mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 06:49:40 +07:00
2bcd90d56c
The drivers should use dmaengine_terminate_all() API instead of accessing the device_control which will be deprecated soon Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2680 lines
62 KiB
C
2680 lines
62 KiB
C
/*
|
|
* SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
|
|
*
|
|
* Copyright (C) 2002 - 2011 Paul Mundt
|
|
* Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
|
|
*
|
|
* based off of the old drivers/char/sh-sci.c by:
|
|
*
|
|
* Copyright (C) 1999, 2000 Niibe Yutaka
|
|
* Copyright (C) 2000 Sugioka Toshinobu
|
|
* Modified to support multiple serial ports. Stuart Menefy (May 2000).
|
|
* Modified to support SecureEdge. David McCullough (2002)
|
|
* Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
|
|
* Removed SH7300 support (Jul 2007).
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
|
|
#define SUPPORT_SYSRQ
|
|
#endif
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/console.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/major.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/serial_sci.h>
|
|
#include <linux/sh_dma.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sysrq.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
|
|
#ifdef CONFIG_SUPERH
|
|
#include <asm/sh_bios.h>
|
|
#endif
|
|
|
|
#include "sh-sci.h"
|
|
|
|
/* Offsets into the sci_port->irqs array */
|
|
enum {
|
|
SCIx_ERI_IRQ,
|
|
SCIx_RXI_IRQ,
|
|
SCIx_TXI_IRQ,
|
|
SCIx_BRI_IRQ,
|
|
SCIx_NR_IRQS,
|
|
|
|
SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
|
|
};
|
|
|
|
#define SCIx_IRQ_IS_MUXED(port) \
|
|
((port)->irqs[SCIx_ERI_IRQ] == \
|
|
(port)->irqs[SCIx_RXI_IRQ]) || \
|
|
((port)->irqs[SCIx_ERI_IRQ] && \
|
|
((port)->irqs[SCIx_RXI_IRQ] < 0))
|
|
|
|
struct sci_port {
|
|
struct uart_port port;
|
|
|
|
/* Platform configuration */
|
|
struct plat_sci_port *cfg;
|
|
int overrun_bit;
|
|
unsigned int error_mask;
|
|
unsigned int sampling_rate;
|
|
|
|
|
|
/* Break timer */
|
|
struct timer_list break_timer;
|
|
int break_flag;
|
|
|
|
/* Interface clock */
|
|
struct clk *iclk;
|
|
/* Function clock */
|
|
struct clk *fclk;
|
|
|
|
int irqs[SCIx_NR_IRQS];
|
|
char *irqstr[SCIx_NR_IRQS];
|
|
|
|
struct dma_chan *chan_tx;
|
|
struct dma_chan *chan_rx;
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
struct dma_async_tx_descriptor *desc_tx;
|
|
struct dma_async_tx_descriptor *desc_rx[2];
|
|
dma_cookie_t cookie_tx;
|
|
dma_cookie_t cookie_rx[2];
|
|
dma_cookie_t active_rx;
|
|
struct scatterlist sg_tx;
|
|
unsigned int sg_len_tx;
|
|
struct scatterlist sg_rx[2];
|
|
size_t buf_len_rx;
|
|
struct sh_dmae_slave param_tx;
|
|
struct sh_dmae_slave param_rx;
|
|
struct work_struct work_tx;
|
|
struct work_struct work_rx;
|
|
struct timer_list rx_timer;
|
|
unsigned int rx_timeout;
|
|
#endif
|
|
|
|
struct notifier_block freq_transition;
|
|
};
|
|
|
|
/* Function prototypes */
|
|
static void sci_start_tx(struct uart_port *port);
|
|
static void sci_stop_tx(struct uart_port *port);
|
|
static void sci_start_rx(struct uart_port *port);
|
|
|
|
#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
|
|
|
|
static struct sci_port sci_ports[SCI_NPORTS];
|
|
static struct uart_driver sci_uart_driver;
|
|
|
|
static inline struct sci_port *
|
|
to_sci_port(struct uart_port *uart)
|
|
{
|
|
return container_of(uart, struct sci_port, port);
|
|
}
|
|
|
|
struct plat_sci_reg {
|
|
u8 offset, size;
|
|
};
|
|
|
|
/* Helper for invalidating specific entries of an inherited map. */
|
|
#define sci_reg_invalid { .offset = 0, .size = 0 }
|
|
|
|
static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
|
|
[SCIx_PROBE_REGTYPE] = {
|
|
[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* Common SCI definitions, dependent on the port's regshift
|
|
* value.
|
|
*/
|
|
[SCIx_SCI_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 8 },
|
|
[SCBRR] = { 0x01, 8 },
|
|
[SCSCR] = { 0x02, 8 },
|
|
[SCxTDR] = { 0x03, 8 },
|
|
[SCxSR] = { 0x04, 8 },
|
|
[SCxRDR] = { 0x05, 8 },
|
|
[SCFCR] = sci_reg_invalid,
|
|
[SCFDR] = sci_reg_invalid,
|
|
[SCTFDR] = sci_reg_invalid,
|
|
[SCRFDR] = sci_reg_invalid,
|
|
[SCSPTR] = sci_reg_invalid,
|
|
[SCLSR] = sci_reg_invalid,
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* Common definitions for legacy IrDA ports, dependent on
|
|
* regshift value.
|
|
*/
|
|
[SCIx_IRDA_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 8 },
|
|
[SCBRR] = { 0x01, 8 },
|
|
[SCSCR] = { 0x02, 8 },
|
|
[SCxTDR] = { 0x03, 8 },
|
|
[SCxSR] = { 0x04, 8 },
|
|
[SCxRDR] = { 0x05, 8 },
|
|
[SCFCR] = { 0x06, 8 },
|
|
[SCFDR] = { 0x07, 16 },
|
|
[SCTFDR] = sci_reg_invalid,
|
|
[SCRFDR] = sci_reg_invalid,
|
|
[SCSPTR] = sci_reg_invalid,
|
|
[SCLSR] = sci_reg_invalid,
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* Common SCIFA definitions.
|
|
*/
|
|
[SCIx_SCIFA_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x20, 8 },
|
|
[SCxSR] = { 0x14, 16 },
|
|
[SCxRDR] = { 0x24, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCTFDR] = sci_reg_invalid,
|
|
[SCRFDR] = sci_reg_invalid,
|
|
[SCSPTR] = sci_reg_invalid,
|
|
[SCLSR] = sci_reg_invalid,
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* Common SCIFB definitions.
|
|
*/
|
|
[SCIx_SCIFB_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x40, 8 },
|
|
[SCxSR] = { 0x14, 16 },
|
|
[SCxRDR] = { 0x60, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = sci_reg_invalid,
|
|
[SCTFDR] = { 0x38, 16 },
|
|
[SCRFDR] = { 0x3c, 16 },
|
|
[SCSPTR] = sci_reg_invalid,
|
|
[SCLSR] = sci_reg_invalid,
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* Common SH-2(A) SCIF definitions for ports with FIFO data
|
|
* count registers.
|
|
*/
|
|
[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCTFDR] = sci_reg_invalid,
|
|
[SCRFDR] = sci_reg_invalid,
|
|
[SCSPTR] = { 0x20, 16 },
|
|
[SCLSR] = { 0x24, 16 },
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* Common SH-3 SCIF definitions.
|
|
*/
|
|
[SCIx_SH3_SCIF_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 8 },
|
|
[SCBRR] = { 0x02, 8 },
|
|
[SCSCR] = { 0x04, 8 },
|
|
[SCxTDR] = { 0x06, 8 },
|
|
[SCxSR] = { 0x08, 16 },
|
|
[SCxRDR] = { 0x0a, 8 },
|
|
[SCFCR] = { 0x0c, 8 },
|
|
[SCFDR] = { 0x0e, 16 },
|
|
[SCTFDR] = sci_reg_invalid,
|
|
[SCRFDR] = sci_reg_invalid,
|
|
[SCSPTR] = sci_reg_invalid,
|
|
[SCLSR] = sci_reg_invalid,
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* Common SH-4(A) SCIF(B) definitions.
|
|
*/
|
|
[SCIx_SH4_SCIF_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCTFDR] = sci_reg_invalid,
|
|
[SCRFDR] = sci_reg_invalid,
|
|
[SCSPTR] = { 0x20, 16 },
|
|
[SCLSR] = { 0x24, 16 },
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* Common HSCIF definitions.
|
|
*/
|
|
[SCIx_HSCIF_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCTFDR] = sci_reg_invalid,
|
|
[SCRFDR] = sci_reg_invalid,
|
|
[SCSPTR] = { 0x20, 16 },
|
|
[SCLSR] = { 0x24, 16 },
|
|
[HSSRR] = { 0x40, 16 },
|
|
},
|
|
|
|
/*
|
|
* Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
|
|
* register.
|
|
*/
|
|
[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCTFDR] = sci_reg_invalid,
|
|
[SCRFDR] = sci_reg_invalid,
|
|
[SCSPTR] = sci_reg_invalid,
|
|
[SCLSR] = { 0x24, 16 },
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* Common SH-4(A) SCIF(B) definitions for ports with FIFO data
|
|
* count registers.
|
|
*/
|
|
[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
|
|
[SCRFDR] = { 0x20, 16 },
|
|
[SCSPTR] = { 0x24, 16 },
|
|
[SCLSR] = { 0x28, 16 },
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
|
|
/*
|
|
* SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
|
|
* registers.
|
|
*/
|
|
[SCIx_SH7705_SCIF_REGTYPE] = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x20, 8 },
|
|
[SCxSR] = { 0x14, 16 },
|
|
[SCxRDR] = { 0x24, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCTFDR] = sci_reg_invalid,
|
|
[SCRFDR] = sci_reg_invalid,
|
|
[SCSPTR] = sci_reg_invalid,
|
|
[SCLSR] = sci_reg_invalid,
|
|
[HSSRR] = sci_reg_invalid,
|
|
},
|
|
};
|
|
|
|
#define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
|
|
|
|
/*
|
|
* The "offset" here is rather misleading, in that it refers to an enum
|
|
* value relative to the port mapping rather than the fixed offset
|
|
* itself, which needs to be manually retrieved from the platform's
|
|
* register map for the given port.
