf_Sym *symtab;
|
|
Elf_Rel *reltab;
|
|
char *strtab;
|
|
long shdr_offset;
|
|
};
|
|
static struct section *secs;
|
|
|
|
static const char * const regex_sym_kernel = {
|
|
/* Symbols matching these regex's should never be relocated */
|
|
"^(__crc_)",
|
|
};
|
|
|
|
static regex_t sym_regex_c;
|
|
|
|
static int regex_skip_reloc(const char *sym_name)
|
|
{
|
|
return !regexec(&sym_regex_c, sym_name, 0, NULL, 0);
|
|
}
|
|
|
|
static void regex_init(void)
|
|
{
|
|
char errbuf[128];
|
|
int err;
|
|
|
|
err = regcomp(&sym_regex_c, regex_sym_kernel,
|
|
REG_EXTENDED|REG_NOSUB);
|
|
|
|
if (err) {
|
|
regerror(err, &sym_regex_c, errbuf, sizeof(errbuf));
|
|
die("%s", errbuf);
|
|
}
|
|
}
|
|
|
|
static const char *rel_type(unsigned type)
|
|
{
|
|
static const char * const type_name[] = {
|
|
#define REL_TYPE(X)[X] = #X
|
|
REL_TYPE(R_MIPS_NONE),
|
|
REL_TYPE(R_MIPS_16),
|
|
REL_TYPE(R_MIPS_32),
|
|
REL_TYPE(R_MIPS_REL32),
|
|
REL_TYPE(R_MIPS_26),
|
|
REL_TYPE(R_MIPS_HI16),
|
|
REL_TYPE(R_MIPS_LO16),
|
|
REL_TYPE(R_MIPS_GPREL16),
|
|
REL_TYPE(R_MIPS_LITERAL),
|
|
REL_TYPE(R_MIPS_GOT16),
|
|
REL_TYPE(R_MIPS_PC16),
|
|
REL_TYPE(R_MIPS_CALL16),
|
|
REL_TYPE(R_MIPS_GPREL32),
|
|
REL_TYPE(R_MIPS_64),
|
|
REL_TYPE(R_MIPS_HIGHER),
|
|
REL_TYPE(R_MIPS_HIGHEST),
|
|
REL_TYPE(R_MIPS_PC21_S2),
|
|
REL_TYPE(R_MIPS_PC26_S2),
|
|
#undef REL_TYPE
|
|
};
|
|
const char *name = "unknown type rel type name";
|
|
|
|
if (type < ARRAY_SIZE(type_name) && type_name[type])
|
|
name = type_name[type];
|
|
return name;
|
|
}
|
|
|
|
static const char *sec_name(unsigned shndx)
|
|
{
|
|
const char *sec_strtab;
|
|
const char *name;
|
|
|
|
sec_strtab = secs[ehdr.e_shstrndx].strtab;
|
|
if (shndx < ehdr.e_shnum)
|
|
name = sec_strtab + secs[shndx].shdr.sh_name;
|
|
else if (shndx == SHN_ABS)
|
|
name = "ABSOLUTE";
|
|
else if (shndx == SHN_COMMON)
|
|
name = "COMMON";
|
|
else
|
|
name = "<noname>";
|
|
return name;
|
|
}
|
|
|
|
static struct section *sec_lookup(const char *secname)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ehdr.e_shnum; i++)
|
|
if (strcmp(secname, sec_name(i)) == 0)
|
|
return &secs[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const char *sym_name(const char *sym_strtab, Elf_Sym *sym)
|
|
{
|
|
const char *name;
|
|
|
|
if (sym->st_name)
|
|
name = sym_strtab + sym->st_name;
|
|
else
|
|
name = sec_name(sym->st_shndx);
|
|
return name;
|
|
}
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
#define le16_to_cpu(val) (val)
|
|
#define le32_to_cpu(val) (val)
|
|
#define le64_to_cpu(val) (val)
|
|
#define be16_to_cpu(val) bswap_16(val)
|
|
#define be32_to_cpu(val) bswap_32(val)
|
|
#define be64_to_cpu(val) bswap_64(val)
|
|
|
|
#define cpu_to_le16(val) (val)
|
|
#define cpu_to_le32(val) (val)
|
|
#define cpu_to_le64(val) (val)
|
|
#define cpu_to_be16(val) bswap_16(val)
|
|
#define cpu_to_be32(val) bswap_32(val)
|
|
#define cpu_to_be64(val) bswap_64(val)
|
|
#endif
