mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 10:40:01 +07:00
9df6f705c0
Patch below fixes 3 trivial typos which are caught by the new assembler (v2.169.90). Please apply. [Note: fix to memcpy that was also part of this patch was separately applied from patches by H.J. and Andreas ... so the delta here only has the other two fixes. -Tony] Signed-off-by: David Mosberger-Tang <davidm@hpl.hp.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
363 lines
9.0 KiB
ArmAsm
363 lines
9.0 KiB
ArmAsm
/* Optimized version of the standard memset() function.
|
|
|
|
Copyright (c) 2002 Hewlett-Packard Co/CERN
|
|
Sverre Jarp <Sverre.Jarp@cern.ch>
|
|
|
|
Return: dest
|
|
|
|
Inputs:
|
|
in0: dest
|
|
in1: value
|
|
in2: count
|
|
|
|
The algorithm is fairly straightforward: set byte by byte until we
|
|
we get to a 16B-aligned address, then loop on 128 B chunks using an
|
|
early store as prefetching, then loop on 32B chucks, then clear remaining
|
|
words, finally clear remaining bytes.
|
|
Since a stf.spill f0 can store 16B in one go, we use this instruction
|
|
to get peak speed when value = 0. */
|
|
|
|
#include <asm/asmmacro.h>
|
|
#undef ret
|
|
|
|
#define dest in0
|
|
#define value in1
|
|
#define cnt in2
|
|
|
|
#define tmp r31
|
|
#define save_lc r30
|
|
#define ptr0 r29
|
|
#define ptr1 r28
|
|
#define ptr2 r27
|
|
#define ptr3 r26
|
|
#define ptr9 r24
|
|
#define loopcnt r23
|
|
#define linecnt r22
|
|
#define bytecnt r21
|
|
|
|
#define fvalue f6
|
|
|
|
// This routine uses only scratch predicate registers (p6 - p15)
|
|
#define p_scr p6 // default register for same-cycle branches
|
|
#define p_nz p7
|
|
#define p_zr p8
|
|
#define p_unalgn p9
|
|
#define p_y p11
|
|
#define p_n p12
|
|
#define p_yy p13
|
|
#define p_nn p14
|
|
|
|
#define MIN1 15
|
|
#define MIN1P1HALF 8
|
|
#define LINE_SIZE 128
|
|
#define LSIZE_SH 7 // shift amount
|
|
#define PREF_AHEAD 8
|
|
|
|
GLOBAL_ENTRY(memset)
|
|
{ .mmi
|
|
.prologue
|
|
alloc tmp = ar.pfs, 3, 0, 0, 0
|
|
lfetch.nt1 [dest] //
|
|
.save ar.lc, save_lc
|
|
mov.i save_lc = ar.lc
|
|
.body
|
|
} { .mmi
|
|
mov ret0 = dest // return value
|
|
cmp.ne p_nz, p_zr = value, r0 // use stf.spill if value is zero
|
|
cmp.eq p_scr, p0 = cnt, r0
|
|
;; }
|
|
{ .mmi
|
|
and ptr2 = -(MIN1+1), dest // aligned address
|
|
and tmp = MIN1, dest // prepare to check for correct alignment
|
|
tbit.nz p_y, p_n = dest, 0 // Do we have an odd address? (M_B_U)
|
|
} { .mib
|
|
mov ptr1 = dest
|
|
mux1 value = value, @brcst // create 8 identical bytes in word
|
|
(p_scr) br.ret.dpnt.many rp // return immediately if count = 0
|
|
;; }
|
|
{ .mib
|
|
cmp.ne p_unalgn, p0 = tmp, r0 //
|
|
} { .mib
|
|
sub bytecnt = (MIN1+1), tmp // NB: # of bytes to move is 1 higher than loopcnt
|
|
cmp.gt p_scr, p0 = 16, cnt // is it a minimalistic task?
|
|
(p_scr) br.cond.dptk.many .move_bytes_unaligned // go move just a few (M_B_U)
|
|
;; }
|
|
{ .mmi
|
|
(p_unalgn) add ptr1 = (MIN1+1), ptr2 // after alignment
|
|
(p_unalgn) add ptr2 = MIN1P1HALF, ptr2 // after alignment
|
|
(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3 // should we do a st8 ?