|
|
*/
|
|
static unsigned int sci_serial_in(struct uart_port *p, int offset)
|
|
{
|
|
struct plat_sci_reg *reg = sci_getreg(p, offset);
|
|
|
|
if (reg->size == 8)
|
|
return ioread8(p->membase + (reg->offset << p->regshift));
|
|
else if (reg->size == 16)
|
|
return ioread16(p->membase + (reg->offset << p->regshift));
|
|
else
|
|
WARN(1, "Invalid register access\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_serial_out(struct uart_port *p, int offset, int value)
|
|
{
|
|
struct plat_sci_reg *reg = sci_getreg(p, offset);
|
|
|
|
if (reg->size == 8)
|
|
iowrite8(value, p->membase + (reg->offset << p->regshift));
|
|
else if (reg->size == 16)
|
|
iowrite16(value, p->membase + (reg->offset << p->regshift));
|
|
else
|
|
WARN(1, "Invalid register access\n");
|
|
}
|
|
|
|
static int sci_probe_regmap(struct plat_sci_port *cfg)
|
|
{
|
|
switch (cfg->type) {
|
|
case PORT_SCI:
|
|
cfg->regtype = SCIx_SCI_REGTYPE;
|
|
break;
|
|
case PORT_IRDA:
|
|
cfg->regtype = SCIx_IRDA_REGTYPE;
|
|
break;
|
|
case PORT_SCIFA:
|
|
cfg->regtype = SCIx_SCIFA_REGTYPE;
|
|
break;
|
|
case PORT_SCIFB:
|
|
cfg->regtype = SCIx_SCIFB_REGTYPE;
|
|
break;
|
|
case PORT_SCIF:
|
|
/*
|
|
* The SH-4 is a bit of a misnomer here, although that's
|
|
* where this particular port layout originated. This
|
|
* configuration (or some slight variation thereof)
|
|
* remains the dominant model for all SCIFs.
|
|
*/
|
|
cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
|
|
break;
|
|
case PORT_HSCIF:
|
|
cfg->regtype = SCIx_HSCIF_REGTYPE;
|
|
break;
|
|
default:
|
|
pr_err("Can't probe register map for given port\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_port_enable(struct sci_port *sci_port)
|
|
{
|
|
if (!sci_port->port.dev)
|
|
return;
|
|
|
|
pm_runtime_get_sync(sci_port->port.dev);
|
|
|
|
clk_prepare_enable(sci_port->iclk);
|
|
sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
|
|
clk_prepare_enable(sci_port->fclk);
|
|
}
|
|
|
|
static void sci_port_disable(struct sci_port *sci_port)
|
|
{
|
|
if (!sci_port->port.dev)
|
|
return;
|
|
|
|
/* Cancel the break timer to ensure that the timer handler will not try
|
|
* to access the hardware with clocks and power disabled. Reset the
|
|
* break flag to make the break debouncing state machine ready for the
|
|
* next break.
|
|
*/
|
|
del_timer_sync(&sci_port->break_timer);
|
|
sci_port->break_flag = 0;
|
|
|
|
clk_disable_unprepare(sci_port->fclk);
|
|
clk_disable_unprepare(sci_port->iclk);
|
|
|
|
pm_runtime_put_sync(sci_port->port.dev);
|
|
}
|
|
|
|
#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
|
|
|
|
#ifdef CONFIG_CONSOLE_POLL
|
|
static int sci_poll_get_char(struct uart_port *port)
|
|
{
|
|
unsigned short status;
|
|
int c;
|
|
|
|
do {
|
|
status = serial_port_in(port, SCxSR);
|
|
if (status & SCxSR_ERRORS(port)) {
|
|
serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
|
|
continue;
|
|
}
|
|
break;
|
|
} while (1);
|
|
|
|
if (!(status & SCxSR_RDxF(port)))
|
|
return NO_POLL_CHAR;
|
|
|
|
c = serial_port_in(port, SCxRDR);
|
|
|
|
/* Dummy read */
|
|
serial_port_in(port, SCxSR);
|
|
serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
|
|
|
|
return c;
|
|
}
|
|
#endif
|
|
|
|
static void sci_poll_put_char(struct uart_port *port, unsigned char c)
|
|
{
|
|
unsigned short status;
|
|
|
|
do {
|
|
status = serial_port_in(port, SCxSR);
|
|
} while (!(status & SCxSR_TDxE(port)));
|
|
|
|
serial_port_out(port, SCxTDR, c);
|
|
serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
|
|
}
|
|
#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
|
|
|
|
static void sci_init_pins(struct uart_port *port, unsigned int cflag)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
|
|
|
|
/*
|
|
* Use port-specific handler if provided.
|
|
*/
|
|
if (s->cfg->ops && s->cfg->ops->init_pins) {
|
|
s->cfg->ops->init_pins(port, cflag);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* For the generic path SCSPTR is necessary. Bail out if that's
|
|
* unavailable, too.
|
|
*/
|
|
if (!reg->size)
|
|
return;
|
|
|
|
if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
|
|
((!(cflag & CRTSCTS)))) {
|
|
unsigned short status;
|
|
|
|
status = serial_port_in(port, SCSPTR);
|
|
status &= ~SCSPTR_CTSIO;
|
|
status |= SCSPTR_RTSIO;
|
|
serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
|
|
}
|
|
}
|
|
|
|
static int sci_txfill(struct uart_port *port)
|
|
{
|
|
struct plat_sci_reg *reg;
|
|
|
|
reg = sci_getreg(port, SCTFDR);
|
|
if (reg->size)
|
|
return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
|
|
|
|
reg = sci_getreg(port, SCFDR);
|
|
if (reg->size)
|
|
return serial_port_in(port, SCFDR) >> 8;
|
|
|
|
return !(serial_port_in(port, SCxSR) & SCI_TDRE);
|
|
}
|
|
|
|
static int sci_txroom(struct uart_port *port)
|
|
{
|
|
return port->fifosize - sci_txfill(port);
|
|
}
|
|
|
|
static int sci_rxfill(struct uart_port *port)
|
|
{
|
|
struct plat_sci_reg *reg;
|
|
|
|
reg = sci_getreg(port, SCRFDR);
|
|
if (reg->size)
|
|
return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
|
|
|
|
reg = sci_getreg(port, SCFDR);
|
|
if (reg->size)
|
|
return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
|
|
|
|
return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
|
|
}
|
|
|
|
/*
|
|
* SCI helper for checking the state of the muxed port/RXD pins.
|
|
*/
|
|
static inline int sci_rxd_in(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
if (s->cfg->port_reg <= 0)
|
|
return 1;
|
|
|
|
/* Cast for ARM damage */
|
|
return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
|
|
}
|
|
|
|
/* ********************************************************************** *
|
|
* the interrupt related routines *
|
|
* ********************************************************************** */
|
|
|
|
static void sci_transmit_chars(struct uart_port *port)
|
|
{
|
|
struct circ_buf *xmit = &port->state->xmit;
|
|
unsigned int stopped = uart_tx_stopped(port);
|
|
unsigned short status;
|
|
unsigned short ctrl;
|
|
int count;
|
|
|
|
status = serial_port_in(port, SCxSR);
|
|
if (!(status & SCxSR_TDxE(port))) {
|
|
ctrl = serial_port_in(port, SCSCR);
|
|
if (uart_circ_empty(xmit))
|
|
ctrl &= ~SCSCR_TIE;
|
|
else
|
|
ctrl |= SCSCR_TIE;
|
|
serial_port_out(port, SCSCR, ctrl);
|
|
return;
|
|
}
|
|
|
|
count = sci_txroom(port);
|
|
|
|
do {
|
|
unsigned char c;
|
|
|
|
if (port->x_char) {
|
|
c = port->x_char;
|
|
port->x_char = 0;
|
|
} else if (!uart_circ_empty(xmit) && !stopped) {
|
|
c = xmit->buf[xmit->tail];
|
|
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
|
|
} else {
|
|
break;
|
|
}
|
|
|
|
serial_port_out(port, SCxTDR, c);
|
|
|
|
port->icount.tx++;
|
|
} while (--count > 0);
|
|
|
|
serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
|
|
|
|
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
|
|
uart_write_wakeup(port);
|
|
if (uart_circ_empty(xmit)) {
|
|
sci_stop_tx(port);
|
|
} else {
|
|
ctrl = serial_port_in(port, SCSCR);
|
|
|
|
if (port->type != PORT_SCI) {
|
|
serial_port_in(port, SCxSR); /* Dummy read */
|
|
serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
|
|
}
|
|
|
|
ctrl |= SCSCR_TIE;
|
|
serial_port_out(port, SCSCR, ctrl);
|
|
}
|
|
}
|
|
|
|
/* On SH3, SCIF may read end-of-break as a space->mark char */
|
|
#define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
|
|
|
|
static void sci_receive_chars(struct uart_port *port)
|
|
{
|
|
struct sci_port *sci_port = to_sci_port(port);
|
|
struct tty_port *tport = &port->state->port;
|
|
int i, count, copied = 0;
|
|
unsigned short status;
|
|
unsigned char flag;
|
|
|
|
status = serial_port_in(port, SCxSR);
|
|
if (!(status & SCxSR_RDxF(port)))
|
|
return;
|
|
|
|
while (1) {
|
|
/* Don't copy more bytes than there is room for in the buffer */
|
|
count = tty_buffer_request_room(tport, sci_rxfill(port));
|
|
|
|
/* If for any reason we can't copy more data, we're done! */
|
|
if (count == 0)
|
|
break;
|
|
|
|
if (port->type == PORT_SCI) {
|
|
char c = serial_port_in(port, SCxRDR);
|
|
if (uart_handle_sysrq_char(port, c) ||
|
|
sci_port->break_flag)
|
|
count = 0;
|
|
else
|
|
tty_insert_flip_char(tport, c, TTY_NORMAL);
|
|
} else {
|
|
for (i = 0; i < count; i++) {
|
|
char c = serial_port_in(port, SCxRDR);
|
|
|
|
status = serial_port_in(port, SCxSR);
|
|
#if defined(CONFIG_CPU_SH3)
|
|
/* Skip "chars" during break */
|
|
if (sci_port->break_flag) {
|
|
if ((c == 0) &&
|
|
(status & SCxSR_FER(port))) {
|
|
count--; i--;
|
|
continue;
|
|
}
|
|
|
|
/* Nonzero => end-of-break */
|
|
dev_dbg(port->dev, "debounce<%02x>\n", c);
|
|
sci_port->break_flag = 0;
|
|
|
|
if (STEPFN(c)) {
|
|
count--; i--;
|
|
continue;
|
|
}
|
|
}
|
|
#endif /* CONFIG_CPU_SH3 */
|
|
if (uart_handle_sysrq_char(port, c)) {
|
|
count--; i--;
|
|
continue;
|
|
}
|
|
|
|
/* Store data and status */
|
|
if (status & SCxSR_FER(port)) {
|
|
flag = TTY_FRAME;
|
|
port->icount.frame++;
|
|
dev_notice(port->dev, "frame error\n");
|
|
} else if (status & SCxSR_PER(port)) {
|
|
flag = TTY_PARITY;
|
|
port->icount.parity++;
|
|
dev_notice(port->dev, "parity error\n");
|
|
} else
|
|
flag = TTY_NORMAL;
|
|
|
|
tty_insert_flip_char(tport, c, flag);
|
|
}
|
|
}
|
|
|
|
serial_port_in(port, SCxSR); /* dummy read */
|
|
serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
|
|
|
|
copied += count;
|
|
port->icount.rx += count;
|
|
}
|
|
|
|
if (copied) {
|
|
/* Tell the rest of the system the news. New characters! */
|
|
tty_flip_buffer_push(tport);
|
|
} else {
|
|
serial_port_in(port, SCxSR); /* dummy read */
|
|
serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
|
|
}
|
|
}
|
|
|
|
#define SCI_BREAK_JIFFIES (HZ/20)
|
|
|
|
/*
|
|
* The sci generates interrupts during the break,
|
|
* 1 per millisecond or so during the break period, for 9600 baud.