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
#define le16_to_cpu(val) bswap_16(val)
|
|
#define le32_to_cpu(val) bswap_32(val)
|
|
#define le64_to_cpu(val) bswap_64(val)
|
|
#define be16_to_cpu(val) (val)
|
|
#define be32_to_cpu(val) (val)
|
|
#define be64_to_cpu(val) (val)
|
|
|
|
#define cpu_to_le16(val) bswap_16(val)
|
|
#define cpu_to_le32(val) bswap_32(val)
|
|
#define cpu_to_le64(val) bswap_64(val)
|
|
#define cpu_to_be16(val) (val)
|
|
#define cpu_to_be32(val) (val)
|
|
#define cpu_to_be64(val) (val)
|
|
#endif
|
|
|
|
static uint16_t elf16_to_cpu(uint16_t val)
|
|
{
|
|
if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
|
|
return le16_to_cpu(val);
|
|
else
|
|
return be16_to_cpu(val);
|
|
}
|
|
|
|
static uint32_t elf32_to_cpu(uint32_t val)
|
|
{
|
|
if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
|
|
return le32_to_cpu(val);
|
|
else
|
|
return be32_to_cpu(val);
|
|
}
|
|
|
|
static uint32_t cpu_to_elf32(uint32_t val)
|
|
{
|
|
if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
|
|
return cpu_to_le32(val);
|
|
else
|
|
return cpu_to_be32(val);
|
|
}
|
|
|
|
#define elf_half_to_cpu(x) elf16_to_cpu(x)
|
|
#define elf_word_to_cpu(x) elf32_to_cpu(x)
|
|
|
|
#if ELF_BITS == 64
|
|
static uint64_t elf64_to_cpu(uint64_t val)
|
|
{
|
|
if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
|
|
return le64_to_cpu(val);
|
|
else
|
|
return be64_to_cpu(val);
|
|
}
|
|
#define elf_addr_to_cpu(x) elf64_to_cpu(x)
|
|
#define elf_off_to_cpu(x) elf64_to_cpu(x)
|
|
#define elf_xword_to_cpu(x) elf64_to_cpu(x)
|
|
#else
|
|
#define elf_addr_to_cpu(x) elf32_to_cpu(x)
|
|
#define elf_off_to_cpu(x) elf32_to_cpu(x)
|
|
#define elf_xword_to_cpu(x) elf32_to_cpu(x)
|
|
#endif
|
|
|
|
static void read_ehdr(FILE *fp)
|
|
{
|
|
if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1)
|
|
die("Cannot read ELF header: %s\n", strerror(errno));
|
|
|
|
if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0)
|
|
die("No ELF magic\n");
|
|
|
|
if (ehdr.e_ident[EI_CLASS] != ELF_CLASS)
|
|
die("Not a %d bit executable\n", ELF_BITS);
|
|
|
|
if ((ehdr.e_ident[EI_DATA] != ELFDATA2LSB) &&
|
|
(ehdr.e_ident[EI_DATA] != ELFDATA2MSB))
|
|
die("Unknown ELF Endianness\n");
|
|
|
|
if (ehdr.e_ident[EI_VERSION] != EV_CURRENT)
|
|
die("Unknown ELF version\n");
|
|
|
|
/* Convert the fields to native endian */
|
|
ehdr.e_type = elf_half_to_cpu(ehdr.e_type);
|
|
ehdr.e_machine = elf_half_to_cpu(ehdr.e_machine);
|
|
ehdr.e_version = elf_word_to_cpu(ehdr.e_version);
|
|
ehdr.e_entry = elf_addr_to_cpu(ehdr.e_entry);
|
|
ehdr.e_phoff = elf_off_to_cpu(ehdr.e_phoff);
|
|
ehdr.e_shoff = elf_off_to_cpu(ehdr.e_shoff);
|
|
ehdr.e_flags = elf_word_to_cpu(ehdr.e_flags);
|
|
ehdr.e_ehsize = elf_half_to_cpu(ehdr.e_ehsize);
|
|
ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize);
|
|
ehdr.e_phnum = elf_half_to_cpu(ehdr.e_phnum);
|
|
ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize);
|
|