|
|
;; }
|
|
{ .mib
|
|
(p_y) add cnt = -8, cnt //
|
|
(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2 // should we do a st4 ?
|
|
} { .mib
|
|
(p_y) st8 [ptr2] = value,-4 //
|
|
(p_n) add ptr2 = 4, ptr2 //
|
|
;; }
|
|
{ .mib
|
|
(p_yy) add cnt = -4, cnt //
|
|
(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1 // should we do a st2 ?
|
|
} { .mib
|
|
(p_yy) st4 [ptr2] = value,-2 //
|
|
(p_nn) add ptr2 = 2, ptr2 //
|
|
;; }
|
|
{ .mmi
|
|
mov tmp = LINE_SIZE+1 // for compare
|
|
(p_y) add cnt = -2, cnt //
|
|
(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0 // should we do a st1 ?
|
|
} { .mmi
|
|
setf.sig fvalue=value // transfer value to FLP side
|
|
(p_y) st2 [ptr2] = value,-1 //
|
|
(p_n) add ptr2 = 1, ptr2 //
|
|
;; }
|
|
|
|
{ .mmi
|
|
(p_yy) st1 [ptr2] = value //
|
|
cmp.gt p_scr, p0 = tmp, cnt // is it a minimalistic task?
|
|
} { .mbb
|
|
(p_yy) add cnt = -1, cnt //
|
|
(p_scr) br.cond.dpnt.many .fraction_of_line // go move just a few
|
|
;; }
|
|
|
|
{ .mib
|
|
nop.m 0
|
|
shr.u linecnt = cnt, LSIZE_SH
|
|
(p_zr) br.cond.dptk.many .l1b // Jump to use stf.spill
|
|
;; }
|
|
|
|
TEXT_ALIGN(32) // --------------------- // L1A: store ahead into cache lines; fill later
|
|
{ .mmi
|
|
and tmp = -(LINE_SIZE), cnt // compute end of range
|
|
mov ptr9 = ptr1 // used for prefetching
|
|
and cnt = (LINE_SIZE-1), cnt // remainder
|
|
} { .mmi
|
|
mov loopcnt = PREF_AHEAD-1 // default prefetch loop
|
|
cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
|
|
;; }
|
|
{ .mmi
|
|
(p_scr) add loopcnt = -1, linecnt //
|
|
add ptr2 = 8, ptr1 // start of stores (beyond prefetch stores)
|
|
add ptr1 = tmp, ptr1 // first address beyond total range
|
|
;; }
|
|
{ .mmi
|
|
add tmp = -1, linecnt // next loop count
|
|
mov.i ar.lc = loopcnt //
|
|
;; }
|
|
.pref_l1a:
|
|
{ .mib
|
|
stf8 [ptr9] = fvalue, 128 // Do stores one cache line apart
|
|
nop.i 0
|
|
br.cloop.dptk.few .pref_l1a
|
|
;; }
|
|
{ .mmi
|
|
add ptr0 = 16, ptr2 // Two stores in parallel
|
|
mov.i ar.lc = tmp //
|
|
;; }
|
|
.l1ax:
|
|
{ .mmi
|
|
stf8 [ptr2] = fvalue, 8
|
|
stf8 [ptr0] = fvalue, 8
|
|
;; }
|
|
{ .mmi
|
|
stf8 [ptr2] = fvalue, 24
|
|
stf8 [ptr0] = fvalue, 24
|
|
;; }
|
|
{ .mmi
|
|
stf8 [ptr2] = fvalue, 8
|
|
stf8 [ptr0] = fvalue, 8
|
|
;; }
|
|
{ .mmi
|
|
stf8 [ptr2] = fvalue, 24
|
|
stf8 [ptr0] = fvalue, 24
|
|
;; }
|
|
{ .mmi
|
|
stf8 [ptr2] = fvalue, 8
|
|
stf8 [ptr0] = fvalue, 8
|
|
;; }
|
|
{ .mmi
|
|
stf8 [ptr2] = fvalue, 24
|
|
stf8 [ptr0] = fvalue, 24
|
|
;; }
|
|
{ .mmi
|
|
stf8 [ptr2] = fvalue, 8
|
|
stf8 [ptr0] = fvalue, 32
|
|
cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
|
|
;; }
|
|
{ .mmb
|
|
stf8 [ptr2] = fvalue, 24
|
|
(p_scr) stf8 [ptr9] = fvalue, 128
|
|
br.cloop.dptk.few .l1ax
|
|
;; }
|
|
{ .mbb
|
|
cmp.le p_scr, p0 = 8, cnt // just a few bytes left ?