|
|
* So dont bother disabling interrupts.
|
|
* But dont want more than 1 break event.
|
|
* Use a kernel timer to periodically poll the rx line until
|
|
* the break is finished.
|
|
*/
|
|
static inline void sci_schedule_break_timer(struct sci_port *port)
|
|
{
|
|
mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
|
|
}
|
|
|
|
/* Ensure that two consecutive samples find the break over. */
|
|
static void sci_break_timer(unsigned long data)
|
|
{
|
|
struct sci_port *port = (struct sci_port *)data;
|
|
|
|
if (sci_rxd_in(&port->port) == 0) {
|
|
port->break_flag = 1;
|
|
sci_schedule_break_timer(port);
|
|
} else if (port->break_flag == 1) {
|
|
/* break is over. */
|
|
port->break_flag = 2;
|
|
sci_schedule_break_timer(port);
|
|
} else
|
|
port->break_flag = 0;
|
|
}
|
|
|
|
static int sci_handle_errors(struct uart_port *port)
|
|
{
|
|
int copied = 0;
|
|
unsigned short status = serial_port_in(port, SCxSR);
|
|
struct tty_port *tport = &port->state->port;
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
/* Handle overruns */
|
|
if (status & (1 << s->overrun_bit)) {
|
|
port->icount.overrun++;
|
|
|
|
/* overrun error */
|
|
if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
|
|
copied++;
|
|
|
|
dev_notice(port->dev, "overrun error\n");
|
|
}
|
|
|
|
if (status & SCxSR_FER(port)) {
|
|
if (sci_rxd_in(port) == 0) {
|
|
/* Notify of BREAK */
|
|
struct sci_port *sci_port = to_sci_port(port);
|
|
|
|
if (!sci_port->break_flag) {
|
|
port->icount.brk++;
|
|
|
|
sci_port->break_flag = 1;
|
|
sci_schedule_break_timer(sci_port);
|
|
|
|
/* Do sysrq handling. */
|
|
if (uart_handle_break(port))
|
|
return 0;
|
|
|
|
dev_dbg(port->dev, "BREAK detected\n");
|
|
|
|
if (tty_insert_flip_char(tport, 0, TTY_BREAK))
|
|
copied++;
|
|
}
|
|
|
|
} else {
|
|
/* frame error */
|
|
port->icount.frame++;
|
|
|
|
if (tty_insert_flip_char(tport, 0, TTY_FRAME))
|
|
copied++;
|
|
|
|
dev_notice(port->dev, "frame error\n");
|
|
}
|
|
}
|
|
|
|
if (status & SCxSR_PER(port)) {
|
|
/* parity error */
|
|
port->icount.parity++;
|
|
|
|
if (tty_insert_flip_char(tport, 0, TTY_PARITY))
|
|
copied++;
|
|
|
|
dev_notice(port->dev, "parity error\n");
|
|
}
|
|
|
|
if (copied)
|
|
tty_flip_buffer_push(tport);
|
|
|
|
return copied;
|
|
}
|
|
|
|
static int sci_handle_fifo_overrun(struct uart_port *port)
|
|
{
|
|
struct tty_port *tport = &port->state->port;
|
|
struct sci_port *s = to_sci_port(port);
|
|
struct plat_sci_reg *reg;
|
|
int copied = 0;
|
|
|
|
reg = sci_getreg(port, SCLSR);
|
|
if (!reg->size)
|
|
return 0;
|
|
|
|
if ((serial_port_in(port, SCLSR) & (1 << s->overrun_bit))) {
|
|
serial_port_out(port, SCLSR, 0);
|
|
|
|
port->icount.overrun++;
|
|
|
|
tty_insert_flip_char(tport, 0, TTY_OVERRUN);
|
|
tty_flip_buffer_push(tport);
|
|
|
|
dev_notice(port->dev, "overrun error\n");
|
|
copied++;
|
|
}
|
|
|
|
return copied;
|
|
}
|
|
|
|
static int sci_handle_breaks(struct uart_port *port)
|
|
{
|
|
int copied = 0;
|
|
unsigned short status = serial_port_in(port, SCxSR);
|
|
struct tty_port *tport = &port->state->port;
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
if (uart_handle_break(port))
|
|
return 0;
|
|
|
|
if (!s->break_flag && status & SCxSR_BRK(port)) {
|
|
#if defined(CONFIG_CPU_SH3)
|
|
/* Debounce break */
|
|
s->break_flag = 1;
|
|
#endif
|
|
|
|
port->icount.brk++;
|
|
|
|
/* Notify of BREAK */
|
|
if (tty_insert_flip_char(tport, 0, TTY_BREAK))
|
|
copied++;
|
|
|
|
dev_dbg(port->dev, "BREAK detected\n");
|
|
}
|
|
|
|
if (copied)
|
|
tty_flip_buffer_push(tport);
|
|
|
|
copied += sci_handle_fifo_overrun(port);
|
|
|
|
return copied;
|
|
}
|
|
|
|
static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
|
|
{
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
struct uart_port *port = ptr;
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
if (s->chan_rx) {
|
|
u16 scr = serial_port_in(port, SCSCR);
|
|
u16 ssr = serial_port_in(port, SCxSR);
|
|
|
|
/* Disable future Rx interrupts */
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
disable_irq_nosync(irq);
|
|
scr |= SCSCR_RDRQE;
|
|
} else {
|
|
scr &= ~SCSCR_RIE;
|
|
}
|
|
serial_port_out(port, SCSCR, scr);
|
|
/* Clear current interrupt */
|
|
serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
|
|
dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
|
|
jiffies, s->rx_timeout);
|
|
mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
#endif
|
|
|
|
/* I think sci_receive_chars has to be called irrespective
|
|
* of whether the I_IXOFF is set, otherwise, how is the interrupt
|
|
* to be disabled?
|
|
*/
|
|
sci_receive_chars(ptr);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
|
|
{
|
|
struct uart_port *port = ptr;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
sci_transmit_chars(port);
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sci_er_interrupt(int irq, void *ptr)
|
|
{
|
|
struct uart_port *port = ptr;
|
|
|
|
/* Handle errors */
|
|
if (port->type == PORT_SCI) {
|
|
if (sci_handle_errors(port)) {
|
|
/* discard character in rx buffer */
|
|
serial_port_in(port, SCxSR);
|
|
serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
|
|
}
|
|
} else {
|
|
sci_handle_fifo_overrun(port);
|
|
sci_rx_interrupt(irq, ptr);
|
|
}
|
|
|
|
serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
|
|
|
|
/* Kick the transmission */
|
|
sci_tx_interrupt(irq, ptr);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sci_br_interrupt(int irq, void *ptr)
|
|
{
|
|
struct uart_port *port = ptr;
|
|
|
|
/* Handle BREAKs */
|
|
sci_handle_breaks(port);
|
|
serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static inline unsigned long port_rx_irq_mask(struct uart_port *port)
|
|
{
|
|
/*
|
|
* Not all ports (such as SCIFA) will support REIE. Rather than
|
|
* special-casing the port type, we check the port initialization
|
|
* IRQ enable mask to see whether the IRQ is desired at all. If
|
|
* it's unset, it's logically inferred that there's no point in
|
|
* testing for it.