ehdr.e_shnum = elf_half_to_cpu(ehdr.e_shnum);
|
|
ehdr.e_shstrndx = elf_half_to_cpu(ehdr.e_shstrndx);
|
|
|
|
if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN))
|
|
die("Unsupported ELF header type\n");
|
|
|
|
if (ehdr.e_machine != ELF_MACHINE)
|
|
die("Not for %s\n", ELF_MACHINE_NAME);
|
|
|
|
if (ehdr.e_version != EV_CURRENT)
|
|
die("Unknown ELF version\n");
|
|
|
|
if (ehdr.e_ehsize != sizeof(Elf_Ehdr))
|
|
die("Bad Elf header size\n");
|
|
|
|
if (ehdr.e_phentsize != sizeof(Elf_Phdr))
|
|
die("Bad program header entry\n");
|
|
|
|
if (ehdr.e_shentsize != sizeof(Elf_Shdr))
|
|
die("Bad section header entry\n");
|
|
|
|
if (ehdr.e_shstrndx >= ehdr.e_shnum)
|
|
die("String table index out of bounds\n");
|
|
}
|
|
|
|
static void read_shdrs(FILE *fp)
|
|
{
|
|
int i;
|
|
Elf_Shdr shdr;
|
|
|
|
secs = calloc(ehdr.e_shnum, sizeof(struct section));
|
|
if (!secs)
|
|
die("Unable to allocate %d section headers\n", ehdr.e_shnum);
|
|
|
|
if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0)
|
|
die("Seek to %d failed: %s\n", ehdr.e_shoff, strerror(errno));
|
|
|
|
for (i = 0; i < ehdr.e_shnum; i++) {
|
|
struct section *sec = &secs[i];
|
|
|
|
sec->shdr_offset = ftell(fp);
|
|
if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
|
|
die("Cannot read ELF section headers %d/%d: %s\n",
|
|
i, ehdr.e_shnum, strerror(errno));
|
|
sec->shdr.sh_name = elf_word_to_cpu(shdr.sh_name);
|
|
sec->shdr.sh_type = elf_word_to_cpu(shdr.sh_type);
|
|
sec->shdr.sh_flags = elf_xword_to_cpu(shdr.sh_flags);
|
|
sec->shdr.sh_addr = elf_addr_to_cpu(shdr.sh_addr);
|
|
sec->shdr.sh_offset = elf_off_to_cpu(shdr.sh_offset);
|
|
sec->shdr.sh_size = elf_xword_to_cpu(shdr.sh_size);
|
|
sec->shdr.sh_link = elf_word_to_cpu(shdr.sh_link);
|
|
sec->shdr.sh_info = elf_word_to_cpu(shdr.sh_info);
|
|
sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign);
|
|
sec->shdr.sh_entsize = elf_xword_to_cpu(shdr.sh_entsize);
|
|
if (sec->shdr.sh_link < ehdr.e_shnum)
|
|
sec->link = &secs[sec->shdr.sh_link];
|
|
}
|
|
}
|
|
|
|
static void read_strtabs(FILE *fp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ehdr.e_shnum; i++) {
|
|
struct section *sec = &secs[i];
|
|
|
|
if (sec->shdr.sh_type != SHT_STRTAB)
|
|
continue;
|
|
|
|
sec->strtab = malloc(sec->shdr.sh_size);
|
|
if (!sec->strtab)
|
|
die("malloc of %d bytes for strtab failed\n",
|
|
sec->shdr.sh_size);
|
|
|
|
if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0)
|
|
die("Seek to %d failed: %s\n",
|
|
sec->shdr.sh_offset, strerror(errno));
|
|
|
|
if (fread(sec->strtab, 1, sec->shdr.sh_size, fp) !=
|
|
sec->shdr.sh_size)
|
|
die("Cannot read symbol table: %s\n", strerror(errno));
|
|
}
|
|
}
|
|
|
|
static void read_symtabs(FILE *fp)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < ehdr.e_shnum; i++) {
|
|
struct section *sec = &secs[i];
|
|
if (sec->shdr.sh_type != SHT_SYMTAB)
|
|
continue;
|
|
|
|
sec->symtab = malloc(sec->shdr.sh_size);