|
|
(p_scr) br.cond.dpnt.many .fraction_of_line // Branch no. 2
|
|
br.cond.dpnt.many .move_bytes_from_alignment // Branch no. 3
|
|
;; }
|
|
|
|
TEXT_ALIGN(32)
|
|
.l1b: // ------------------------------------ // L1B: store ahead into cache lines; fill later
|
|
{ .mmi
|
|
and tmp = -(LINE_SIZE), cnt // compute end of range
|
|
mov ptr9 = ptr1 // used for prefetching
|
|
and cnt = (LINE_SIZE-1), cnt // remainder
|
|
} { .mmi
|
|
mov loopcnt = PREF_AHEAD-1 // default prefetch loop
|
|
cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
|
|
;; }
|
|
{ .mmi
|
|
(p_scr) add loopcnt = -1, linecnt
|
|
add ptr2 = 16, ptr1 // start of stores (beyond prefetch stores)
|
|
add ptr1 = tmp, ptr1 // first address beyond total range
|
|
;; }
|
|
{ .mmi
|
|
add tmp = -1, linecnt // next loop count
|
|
mov.i ar.lc = loopcnt
|
|
;; }
|
|
.pref_l1b:
|
|
{ .mib
|
|
stf.spill [ptr9] = f0, 128 // Do stores one cache line apart
|
|
nop.i 0
|
|
br.cloop.dptk.few .pref_l1b
|
|
;; }
|
|
{ .mmi
|
|
add ptr0 = 16, ptr2 // Two stores in parallel
|
|
mov.i ar.lc = tmp
|
|
;; }
|
|
.l1bx:
|
|
{ .mmi
|
|
stf.spill [ptr2] = f0, 32
|
|
stf.spill [ptr0] = f0, 32
|
|
;; }
|
|
{ .mmi
|
|
stf.spill [ptr2] = f0, 32
|
|
stf.spill [ptr0] = f0, 32
|
|
;; }
|
|
{ .mmi
|
|
stf.spill [ptr2] = f0, 32
|
|
stf.spill [ptr0] = f0, 64
|
|
cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
|
|
;; }
|
|
{ .mmb
|
|
stf.spill [ptr2] = f0, 32
|
|
(p_scr) stf.spill [ptr9] = f0, 128
|
|
br.cloop.dptk.few .l1bx
|
|
;; }
|
|
{ .mib
|
|
cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
|
|
(p_scr) br.cond.dpnt.many .move_bytes_from_alignment //
|
|
;; }
|
|
|
|
.fraction_of_line:
|
|
{ .mib
|
|
add ptr2 = 16, ptr1
|
|
shr.u loopcnt = cnt, 5 // loopcnt = cnt / 32
|
|
;; }
|
|
{ .mib
|
|
cmp.eq p_scr, p0 = loopcnt, r0
|
|
add loopcnt = -1, loopcnt
|
|
(p_scr) br.cond.dpnt.many .store_words
|
|
;; }
|
|
{ .mib
|
|
and cnt = 0x1f, cnt // compute the remaining cnt
|
|
mov.i ar.lc = loopcnt
|
|
;; }
|
|
TEXT_ALIGN(32)
|
|
.l2: // ------------------------------------ // L2A: store 32B in 2 cycles
|
|
{ .mmb
|
|
stf8 [ptr1] = fvalue, 8
|
|
stf8 [ptr2] = fvalue, 8
|
|
;; } { .mmb
|
|
stf8 [ptr1] = fvalue, 24
|
|
stf8 [ptr2] = fvalue, 24
|
|
br.cloop.dptk.many .l2
|
|
;; }
|
|
.store_words:
|
|
{ .mib
|
|
cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
|
|
(p_scr) br.cond.dpnt.many .move_bytes_from_alignment // Branch
|
|
;; }
|
|
|
|
{ .mmi
|
|
stf8 [ptr1] = fvalue, 8 // store
|
|
cmp.le p_y, p_n = 16, cnt
|
|
add cnt = -8, cnt // subtract
|
|
;; }
|
|
{ .mmi
|
|
(p_y) stf8 [ptr1] = fvalue, 8 // store
|
|
(p_y) cmp.le.unc p_yy, p_nn = 16, cnt
|
|
(p_y) add cnt = -8, cnt // subtract
|
|
;; }
|
|
{ .mmi // store
|
|
(p_yy) stf8 [ptr1] = fvalue, 8
|
|
(p_yy) add cnt = -8, cnt // subtract
|
|
;; }
|
|
|
|
.move_bytes_from_alignment:
|
|
{ .mib
|
|
cmp.eq p_scr, p0 = cnt, r0
|
|
tbit.nz.unc p_y, p0 = cnt, 2 // should we terminate with a st4 ?