|
|
*/
|
|
return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
|
|
}
|
|
|
|
static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
|
|
{
|
|
unsigned short ssr_status, scr_status, err_enabled;
|
|
struct uart_port *port = ptr;
|
|
struct sci_port *s = to_sci_port(port);
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
ssr_status = serial_port_in(port, SCxSR);
|
|
scr_status = serial_port_in(port, SCSCR);
|
|
err_enabled = scr_status & port_rx_irq_mask(port);
|
|
|
|
/* Tx Interrupt */
|
|
if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
|
|
!s->chan_tx)
|
|
ret = sci_tx_interrupt(irq, ptr);
|
|
|
|
/*
|
|
* Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
|
|
* DR flags
|
|
*/
|
|
if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
|
|
(scr_status & SCSCR_RIE))
|
|
ret = sci_rx_interrupt(irq, ptr);
|
|
|
|
/* Error Interrupt */
|
|
if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
|
|
ret = sci_er_interrupt(irq, ptr);
|
|
|
|
/* Break Interrupt */
|
|
if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
|
|
ret = sci_br_interrupt(irq, ptr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Here we define a transition notifier so that we can update all of our
|
|
* ports' baud rate when the peripheral clock changes.
|
|
*/
|
|
static int sci_notifier(struct notifier_block *self,
|
|
unsigned long phase, void *p)
|
|
{
|
|
struct sci_port *sci_port;
|
|
unsigned long flags;
|
|
|
|
sci_port = container_of(self, struct sci_port, freq_transition);
|
|
|
|
if (phase == CPUFREQ_POSTCHANGE) {
|
|
struct uart_port *port = &sci_port->port;
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
port->uartclk = clk_get_rate(sci_port->iclk);
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct sci_irq_desc {
|
|
const char *desc;
|
|
irq_handler_t handler;
|
|
} sci_irq_desc[] = {
|
|
/*
|
|
* Split out handlers, the default case.
|
|
*/
|
|
[SCIx_ERI_IRQ] = {
|
|
.desc = "rx err",
|
|
.handler = sci_er_interrupt,
|
|
},
|
|
|
|
[SCIx_RXI_IRQ] = {
|
|
.desc = "rx full",
|
|
.handler = sci_rx_interrupt,
|
|
},
|
|
|
|
[SCIx_TXI_IRQ] = {
|
|
.desc = "tx empty",
|
|
.handler = sci_tx_interrupt,
|
|
},
|
|
|
|
[SCIx_BRI_IRQ] = {
|
|
.desc = "break",
|
|
.handler = sci_br_interrupt,
|
|
},
|
|
|
|
/*
|
|
* Special muxed handler.
|
|
*/
|
|
[SCIx_MUX_IRQ] = {
|
|
.desc = "mux",
|
|
.handler = sci_mpxed_interrupt,
|
|
},
|
|
};
|
|
|
|
static int sci_request_irq(struct sci_port *port)
|
|
{
|
|
struct uart_port *up = &port->port;
|
|
int i, j, ret = 0;
|
|
|
|
for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
|
|
struct sci_irq_desc *desc;
|
|
int irq;
|
|
|
|
if (SCIx_IRQ_IS_MUXED(port)) {
|
|
i = SCIx_MUX_IRQ;
|
|
irq = up->irq;
|
|
} else {
|
|
irq = port->irqs[i];
|
|
|
|
/*
|
|
* Certain port types won't support all of the
|
|
* available interrupt sources.
|
|
*/
|
|
if (unlikely(irq < 0))
|
|
continue;
|
|
}
|
|
|
|
desc = sci_irq_desc + i;
|
|
port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
|
|
dev_name(up->dev), desc->desc);
|
|
if (!port->irqstr[j]) {
|
|
dev_err(up->dev, "Failed to allocate %s IRQ string\n",
|
|
desc->desc);
|
|
goto out_nomem;
|
|
}
|
|
|
|
ret = request_irq(irq, desc->handler, up->irqflags,
|
|
port->irqstr[j], port);
|
|
if (unlikely(ret)) {
|
|
dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
|
|
goto out_noirq;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_noirq:
|
|
while (--i >= 0)
|
|
free_irq(port->irqs[i], port);
|
|
|
|
out_nomem:
|
|
while (--j >= 0)
|
|
kfree(port->irqstr[j]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sci_free_irq(struct sci_port *port)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Intentionally in reverse order so we iterate over the muxed
|
|
* IRQ first.
|
|
*/
|
|
for (i = 0; i < SCIx_NR_IRQS; i++) {
|
|
int irq = port->irqs[i];
|
|
|
|
/*
|
|
* Certain port types won't support all of the available
|
|
* interrupt sources.
|
|
*/
|
|
if (unlikely(irq < 0))
|
|
continue;
|
|
|
|
free_irq(port->irqs[i], port);
|
|
kfree(port->irqstr[i]);
|
|
|
|
if (SCIx_IRQ_IS_MUXED(port)) {
|
|
/* If there's only one IRQ, we're done. */
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned int sci_tx_empty(struct uart_port *port)
|
|
{
|
|
unsigned short status = serial_port_in(port, SCxSR);
|
|
unsigned short in_tx_fifo = sci_txfill(port);
|
|
|
|
return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
|
|
}
|
|
|
|
/*
|
|
* Modem control is a bit of a mixed bag for SCI(F) ports. Generally
|
|
* CTS/RTS is supported in hardware by at least one port and controlled
|
|
* via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
|
|
* handled via the ->init_pins() op, which is a bit of a one-way street,
|
|
* lacking any ability to defer pin control -- this will later be
|
|
* converted over to the GPIO framework).
|
|
*
|
|
* Other modes (such as loopback) are supported generically on certain
|
|
* port types, but not others. For these it's sufficient to test for the
|
|
* existence of the support register and simply ignore the port type.
|
|
*/
|
|
static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
|
|
{
|
|
if (mctrl & TIOCM_LOOP) {
|
|
struct plat_sci_reg *reg;
|
|
|
|
/*
|
|
* Standard loopback mode for SCFCR ports.
|
|
*/
|
|
reg = sci_getreg(port, SCFCR);
|
|
if (reg->size)
|
|
serial_port_out(port, SCFCR,
|
|
serial_port_in(port, SCFCR) |
|
|
SCFCR_LOOP);
|
|
}
|
|
}
|
|
|
|
static unsigned int sci_get_mctrl(struct uart_port *port)
|
|
{
|
|
/*
|
|
* CTS/RTS is handled in hardware when supported, while nothing
|
|
* else is wired up. Keep it simple and simply assert DSR/CAR.
|
|
*/
|
|
return TIOCM_DSR | TIOCM_CAR;
|
|
}
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
static void sci_dma_tx_complete(void *arg)
|
|
{
|
|
struct sci_port *s = arg;
|
|
struct uart_port *port = &s->port;
|
|
struct circ_buf *xmit = &port->state->xmit;
|
|
unsigned long flags;
|
|
|
|
dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
|
|
xmit->tail += sg_dma_len(&s->sg_tx);
|
|
xmit->tail &= UART_XMIT_SIZE - 1;
|
|
|
|
port->icount.tx += sg_dma_len(&s->sg_tx);
|
|
|
|
async_tx_ack(s->desc_tx);
|
|
s->desc_tx = NULL;
|
|
|
|
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
|
|
uart_write_wakeup(port);
|
|
|
|
if (!uart_circ_empty(xmit)) {
|
|
s->cookie_tx = 0;
|
|
schedule_work(&s->work_tx);
|
|
} else {
|
|
s->cookie_tx = -EINVAL;
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
u16 ctrl = serial_port_in(port, SCSCR);
|
|
serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
}
|
|
|
|
/* Locking: called with port lock held */
|
|
static int sci_dma_rx_push(struct sci_port *s, size_t count)
|
|
{
|
|
struct uart_port *port = &s->port;
|
|
struct tty_port *tport = &port->state->port;
|
|
int i, active, room;
|
|
|
|
room = tty_buffer_request_room(tport, count);
|
|
|
|
if (s->active_rx == s->cookie_rx[0]) {
|
|
active = 0;
|
|
} else if (s->active_rx == s->cookie_rx[1]) {
|
|
active = 1;
|
|
} else {
|
|
dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
|
|
return 0;
|
|
}
|
|
|
|
if (room < count)
|
|
dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
|
|
count - room);
|
|
if (!room)
|
|
return room;
|
|
|
|
for (i = 0; i < room; i++)
|
|
tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
|
|
TTY_NORMAL);
|
|
|
|
port->icount.rx += room;
|
|
|
|
return room;
|
|
}
|
|
|
|
static void sci_dma_rx_complete(void *arg)
|
|
{
|
|
struct sci_port *s = arg;
|
|
struct uart_port *port = &s->port;
|
|
unsigned long flags;
|
|
int count;
|
|
|
|
dev_dbg(port->dev, "%s(%d) active #%d\n",
|
|
__func__, port->line, s->active_rx);
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
|
|
count = sci_dma_rx_push(s, s->buf_len_rx);
|
|
|
|
mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
|
|
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
|
|
if (count)
|
|
tty_flip_buffer_push(&port->state->port);
|
|
|
|
schedule_work(&s->work_rx);
|
|
}
|
|
|
|
static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
|
|
{
|
|
struct dma_chan *chan = s->chan_rx;
|
|
struct uart_port *port = &s->port;
|
|
|
|
s->chan_rx = NULL;
|
|
s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
|
|
dma_release_channel(chan);
|
|
if (sg_dma_address(&s->sg_rx[0]))
|
|
dma_free_coherent(port->dev, s->buf_len_rx * 2,
|
|
sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
|
|
if (enable_pio)
|
|
sci_start_rx(port);
|
|
}
|
|
|
|
static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
|
|
{
|
|
struct dma_chan *chan = s->chan_tx;
|
|
struct uart_port *port = &s->port;
|
|
|
|
s->chan_tx = NULL;
|
|
s->cookie_tx = -EINVAL;
|
|
dma_release_channel(chan);
|
|
if (enable_pio)
|
|
sci_start_tx(port);
|
|
}
|
|
|
|
static void sci_submit_rx(struct sci_port *s)
|
|
{
|
|
struct dma_chan *chan = s->chan_rx;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct scatterlist *sg = &s->sg_rx[i];
|
|
struct dma_async_tx_descriptor *desc;
|
|
|
|
desc = dmaengine_prep_slave_sg(chan,
|
|
sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