|
|
if (!sec->symtab)
|
|
die("malloc of %d bytes for symtab failed\n",
|
|
sec->shdr.sh_size);
|
|
|
|
if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0)
|
|
die("Seek to %d failed: %s\n",
|
|
sec->shdr.sh_offset, strerror(errno));
|
|
|
|
if (fread(sec->symtab, 1, sec->shdr.sh_size, fp) !=
|
|
sec->shdr.sh_size)
|
|
die("Cannot read symbol table: %s\n", strerror(errno));
|
|
|
|
for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
|
|
Elf_Sym *sym = &sec->symtab[j];
|
|
|
|
sym->st_name = elf_word_to_cpu(sym->st_name);
|
|
sym->st_value = elf_addr_to_cpu(sym->st_value);
|
|
sym->st_size = elf_xword_to_cpu(sym->st_size);
|
|
sym->st_shndx = elf_half_to_cpu(sym->st_shndx);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void read_relocs(FILE *fp)
|
|
{
|
|
static unsigned long base = 0;
|
|
int i, j;
|
|
|
|
if (!base) {
|
|
struct section *sec = sec_lookup(".text");
|
|
|
|
if (!sec)
|
|
die("Could not find .text section\n");
|
|
|
|
base = sec->shdr.sh_addr;
|
|
}
|
|
|
|
for (i = 0; i < ehdr.e_shnum; i++) {
|
|
struct section *sec = &secs[i];
|
|
|
|
if (sec->shdr.sh_type != SHT_REL_TYPE)
|
|
continue;
|
|
|
|
sec->reltab = malloc(sec->shdr.sh_size);
|
|
if (!sec->reltab)
|
|
die("malloc of %d bytes for relocs failed\n",
|
|
sec->shdr.sh_size);
|
|
|
|
if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0)
|
|
die("Seek to %d failed: %s\n",
|
|
sec->shdr.sh_offset, strerror(errno));
|
|
|
|
if (fread(sec->reltab, 1, sec->shdr.sh_size, fp) !=
|
|
sec->shdr.sh_size)
|
|
die("Cannot read symbol table: %s\n", strerror(errno));
|
|
|
|
for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
|
|
Elf_Rel *rel = &sec->reltab[j];
|
|
|
|
rel->r_offset = elf_addr_to_cpu(rel->r_offset);
|
|
/* Set offset into kernel image */
|
|
rel->r_offset -= base;
|
|
#if (ELF_BITS == 32)
|
|
rel->r_info = elf_xword_to_cpu(rel->r_info);
|
|
#else
|
|
/* Convert MIPS64 RELA format - only the symbol
|
|
* index needs converting to native endianness
|
|
*/
|
|
rel->r_info = rel->r_info;
|
|
ELF_R_SYM(rel->r_info) = elf32_to_cpu(ELF_R_SYM(rel->r_info));
|
|
#endif
|
|
#if (SHT_REL_TYPE == SHT_RELA)
|
|
rel->r_addend = elf_xword_to_cpu(rel->r_addend);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static void remove_relocs(FILE *fp)
|
|
{
|
|
int i;
|
|
Elf_Shdr shdr;
|
|
|
|
for (i = 0; i < ehdr.e_shnum; i++) {
|
|
struct section *sec = &secs[i];
|
|
|
|
if (sec->shdr.sh_type != SHT_REL_TYPE)
|
|
continue;
|
|
|
|
if (fseek(fp, sec->shdr_offset, SEEK_SET) < 0)
|
|
die("Seek to %d failed: %s\n",
|
|
sec->shdr_offset, strerror(errno));
|
|
|
|
if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
|
|
die("Cannot read ELF section headers %d/%d: %s\n",
|
|
i, ehdr.e_shnum, strerror(errno));
|
|
|
|
/* Set relocation section size to 0, effectively removing it.
|
|
* This is necessary due to lack of support for relocations
|
|
* in objcopy when creating 32bit elf from 64bit elf.