|
|
(p_scr) br.cond.dpnt.few .restore_and_exit
|
|
;; }
|
|
{ .mib
|
|
(p_y) st4 [ptr1] = value,4
|
|
tbit.nz.unc p_yy, p0 = cnt, 1 // should we terminate with a st2 ?
|
|
;; }
|
|
{ .mib
|
|
(p_yy) st2 [ptr1] = value,2
|
|
tbit.nz.unc p_y, p0 = cnt, 0 // should we terminate with a st1 ?
|
|
;; }
|
|
|
|
{ .mib
|
|
(p_y) st1 [ptr1] = value
|
|
;; }
|
|
.restore_and_exit:
|
|
{ .mib
|
|
nop.m 0
|
|
mov.i ar.lc = save_lc
|
|
br.ret.sptk.many rp
|
|
;; }
|
|
|
|
.move_bytes_unaligned:
|
|
{ .mmi
|
|
.pred.rel "mutex",p_y, p_n
|
|
.pred.rel "mutex",p_yy, p_nn
|
|
(p_n) cmp.le p_yy, p_nn = 4, cnt
|
|
(p_y) cmp.le p_yy, p_nn = 5, cnt
|
|
(p_n) add ptr2 = 2, ptr1
|
|
} { .mmi
|
|
(p_y) add ptr2 = 3, ptr1
|
|
(p_y) st1 [ptr1] = value, 1 // fill 1 (odd-aligned) byte [15, 14 (or less) left]
|
|
(p_y) add cnt = -1, cnt
|
|
;; }
|
|
{ .mmi
|
|
(p_yy) cmp.le.unc p_y, p0 = 8, cnt
|
|
add ptr3 = ptr1, cnt // prepare last store
|
|
mov.i ar.lc = save_lc
|
|
} { .mmi
|
|
(p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
|
|
(p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [11, 10 (o less) left]
|
|
(p_yy) add cnt = -4, cnt
|
|
;; }
|
|
{ .mmi
|
|
(p_y) cmp.le.unc p_yy, p0 = 8, cnt
|
|
add ptr3 = -1, ptr3 // last store
|
|
tbit.nz p_scr, p0 = cnt, 1 // will there be a st2 at the end ?
|
|
} { .mmi
|
|
(p_y) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
|
|
(p_y) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [7, 6 (or less) left]
|
|
(p_y) add cnt = -4, cnt
|
|
;; }
|
|
{ .mmi
|
|
(p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
|
|
(p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [3, 2 (or less) left]
|
|
tbit.nz p_y, p0 = cnt, 0 // will there be a st1 at the end ?
|
|
} { .mmi
|
|
(p_yy) add cnt = -4, cnt
|
|
;; }
|
|
{ .mmb
|
|
(p_scr) st2 [ptr1] = value // fill 2 (aligned) bytes
|
|
(p_y) st1 [ptr3] = value // fill last byte (using ptr3)
|
|
br.ret.sptk.many rp
|
|
}
|
|
END(memset)
|