|
|
|
|
if (desc) {
|
|
s->desc_rx[i] = desc;
|
|
desc->callback = sci_dma_rx_complete;
|
|
desc->callback_param = s;
|
|
s->cookie_rx[i] = desc->tx_submit(desc);
|
|
}
|
|
|
|
if (!desc || s->cookie_rx[i] < 0) {
|
|
if (i) {
|
|
async_tx_ack(s->desc_rx[0]);
|
|
s->cookie_rx[0] = -EINVAL;
|
|
}
|
|
if (desc) {
|
|
async_tx_ack(desc);
|
|
s->cookie_rx[i] = -EINVAL;
|
|
}
|
|
dev_warn(s->port.dev,
|
|
"failed to re-start DMA, using PIO\n");
|
|
sci_rx_dma_release(s, true);
|
|
return;
|
|
}
|
|
dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n",
|
|
__func__, s->cookie_rx[i], i);
|
|
}
|
|
|
|
s->active_rx = s->cookie_rx[0];
|
|
|
|
dma_async_issue_pending(chan);
|
|
}
|
|
|
|
static void work_fn_rx(struct work_struct *work)
|
|
{
|
|
struct sci_port *s = container_of(work, struct sci_port, work_rx);
|
|
struct uart_port *port = &s->port;
|
|
struct dma_async_tx_descriptor *desc;
|
|
int new;
|
|
|
|
if (s->active_rx == s->cookie_rx[0]) {
|
|
new = 0;
|
|
} else if (s->active_rx == s->cookie_rx[1]) {
|
|
new = 1;
|
|
} else {
|
|
dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
|
|
return;
|
|
}
|
|
desc = s->desc_rx[new];
|
|
|
|
if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
|
|
DMA_COMPLETE) {
|
|
/* Handle incomplete DMA receive */
|
|
struct dma_chan *chan = s->chan_rx;
|
|
struct shdma_desc *sh_desc = container_of(desc,
|
|
struct shdma_desc, async_tx);
|
|
unsigned long flags;
|
|
int count;
|
|
|
|
dmaengine_terminate_all(chan);
|
|
dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
|
|
sh_desc->partial, sh_desc->cookie);
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
count = sci_dma_rx_push(s, sh_desc->partial);
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
|
|
if (count)
|
|
tty_flip_buffer_push(&port->state->port);
|
|
|
|
sci_submit_rx(s);
|
|
|
|
return;
|
|
}
|
|
|
|
s->cookie_rx[new] = desc->tx_submit(desc);
|
|
if (s->cookie_rx[new] < 0) {
|
|
dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
|
|
sci_rx_dma_release(s, true);
|
|
return;
|
|
}
|
|
|
|
s->active_rx = s->cookie_rx[!new];
|
|
|
|
dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n",
|
|
__func__, s->cookie_rx[new], new, s->active_rx);
|
|
}
|
|
|
|
static void work_fn_tx(struct work_struct *work)
|
|
{
|
|
struct sci_port *s = container_of(work, struct sci_port, work_tx);
|
|
struct dma_async_tx_descriptor *desc;
|
|
struct dma_chan *chan = s->chan_tx;
|
|
struct uart_port *port = &s->port;
|
|
struct circ_buf *xmit = &port->state->xmit;
|
|
struct scatterlist *sg = &s->sg_tx;
|
|
|
|
/*
|
|
* DMA is idle now.
|
|
* Port xmit buffer is already mapped, and it is one page... Just adjust
|
|
* offsets and lengths. Since it is a circular buffer, we have to
|
|
* transmit till the end, and then the rest. Take the port lock to get a
|
|
* consistent xmit buffer state.
|
|
*/
|
|
spin_lock_irq(&port->lock);
|
|
sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
|
|
sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
|
|
sg->offset;
|
|
sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
|
|
CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
|
|
spin_unlock_irq(&port->lock);
|
|
|
|
BUG_ON(!sg_dma_len(sg));
|
|
|
|
desc = dmaengine_prep_slave_sg(chan,
|
|
sg, s->sg_len_tx, DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc) {
|
|
/* switch to PIO */
|
|
sci_tx_dma_release(s, true);
|
|
return;
|
|
}
|
|
|
|
dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
|
|
|
|
spin_lock_irq(&port->lock);
|
|
s->desc_tx = desc;
|
|
desc->callback = sci_dma_tx_complete;
|
|
desc->callback_param = s;
|
|
spin_unlock_irq(&port->lock);
|
|
s->cookie_tx = desc->tx_submit(desc);
|
|
if (s->cookie_tx < 0) {
|
|
dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
|
|
/* switch to PIO */
|
|
sci_tx_dma_release(s, true);
|
|
return;
|
|
}
|
|
|
|
dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
|
|
__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
|
|
|
|
dma_async_issue_pending(chan);
|
|
}
|
|
#endif
|
|
|
|
static void sci_start_tx(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
unsigned short ctrl;
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
u16 new, scr = serial_port_in(port, SCSCR);
|
|
if (s->chan_tx)
|
|
new = scr | SCSCR_TDRQE;
|
|
else
|
|
new = scr & ~SCSCR_TDRQE;
|
|
if (new != scr)
|
|
serial_port_out(port, SCSCR, new);
|
|
}
|
|
|
|
if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
|
|
s->cookie_tx < 0) {
|
|
s->cookie_tx = 0;
|
|
schedule_work(&s->work_tx);
|
|
}
|
|
#endif
|
|
|
|
if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
|
|
ctrl = serial_port_in(port, SCSCR);
|
|
serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
|
|
}
|
|
}
|
|
|
|
static void sci_stop_tx(struct uart_port *port)
|
|
{
|
|
unsigned short ctrl;
|
|
|
|
/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
|
|
ctrl = serial_port_in(port, SCSCR);
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
|
|
ctrl &= ~SCSCR_TDRQE;
|
|
|
|
ctrl &= ~SCSCR_TIE;
|
|
|
|
serial_port_out(port, SCSCR, ctrl);
|
|
}
|
|
|
|
static void sci_start_rx(struct uart_port *port)
|
|
{
|
|
unsigned short ctrl;
|
|
|
|
ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
|
|
ctrl &= ~SCSCR_RDRQE;
|
|
|
|
serial_port_out(port, SCSCR, ctrl);
|
|
}
|
|
|
|
static void sci_stop_rx(struct uart_port *port)
|
|
{
|
|
unsigned short ctrl;
|
|
|
|
ctrl = serial_port_in(port, SCSCR);
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
|
|
ctrl &= ~SCSCR_RDRQE;
|
|
|
|
ctrl &= ~port_rx_irq_mask(port);
|
|
|
|
serial_port_out(port, SCSCR, ctrl);
|
|
}
|
|
|
|
static void sci_break_ctl(struct uart_port *port, int break_state)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
|
|
unsigned short scscr, scsptr;
|
|
|
|
/* check wheter the port has SCSPTR */
|
|
if (!reg->size) {
|
|
/*
|
|
* Not supported by hardware. Most parts couple break and rx
|
|
* interrupts together, with break detection always enabled.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
scsptr = serial_port_in(port, SCSPTR);
|
|
scscr = serial_port_in(port, SCSCR);
|
|
|
|
if (break_state == -1) {
|
|
scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
|
|
scscr &= ~SCSCR_TE;
|
|
} else {
|
|
scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
|
|
scscr |= SCSCR_TE;
|
|
}
|
|
|
|
serial_port_out(port, SCSPTR, scsptr);
|
|
serial_port_out(port, SCSCR, scscr);
|
|
}
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
static bool filter(struct dma_chan *chan, void *slave)
|
|
{
|
|
struct sh_dmae_slave *param = slave;
|
|
|
|
dev_dbg(chan->device->dev, "%s: slave ID %d\n",
|
|
__func__, param->shdma_slave.slave_id);
|
|
|
|
chan->private = ¶m->shdma_slave;
|
|
return true;
|
|
}
|
|
|
|
static void rx_timer_fn(unsigned long arg)
|
|
{
|
|
struct sci_port *s = (struct sci_port *)arg;
|
|
struct uart_port *port = &s->port;
|
|
u16 scr = serial_port_in(port, SCSCR);
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
scr &= ~SCSCR_RDRQE;
|
|
enable_irq(s->irqs[SCIx_RXI_IRQ]);
|
|
}
|
|
serial_port_out(port, SCSCR, scr | SCSCR_RIE);
|
|
dev_dbg(port->dev, "DMA Rx timed out\n");
|
|
schedule_work(&s->work_rx);
|
|
}
|
|
|
|
static void sci_request_dma(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
struct sh_dmae_slave *param;
|
|
struct dma_chan *chan;
|
|
dma_cap_mask_t mask;
|
|
int nent;
|
|
|
|
dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
|
|
|
|
if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
|
|
return;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
param = &s->param_tx;
|
|
|
|
/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
|
|
param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
|
|
|
|
s->cookie_tx = -EINVAL;
|
|
chan = dma_request_channel(mask, filter, param);
|
|
dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
|
|
if (chan) {
|
|
s->chan_tx = chan;
|
|
sg_init_table(&s->sg_tx, 1);
|
|
/* UART circular tx buffer is an aligned page. */
|
|
BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
|
|
sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
|
|
UART_XMIT_SIZE,
|
|
(uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
|
|
nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
|
|
if (!nent)
|
|
sci_tx_dma_release(s, false);
|
|
else
|
|
dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n",
|
|
__func__,
|
|
sg_dma_len(&s->sg_tx), port->state->xmit.buf,
|
|
&sg_dma_address(&s->sg_tx));
|
|
|
|
s->sg_len_tx = nent;
|
|
|
|
INIT_WORK(&s->work_tx, work_fn_tx);
|
|
}
|
|
|
|
param = &s->param_rx;
|
|
|
|
/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
|
|
param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
|
|
|
|
chan = dma_request_channel(mask, filter, param);
|
|
dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
|
|
if (chan) {
|
|
dma_addr_t dma[2];
|
|
void *buf[2];
|
|
int i;
|
|
|
|
s->chan_rx = chan;
|
|
|
|
s->buf_len_rx = 2 * max(16, (int)port->fifosize);
|
|
buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
|
|