|
|
*/
|
|
shdr.sh_size = 0;
|
|
|
|
if (fseek(fp, sec->shdr_offset, SEEK_SET) < 0)
|
|
die("Seek to %d failed: %s\n",
|
|
sec->shdr_offset, strerror(errno));
|
|
|
|
if (fwrite(&shdr, sizeof(shdr), 1, fp) != 1)
|
|
die("Cannot write ELF section headers %d/%d: %s\n",
|
|
i, ehdr.e_shnum, strerror(errno));
|
|
}
|
|
}
|
|
|
|
static void add_reloc(struct relocs *r, uint32_t offset, unsigned type)
|
|
{
|
|
/* Relocation representation in binary table:
|
|
* |76543210|76543210|76543210|76543210|
|
|
* | Type | offset from _text >> 2 |
|
|
*/
|
|
offset >>= 2;
|
|
if (offset > 0x00FFFFFF)
|
|
die("Kernel image exceeds maximum size for relocation!\n");
|
|
|
|
offset = (offset & 0x00FFFFFF) | ((type & 0xFF) << 24);
|
|
|
|
if (r->count == r->size) {
|
|
unsigned long newsize = r->size + 50000;
|
|
void *mem = realloc(r->offset, newsize * sizeof(r->offset[0]));
|
|
|
|
if (!mem)
|
|
die("realloc failed\n");
|
|
|
|
r->offset = mem;
|
|
r->size = newsize;
|
|
}
|
|
r->offset[r->count++] = offset;
|
|
}
|
|
|
|
static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel,
|
|
Elf_Sym *sym, const char *symname))
|
|
{
|
|
int i;
|
|
|
|
/* Walk through the relocations */
|
|
for (i = 0; i < ehdr.e_shnum; i++) {
|
|
char *sym_strtab;
|
|
Elf_Sym *sh_symtab;
|
|
struct section *sec_applies, *sec_symtab;
|
|
int j;
|
|
struct section *sec = &secs[i];
|
|
|
|
if (sec->shdr.sh_type != SHT_REL_TYPE)
|
|
continue;
|
|
|
|
sec_symtab = sec->link;
|
|
sec_applies = &secs[sec->shdr.sh_info];
|
|
if (!(sec_applies->shdr.sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
sh_symtab = sec_symtab->symtab;
|
|
sym_strtab = sec_symtab->link->strtab;
|
|
for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
|
|
Elf_Rel *rel = &sec->reltab[j];
|
|
Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
|
|
const char *symname = sym_name(sym_strtab, sym);
|
|
|
|
process(sec, rel, sym, symname);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int do_reloc(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
|
|
const char *symname)
|
|
{
|
|
unsigned r_type = ELF_R_TYPE(rel->r_info);
|
|
unsigned bind = ELF_ST_BIND(sym->st_info);
|
|
|
|
if ((bind == STB_WEAK) && (sym->st_value == 0)) {
|
|
/* Don't relocate weak symbols without a target */
|
|
return 0;
|
|
}
|
|
|
|
if (regex_skip_reloc(symname))
|
|
return 0;
|
|
|
|
switch (r_type) {
|
|
case R_MIPS_NONE:
|
|
case R_MIPS_REL32:
|
|
case R_MIPS_PC16:
|
|
case R_MIPS_PC21_S2:
|
|
case R_MIPS_PC26_S2:
|
|
/*
|
|
* NONE can be ignored and PC relative relocations don't
|
|
* need to be adjusted.
|
|
*/
|
|
case R_MIPS_HIGHEST:
|
|
case R_MIPS_HIGHER:
|
|
/* We support relocating within the same 4Gb segment only,
|
|
* thus leaving the top 32bits unchanged
|
|
*/
|
|
case R_MIPS_LO16:
|
|
/* We support relocating by 64k jumps only
|
|
* thus leaving the bottom 16bits unchanged
|
|
*/
|
|
break;
|
|
|
|
case R_MIPS_64:
|
|
case R_MIPS_32:
|
|
case R_MIPS_26:
|
|
case R_MIPS_HI16:
|
|
add_reloc(&relocs, rel->r_offset, r_type);
|
|
break;
|
|
|
|
default:
|
|
die("Unsupported relocation type: %s (%d)\n",
|
|
rel_type(r_type), r_type);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_reloc_as_bin(uint32_t v, FILE *f)
|
|
{
|
|
unsigned char buf[4];
|
|
|
|
v = cpu_to_elf32(v);
|
|
|
|
memcpy(buf, &v, sizeof(uint32_t));
|
|
return fwrite(buf, 1, 4, f);
|
|
}
|
|
|
|
static int write_reloc_as_text(uint32_t v, FILE *f)
|
|
{
|
|
int res;
|
|
|
|
res = fprintf(f, "\t.long 0x%08"PRIx32"\n", v);
|
|
if (res < 0)
|
|
return res;
|
|
else
|
|
return sizeof(uint32_t);
|
|
}
|
|
|
|
static void emit_relocs(int as_text, int as_bin, FILE *outf)
|
|
{
|
|
int i;
|
|
int (*write_reloc)(uint32_t, FILE *) = write_reloc_as_bin;
|
|
int size = 0;
|
|
int size_reserved;
|
|
struct section *sec_reloc;
|
|
|
|
sec_reloc = sec_lookup(".data.reloc");
|
|
if (!sec_reloc)
|
|
die("Could not find relocation section\n");
|
|
|
|
size_reserved = sec_reloc->shdr.sh_size;
|
|
|
|
/* Collect up the relocations */
|
|
walk_relocs(do_reloc);
|
|
|
|
/* Print the relocations */
|
|
if (as_text) {
|
|
/* Print the relocations in a form suitable that
|
|
* gas will like.
|
|
*/
|
|
printf(".section \".data.reloc\",\"a\"\n");
|
|
printf(".balign 4\n");
|
|
/* Output text to stdout */
|
|
write_reloc = write_reloc_as_text;
|
|
outf = stdout;
|
|
} else if (as_bin) {
|
|
/* Output raw binary to stdout */
|
|
outf = stdout;
|
|
} else {
|
|
/* Seek to offset of the relocation section.
|
|
* Each relocation is then written into the
|
|
* vmlinux kernel image.
|
|
*/
|
|
if (fseek(outf, sec_reloc->shdr.sh_offset, SEEK_SET) < 0) {
|
|
die("Seek to %d failed: %s\n",
|
|
sec_reloc->shdr.sh_offset, strerror(errno));
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < relocs.count; i++)
|
|
size += write_reloc(relocs.offset[i], outf);
|
|
|
|
/* Print a stop, but only if we've actually written some relocs */
|
|
if (size)
|
|
size += write_reloc(0, outf);
|
|
|
|
if (size > size_reserved)
|
|
/* Die, but suggest a value for CONFIG_RELOCATION_TABLE_SIZE
|
|
* which will fix this problem and allow a bit of headroom
|
|
* if more kernel features are enabled
|
|
*/
|
|
die("Relocations overflow available space!\n" \
|
|
"Please adjust CONFIG_RELOCATION_TABLE_SIZE " \
|
|
"to at least 0x%08x\n", (size + 0x1000) & ~0xFFF);
|
|
}
|
|
|
|
/*
|
|
* As an aid to debugging problems with different linkers
|
|
* print summary information about the relocs.
|
|
* Since different linkers tend to emit the sections in
|
|
* different orders we use the section names in the output.
|
|
*/
|
|
static int do_reloc_info(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
|
|
const char *symname)
|
|
{
|
|
printf("%16s 0x%08x %16s %40s %16s\n",
|
|
sec_name(sec->shdr.sh_info),
|
|
(unsigned int)rel->r_offset,
|
|
rel_type(ELF_R_TYPE(rel->r_info)),
|
|
symname,
|
|
sec_name(sym->st_shndx));
|
|
return 0;
|
|
}
|
|
|
|
static void print_reloc_info(void)
|
|
{
|
|
printf("%16s %10s %16s %40s %16s\n",
|
|
"reloc section",
|
|
"offset",
|
|
"reloc type",
|
|
"symbol",
|
|
"symbol section");
|
|
walk_relocs(do_reloc_info);
|
|
}
|
|
|
|
#if ELF_BITS == 64
|
|
# define process process_64
|
|
#else
|
|
# define process process_32
|
|
#endif
|
|
|
|
void process(FILE *fp, int as_text, int as_bin,
|
|
int show_reloc_info, int keep_relocs)
|
|
{
|
|
regex_init();
|
|
read_ehdr(fp);
|
|
read_shdrs(fp);
|
|
read_strtabs(fp);
|
|
read_symtabs(fp);
|
|
read_relocs(fp);
|
|
if (show_reloc_info) {
|
|
print_reloc_info();
|
|
return;
|
|
}
|
|
emit_relocs(as_text, as_bin, fp);
|
|
if (!keep_relocs)
|
|
remove_relocs(fp);
|
|
}
|