&dma[0], GFP_KERNEL);
|
|
|
|
if (!buf[0]) {
|
|
dev_warn(port->dev,
|
|
"failed to allocate dma buffer, using PIO\n");
|
|
sci_rx_dma_release(s, true);
|
|
return;
|
|
}
|
|
|
|
buf[1] = buf[0] + s->buf_len_rx;
|
|
dma[1] = dma[0] + s->buf_len_rx;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct scatterlist *sg = &s->sg_rx[i];
|
|
|
|
sg_init_table(sg, 1);
|
|
sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
|
|
(uintptr_t)buf[i] & ~PAGE_MASK);
|
|
sg_dma_address(sg) = dma[i];
|
|
}
|
|
|
|
INIT_WORK(&s->work_rx, work_fn_rx);
|
|
setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
|
|
|
|
sci_submit_rx(s);
|
|
}
|
|
}
|
|
|
|
static void sci_free_dma(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
if (s->chan_tx)
|
|
sci_tx_dma_release(s, false);
|
|
if (s->chan_rx)
|
|
sci_rx_dma_release(s, false);
|
|
}
|
|
#else
|
|
static inline void sci_request_dma(struct uart_port *port)
|
|
{
|
|
}
|
|
|
|
static inline void sci_free_dma(struct uart_port *port)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int sci_startup(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
|
|
|
|
ret = sci_request_irq(s);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
sci_request_dma(port);
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
sci_start_tx(port);
|
|
sci_start_rx(port);
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_shutdown(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
sci_stop_rx(port);
|
|
sci_stop_tx(port);
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
|
|
sci_free_dma(port);
|
|
sci_free_irq(s);
|
|
}
|
|
|
|
static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
|
|
unsigned long freq)
|
|
{
|
|
if (s->sampling_rate)
|
|
return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
|
|
|
|
/* Warn, but use a safe default */
|
|
WARN_ON(1);
|
|
|
|
return ((freq + 16 * bps) / (32 * bps) - 1);
|
|
}
|
|
|
|
/* calculate frame length from SMR */
|
|
static int sci_baud_calc_frame_len(unsigned int smr_val)
|
|
{
|
|
int len = 10;
|
|
|
|
if (smr_val & SCSMR_CHR)
|
|
len--;
|
|
if (smr_val & SCSMR_PE)
|
|
len++;
|
|
if (smr_val & SCSMR_STOP)
|
|
len++;
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
/* calculate sample rate, BRR, and clock select for HSCIF */
|
|
static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
|
|
int *brr, unsigned int *srr,
|
|
unsigned int *cks, int frame_len)
|
|
{
|
|
int sr, c, br, err, recv_margin;
|
|
int min_err = 1000; /* 100% */
|
|
int recv_max_margin = 0;
|
|
|
|
/* Find the combination of sample rate and clock select with the
|
|
smallest deviation from the desired baud rate. */
|
|
for (sr = 8; sr <= 32; sr++) {
|
|
for (c = 0; c <= 3; c++) {
|
|
/* integerized formulas from HSCIF documentation */
|
|
br = DIV_ROUND_CLOSEST(freq, (sr *
|
|
(1 << (2 * c + 1)) * bps)) - 1;
|
|
br = clamp(br, 0, 255);
|
|
err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr *
|
|
(1 << (2 * c + 1)) / 1000)) -
|
|
1000;
|
|
if (err < 0)
|
|
continue;
|
|
|
|
/* Calc recv margin
|
|
* M: Receive margin (%)
|
|
* N: Ratio of bit rate to clock (N = sampling rate)
|
|
* D: Clock duty (D = 0 to 1.0)
|
|
* L: Frame length (L = 9 to 12)
|
|
* F: Absolute value of clock frequency deviation
|
|
*
|
|
* M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
|
|
* (|D - 0.5| / N * (1 + F))|
|
|
* NOTE: Usually, treat D for 0.5, F is 0 by this
|
|
* calculation.
|
|
*/
|
|
recv_margin = abs((500 -
|
|
DIV_ROUND_CLOSEST(1000, sr << 1)) / 10);
|
|
if (min_err > err) {
|
|
min_err = err;
|
|
recv_max_margin = recv_margin;
|
|
} else if ((min_err == err) &&
|
|
(recv_margin > recv_max_margin))
|
|
recv_max_margin = recv_margin;
|
|
else
|
|
continue;
|
|
|
|
*brr = br;
|
|
*srr = sr - 1;
|
|
*cks = c;
|
|
}
|
|
}
|
|
|
|
if (min_err == 1000) {
|
|
WARN_ON(1);
|
|
/* use defaults */
|
|
*brr = 255;
|
|
*srr = 15;
|
|
*cks = 0;
|
|
}
|
|
}
|
|
|
|
static void sci_reset(struct uart_port *port)
|
|
{
|
|
struct plat_sci_reg *reg;
|
|
unsigned int status;
|
|
|
|
do {
|
|
status = serial_port_in(port, SCxSR);
|
|
} while (!(status & SCxSR_TEND(port)));
|
|
|
|
serial_port_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */
|
|
|
|
reg = sci_getreg(port, SCFCR);
|
|
if (reg->size)
|
|
serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
|
|
}
|
|
|
|
static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
|
|
struct ktermios *old)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
struct plat_sci_reg *reg;
|
|
unsigned int baud, smr_val = 0, max_baud, cks = 0;
|
|
int t = -1;
|
|
unsigned int srr = 15;
|
|
|
|
if ((termios->c_cflag & CSIZE) == CS7)
|
|
smr_val |= SCSMR_CHR;
|
|
if (termios->c_cflag & PARENB)
|
|
smr_val |= SCSMR_PE;
|
|
if (termios->c_cflag & PARODD)
|
|
smr_val |= SCSMR_PE | SCSMR_ODD;
|
|
if (termios->c_cflag & CSTOPB)
|
|
smr_val |= SCSMR_STOP;
|
|
|
|
/*
|
|
* earlyprintk comes here early on with port->uartclk set to zero.
|
|
* the clock framework is not up and running at this point so here
|
|
* we assume that 115200 is the maximum baud rate. please note that
|
|
* the baud rate is not programmed during earlyprintk - it is assumed
|
|
* that the previous boot loader has enabled required clocks and
|
|
* setup the baud rate generator hardware for us already.
|
|
*/
|
|
max_baud = port->uartclk ? port->uartclk / 16 : 115200;
|
|
|
|
baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
|
|
if (likely(baud && port->uartclk)) {
|
|
if (s->cfg->type == PORT_HSCIF) {
|
|
int frame_len = sci_baud_calc_frame_len(smr_val);
|
|
sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
|
|
&cks, frame_len);
|
|
} else {
|
|
t = sci_scbrr_calc(s, baud, port->uartclk);
|
|
for (cks = 0; t >= 256 && cks <= 3; cks++)
|
|
t >>= 2;
|
|
}
|
|
}
|
|
|
|
sci_port_enable(s);
|
|
|
|
sci_reset(port);
|
|
|
|
smr_val |= serial_port_in(port, SCSMR) & 3;
|
|
|
|
uart_update_timeout(port, termios->c_cflag, baud);
|
|
|
|
dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
|
|
__func__, smr_val, cks, t, s->cfg->scscr);
|
|
|
|
if (t >= 0) {
|
|
serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks);
|
|
serial_port_out(port, SCBRR, t);
|
|
reg = sci_getreg(port, HSSRR);
|
|
if (reg->size)
|
|
serial_port_out(port, HSSRR, srr | HSCIF_SRE);
|
|
udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
|
|
} else
|
|
serial_port_out(port, SCSMR, smr_val);
|
|
|
|
sci_init_pins(port, termios->c_cflag);
|
|
|
|
reg = sci_getreg(port, SCFCR);
|
|
if (reg->size) {
|
|
unsigned short ctrl = serial_port_in(port, SCFCR);
|
|
|
|
if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
|
|
if (termios->c_cflag & CRTSCTS)
|
|
ctrl |= SCFCR_MCE;
|
|
else
|
|
ctrl &= ~SCFCR_MCE;
|
|
}
|
|
|
|
/*
|
|
* As we've done a sci_reset() above, ensure we don't
|
|
* interfere with the FIFOs while toggling MCE. As the
|
|
* reset values could still be set, simply mask them out.
|
|
*/
|
|
ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
|
|
|
|
serial_port_out(port, SCFCR, ctrl);
|
|
}
|
|
|
|
serial_port_out(port, SCSCR, s->cfg->scscr);
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
/*
|
|
* Calculate delay for 1.5 DMA buffers: see
|
|
* drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
|
|
* (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
|
|
* calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
|
|
* Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
|
|
* sizes), but it has been found out experimentally, that this is not
|
|
* enough: the driver too often needlessly runs on a DMA timeout. 20ms
|
|
* as a minimum seem to work perfectly.
|
|
*/
|
|
if (s->chan_rx) {
|
|
s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
|
|
port->fifosize / 2;
|
|
dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
|
|
s->rx_timeout * 1000 / HZ, port->timeout);
|
|
if (s->rx_timeout < msecs_to_jiffies(20))
|
|
s->rx_timeout = msecs_to_jiffies(20);
|
|
}
|
|
#endif
|
|
|
|
if ((termios->c_cflag & CREAD) != 0)
|
|
sci_start_rx(port);
|
|
|
|
sci_port_disable(s);
|
|
}
|
|
|
|
static void sci_pm(struct uart_port *port, unsigned int state,
|
|
unsigned int oldstate)
|
|
{
|
|
struct sci_port *sci_port = to_sci_port(port);
|
|
|
|
switch (state) {
|
|
case UART_PM_STATE_OFF:
|
|
sci_port_disable(sci_port);
|
|
break;
|
|
default:
|
|
sci_port_enable(sci_port);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const char *sci_type(struct uart_port *port)
|
|
{
|
|
switch (port->type) {
|
|
case PORT_IRDA:
|
|
return "irda";
|
|
case PORT_SCI:
|
|
return "sci";
|
|
case PORT_SCIF:
|
|
return "scif";
|
|
case PORT_SCIFA:
|
|
return "scifa";
|
|
case PORT_SCIFB:
|
|
return "scifb";
|
|
case PORT_HSCIF:
|
|
return "hscif";
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline unsigned long sci_port_size(struct uart_port *port)
|
|
{
|
|
/*
|
|
* Pick an arbitrary size that encapsulates all of the base
|
|
* registers by default. This can be optimized later, or derived
|
|
* from platform resource data at such a time that ports begin to
|
|
* behave more erratically.
|
|
*/
|
|
if (port->type == PORT_HSCIF)
|
|
return 96;
|
|
else
|
|
return 64;
|
|
}
|
|
|
|
static int sci_remap_port(struct uart_port *port)
|
|
{
|
|
unsigned long size = sci_port_size(port);
|
|
|
|
/*
|
|
* Nothing to do if there's already an established membase.
|
|
*/
|
|
if (port->membase)
|
|
return 0;
|
|
|
|
if (port->flags & UPF_IOREMAP) {
|
|
port->membase = ioremap_nocache(port->mapbase, size);
|
|
if (unlikely(!port->membase)) {
|
|
dev_err(port->dev, "can't remap port#%d\n", port->line);
|
|
return -ENXIO;
|
|
}
|
|
} else {
|
|
/*
|
|
* For the simple (and majority of) cases where we don't
|
|
* need to do any remapping, just cast the cookie
|
|
* directly.
|
|
*/
|
|
port->membase = (void __iomem *)(uintptr_t)port->mapbase;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_release_port(struct uart_port *port)
|
|
{
|
|
if (port->flags & UPF_IOREMAP) {
|
|
iounmap(port->membase);
|
|
port->membase = NULL;
|
|
}
|
|
|
|
release_mem_region(port->mapbase, sci_port_size(port));
|
|
}
|
|
|
|
static int sci_request_port(struct uart_port *port)
|
|
{
|
|
unsigned long size = sci_port_size(port);
|
|
struct resource *res;
|
|
int ret;
|
|
|
|
res = request_mem_region(port->mapbase, size, dev_name(port->dev));
|
|
if (unlikely(res == NULL))
|
|
return -EBUSY;
|
|
|
|
ret = sci_remap_port(port);
|
|
if (unlikely(ret != 0)) {
|
|
release_resource(res);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_config_port(struct uart_port *port, int flags)
|
|
{
|
|
if (flags & UART_CONFIG_TYPE) {
|
|
struct sci_port *sport = to_sci_port(port);
|
|
|
|
port->type = sport->cfg->type;
|
|
sci_request_port(port);
|
|
}
|
|
}
|
|
|
|
static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
|
|
{
|
|
if (ser->baud_base < 2400)
|
|
/* No paper tape reader for Mitch.. */
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct uart_ops sci_uart_ops = {
|
|
.tx_empty = sci_tx_empty,
|
|
.set_mctrl = sci_set_mctrl,
|
|
.get_mctrl = sci_get_mctrl,
|
|
.start_tx = sci_start_tx,
|
|
.stop_tx = sci_stop_tx,
|
|
.stop_rx = sci_stop_rx,
|
|
.break_ctl = sci_break_ctl,
|
|
.startup = sci_startup,
|
|
.shutdown = sci_shutdown,
|
|
.set_termios = sci_set_termios,
|
|
.pm = sci_pm,
|
|
.type = sci_type,
|
|
.release_port = sci_release_port,
|
|
.request_port = sci_request_port,
|
|
.config_port = sci_config_port,
|
|
.verify_port = sci_verify_port,
|
|
#ifdef CONFIG_CONSOLE_POLL
|
|
.poll_get_char = sci_poll_get_char,
|
|
.poll_put_char = sci_poll_put_char,
|
|
#endif
|
|
};
|
|
|
|
static int sci_init_single(struct platform_device *dev,
|
|
struct sci_port *sci_port, unsigned int index,
|
|
struct plat_sci_port *p, bool early)
|
|
{
|
|
struct uart_port *port = &sci_port->port;
|
|
const struct resource *res;
|
|
unsigned int sampling_rate;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
sci_port->cfg = p;
|
|
|
|
port->ops = &sci_uart_ops;
|
|
port->iotype = UPIO_MEM;
|
|
port->line = index;
|
|
|
|
res = platform_get_resource(dev, IORESOURCE_MEM, 0);
|
|
if (res == NULL)
|
|
return -ENOMEM;
|
|
|
|
port->mapbase = res->start;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
|
|
sci_port->irqs[i] = platform_get_irq(dev, i);
|
|
|
|
/* The SCI generates several interrupts. They can be muxed together or
|
|
* connected to different interrupt lines. In the muxed case only one
|
|
* interrupt resource is specified. In the non-muxed case three or four
|
|
* interrupt resources are specified, as the BRI interrupt is optional.
|
|
*/
|
|
if (sci_port->irqs[0] < 0)
|
|
return -ENXIO;
|
|
|
|
if (sci_port->irqs[1] < 0) {
|
|
sci_port->irqs[1] = sci_port->irqs[0];
|
|
sci_port->irqs[2] = sci_port->irqs[0];
|
|
sci_port->irqs[3] = sci_port->irqs[0];
|
|
}
|
|
|
|
if (p->regtype == SCIx_PROBE_REGTYPE) {
|
|
ret = sci_probe_regmap(p);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
switch (p->type) {
|
|
case PORT_SCIFB:
|
|
port->fifosize = 256;
|
|
sci_port->overrun_bit = 9;
|
|
sampling_rate = 16;
|
|
break;
|
|
case PORT_HSCIF:
|
|
port->fifosize = 128;
|
|
sampling_rate = 0;
|
|
sci_port->overrun_bit = 0;
|
|
break;
|
|
case PORT_SCIFA:
|
|
port->fifosize = 64;
|
|
sci_port->overrun_bit = 9;
|
|
sampling_rate = 16;
|
|
break;
|
|
case PORT_SCIF:
|
|
port->fifosize = 16;
|
|
if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
|
|
sci_port->overrun_bit = 9;
|
|
sampling_rate = 16;
|
|
} else {
|
|
sci_port->overrun_bit = 0;
|
|
sampling_rate = 32;
|
|
}
|
|
break;
|
|
default:
|
|
port->fifosize = 1;
|
|
sci_port->overrun_bit = 5;
|
|
sampling_rate = 32;
|
|
break;
|
|
}
|
|
|
|
/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
|
|
* match the SoC datasheet, this should be investigated. Let platform
|
|
* data override the sampling rate for now.
|
|
*/
|
|
sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate
|
|
: sampling_rate;
|
|
|
|
if (!early) {
|
|
sci_port->iclk = clk_get(&dev->dev, "sci_ick");
|
|
if (IS_ERR(sci_port->iclk)) {
|
|
sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
|
|
if (IS_ERR(sci_port->iclk)) {
|
|
dev_err(&dev->dev, "can't get iclk\n");
|
|
return PTR_ERR(sci_port->iclk);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The function clock is optional, ignore it if we can't
|
|
* find it.
|
|
*/
|
|
sci_port->fclk = clk_get(&dev->dev, "sci_fck");
|
|
if (IS_ERR(sci_port->fclk))
|
|
sci_port->fclk = NULL;
|
|
|
|
port->dev = &dev->dev;
|
|
|
|
pm_runtime_enable(&dev->dev);
|
|
}
|
|
|
|
sci_port->break_timer.data = (unsigned long)sci_port;
|
|
sci_port->break_timer.function = sci_break_timer;
|
|
init_timer(&sci_port->break_timer);
|
|
|
|
/*
|
|
* Establish some sensible defaults for the error detection.
|
|
*/
|
|
sci_port->error_mask = (p->type == PORT_SCI) ?
|
|
SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
|
|
|
|
/*
|
|
* Establish sensible defaults for the overrun detection, unless
|
|
* the part has explicitly disabled support for it.
|
|
*/
|
|
|
|
/*
|
|
* Make the error mask inclusive of overrun detection, if
|
|
* supported.
|
|
*/
|
|
sci_port->error_mask |= 1 << sci_port->overrun_bit;
|
|
|
|
port->type = p->type;
|
|
port->flags = UPF_FIXED_PORT | p->flags;
|
|
port->regshift = p->regshift;
|
|
|
|
/*
|
|
* The UART port needs an IRQ value, so we peg this to the RX IRQ
|
|
* for the multi-IRQ ports, which is where we are primarily
|
|
* concerned with the shutdown path synchronization.
|
|
*
|
|
* For the muxed case there's nothing more to do.
|
|
*/
|
|
port->irq = sci_port->irqs[SCIx_RXI_IRQ];
|
|
port->irqflags = 0;
|
|
|
|
port->serial_in = sci_serial_in;
|
|
port->serial_out = sci_serial_out;
|
|
|
|
if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
|
|
dev_dbg(port->dev, "DMA tx %d, rx %d\n",
|
|
p->dma_slave_tx, p->dma_slave_rx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_cleanup_single(struct sci_port *port)
|
|
{
|
|
clk_put(port->iclk);
|
|
clk_put(port->fclk);
|
|
|
|
pm_runtime_disable(port->port.dev);
|
|
}
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
|
|
static void serial_console_putchar(struct uart_port *port, int ch)
|
|
{
|
|
sci_poll_put_char(port, ch);
|
|
}
|
|
|
|
/*
|
|
* Print a string to the serial port trying not to disturb
|
|
* any possible real use of the port...
|
|
*/
|
|
static void serial_console_write(struct console *co, const char *s,
|
|
unsigned count)
|
|
{
|
|
struct sci_port *sci_port = &sci_ports[co->index];
|
|
struct uart_port *port = &sci_port->port;
|
|
unsigned short bits, ctrl;
|
|
unsigned long flags;
|
|
int locked = 1;
|
|
|
|
local_irq_save(flags);
|
|
if (port->sysrq)
|
|
locked = 0;
|
|
else if (oops_in_progress)
|
|
locked = spin_trylock(&port->lock);
|
|
else
|
|
spin_lock(&port->lock);
|
|
|
|
/* first save the SCSCR then disable the interrupts */
|
|
ctrl = serial_port_in(port, SCSCR);
|
|
serial_port_out(port, SCSCR, sci_port->cfg->scscr);
|
|
|
|
uart_console_write(port, s, count, serial_console_putchar);
|
|
|
|
/* wait until fifo is empty and last bit has been transmitted */
|
|
bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
|
|
while ((serial_port_in(port, SCxSR) & bits) != bits)
|
|
cpu_relax();
|
|
|
|
/* restore the SCSCR */
|
|
serial_port_out(port, SCSCR, ctrl);
|
|
|
|
if (locked)
|
|
spin_unlock(&port->lock);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int serial_console_setup(struct console *co, char *options)
|
|
{
|
|
struct sci_port *sci_port;
|
|
struct uart_port *port;
|
|
int baud = 115200;
|
|
int bits = 8;
|
|
int parity = 'n';
|
|
int flow = 'n';
|
|
int ret;
|
|
|
|
/*
|
|
* Refuse to handle any bogus ports.
|
|
*/
|
|
if (co->index < 0 || co->index >= SCI_NPORTS)
|
|
return -ENODEV;
|
|
|
|
sci_port = &sci_ports[co->index];
|
|
port = &sci_port->port;
|
|
|
|
/*
|
|
* Refuse to handle uninitialized ports.
|
|
*/
|
|
if (!port->ops)
|
|
return -ENODEV;
|
|
|
|
ret = sci_remap_port(port);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
if (options)
|
|
uart_parse_options(options, &baud, &parity, &bits, &flow);
|
|
|
|
return uart_set_options(port, co, baud, parity, bits, flow);
|
|
}
|
|
|
|
static struct console serial_console = {
|
|
.name = "ttySC",
|
|
.device = uart_console_device,
|
|
.write = serial_console_write,
|
|
.setup = serial_console_setup,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = -1,
|
|
.data = &sci_uart_driver,
|
|
};
|
|
|
|
static struct console early_serial_console = {
|
|
.name = "early_ttySC",
|
|
.write = serial_console_write,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = -1,
|
|
};
|
|
|
|
static char early_serial_buf[32];
|
|
|
|
static int sci_probe_earlyprintk(struct platform_device *pdev)
|
|
{
|
|
struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
|
|
|
|
if (early_serial_console.data)
|
|
return -EEXIST;
|
|
|
|
early_serial_console.index = pdev->id;
|
|
|
|
sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
|
|
|
|
serial_console_setup(&early_serial_console, early_serial_buf);
|
|
|
|
if (!strstr(early_serial_buf, "keep"))
|
|
early_serial_console.flags |= CON_BOOT;
|
|
|
|
register_console(&early_serial_console);
|
|
return 0;
|
|
}
|
|
|
|
#define SCI_CONSOLE (&serial_console)
|
|
|
|
#else
|
|
static inline int sci_probe_earlyprintk(struct platform_device *pdev)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
#define SCI_CONSOLE NULL
|
|
|
|
#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
|
|
|
|
static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
|
|
|
|
static struct uart_driver sci_uart_driver = {
|
|
.owner = THIS_MODULE,
|
|
.driver_name = "sci",
|
|
.dev_name = "ttySC",
|
|
.major = SCI_MAJOR,
|
|
.minor = SCI_MINOR_START,
|
|
.nr = SCI_NPORTS,
|
|
.cons = SCI_CONSOLE,
|
|
};
|
|
|
|
static int sci_remove(struct platform_device *dev)
|
|
{
|
|
struct sci_port *port = platform_get_drvdata(dev);
|
|
|
|
cpufreq_unregister_notifier(&port->freq_transition,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
|
|
uart_remove_one_port(&sci_uart_driver, &port->port);
|
|
|
|
sci_cleanup_single(port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct sci_port_info {
|
|
unsigned int type;
|
|
unsigned int regtype;
|
|
};
|
|
|
|
static const struct of_device_id of_sci_match[] = {
|
|
{
|
|
.compatible = "renesas,scif",
|
|
.data = &(const struct sci_port_info) {
|
|
.type = PORT_SCIF,
|
|
.regtype = SCIx_SH4_SCIF_REGTYPE,
|
|
},
|
|
}, {
|
|
.compatible = "renesas,scifa",
|
|
.data = &(const struct sci_port_info) {
|
|
.type = PORT_SCIFA,
|
|
.regtype = SCIx_SCIFA_REGTYPE,
|
|
},
|
|
}, {
|
|
.compatible = "renesas,scifb",
|
|
.data = &(const struct sci_port_info) {
|
|
.type = PORT_SCIFB,
|
|
.regtype = SCIx_SCIFB_REGTYPE,
|
|
},
|
|
}, {
|
|
.compatible = "renesas,hscif",
|
|
.data = &(const struct sci_port_info) {
|
|
.type = PORT_HSCIF,
|
|
.regtype = SCIx_HSCIF_REGTYPE,
|
|
},
|
|
}, {
|
|
/* Terminator */
|
|
},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, of_sci_match);
|
|
|
|
static struct plat_sci_port *
|
|
sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
const struct of_device_id *match;
|
|
const struct sci_port_info *info;
|
|
struct plat_sci_port *p;
|
|
int id;
|
|
|
|
if (!IS_ENABLED(CONFIG_OF) || !np)
|
|
return NULL;
|
|
|
|
match = of_match_node(of_sci_match, pdev->dev.of_node);
|
|
if (!match)
|
|
return NULL;
|
|
|
|
info = match->data;
|
|
|
|
p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
|
|
if (!p) {
|
|
dev_err(&pdev->dev, "failed to allocate DT config data\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Get the line number for the aliases node. */
|
|
id = of_alias_get_id(np, "serial");
|
|
if (id < 0) {
|
|
dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
|
|
return NULL;
|
|
}
|
|
|
|
*dev_id = id;
|
|
|
|
p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
|
|
p->type = info->type;
|
|
p->regtype = info->regtype;
|
|
p->scscr = SCSCR_RE | SCSCR_TE;
|
|
|
|
return p;
|
|
}
|
|
|
|
static int sci_probe_single(struct platform_device *dev,
|
|
unsigned int index,
|
|
struct plat_sci_port *p,
|
|
struct sci_port *sciport)
|
|
{
|
|
int ret;
|
|
|
|
/* Sanity check */
|
|
if (unlikely(index >= SCI_NPORTS)) {
|
|
dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
|
|
index+1, SCI_NPORTS);
|
|
dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = sci_init_single(dev, sciport, index, p, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
|
|
if (ret) {
|
|
sci_cleanup_single(sciport);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sci_probe(struct platform_device *dev)
|
|
{
|
|
struct plat_sci_port *p;
|
|
struct sci_port *sp;
|
|
unsigned int dev_id;
|
|
int ret;
|
|
|
|
/*
|
|
* If we've come here via earlyprintk initialization, head off to
|
|
* the special early probe. We don't have sufficient device state
|
|
* to make it beyond this yet.
|
|
*/
|
|
if (is_early_platform_device(dev))
|
|
return sci_probe_earlyprintk(dev);
|
|
|
|
if (dev->dev.of_node) {
|
|
p = sci_parse_dt(dev, &dev_id);
|
|
if (p == NULL)
|
|
return -EINVAL;
|
|
} else {
|
|
p = dev->dev.platform_data;
|
|
if (p == NULL) {
|
|
dev_err(&dev->dev, "no platform data supplied\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_id = dev->id;
|
|
}
|
|
|
|
sp = &sci_ports[dev_id];
|
|
platform_set_drvdata(dev, sp);
|
|
|
|
ret = sci_probe_single(dev, dev_id, p, sp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sp->freq_transition.notifier_call = sci_notifier;
|
|
|
|
ret = cpufreq_register_notifier(&sp->freq_transition,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
if (unlikely(ret < 0)) {
|
|
uart_remove_one_port(&sci_uart_driver, &sp->port);
|
|
sci_cleanup_single(sp);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SH_STANDARD_BIOS
|
|
sh_bios_gdb_detach();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sci_suspend(struct device *dev)
|
|
{
|
|
struct sci_port *sport = dev_get_drvdata(dev);
|
|
|
|
if (sport)
|
|
uart_suspend_port(&sci_uart_driver, &sport->port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sci_resume(struct device *dev)
|
|
{
|
|
struct sci_port *sport = dev_get_drvdata(dev);
|
|
|
|
if (sport)
|
|
uart_resume_port(&sci_uart_driver, &sport->port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops sci_dev_pm_ops = {
|
|
.suspend = sci_suspend,
|
|
.resume = sci_resume,
|
|
};
|
|
|
|
static struct platform_driver sci_driver = {
|
|
.probe = sci_probe,
|
|
.remove = sci_remove,
|
|
.driver = {
|
|
.name = "sh-sci",
|
|
.owner = THIS_MODULE,
|
|
.pm = &sci_dev_pm_ops,
|
|
.of_match_table = of_match_ptr(of_sci_match),
|
|
},
|
|
};
|
|
|
|
static int __init sci_init(void)
|
|
{
|
|
int ret;
|
|
|
|
pr_info("%s\n", banner);
|
|
|
|
ret = uart_register_driver(&sci_uart_driver);
|
|
if (likely(ret == 0)) {
|
|
ret = platform_driver_register(&sci_driver);
|
|
if (unlikely(ret))
|
|
uart_unregister_driver(&sci_uart_driver);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit sci_exit(void)
|
|
{
|
|
platform_driver_unregister(&sci_driver);
|
|
uart_unregister_driver(&sci_uart_driver);
|
|
}
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
|
|
early_platform_init_buffer("earlyprintk", &sci_driver,
|
|
early_serial_buf, ARRAY_SIZE(early_serial_buf));
|
|
#endif
|
|
module_init(sci_init);
|
|
module_exit(sci_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:sh-sci");
|
|
MODULE_AUTHOR("Paul Mundt");
|
|
MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
|