linux_dsm_epyc7002/drivers/pci/pci-sysfs.c
Linus Torvalds 92a578b064 ACPI and power management updates for 3.19-rc1
This time we have some more new material than we used to have during
 the last couple of development cycles.
 
 The most important part of it to me is the introduction of a unified
 interface for accessing device properties provided by platform
 firmware.  It works with Device Trees and ACPI in a uniform way and
 drivers using it need not worry about where the properties come
 from as long as the platform firmware (either DT or ACPI) makes
 them available.  It covers both devices and "bare" device node
 objects without struct device representation as that turns out to
 be necessary in some cases.  This has been in the works for quite
 a few months (and development cycles) and has been approved by
 all of the relevant maintainers.
 
 On top of that, some drivers are switched over to the new interface
 (at25, leds-gpio, gpio_keys_polled) and some additional changes are
 made to the core GPIO subsystem to allow device drivers to manipulate
 GPIOs in the "canonical" way on platforms that provide GPIO information
 in their ACPI tables, but don't assign names to GPIO lines (in which
 case the driver needs to do that on the basis of what it knows about
 the device in question).  That also has been approved by the GPIO
 core maintainers and the rfkill driver is now going to use it.
 
 Second is support for hardware P-states in the intel_pstate driver.
 It uses CPUID to detect whether or not the feature is supported by
 the processor in which case it will be enabled by default.  However,
 it can be disabled entirely from the kernel command line if necessary.
 
 Next is support for a platform firmware interface based on ACPI
 operation regions used by the PMIC (Power Management Integrated
 Circuit) chips on the Intel Baytrail-T and Baytrail-T-CR platforms.
 That interface is used for manipulating power resources and for
 thermal management: sensor temperature reporting, trip point setting
 and so on.
 
 Also the ACPI core is now going to support the _DEP configuration
 information in a limited way.  Basically, _DEP it supposed to reflect
 off-the-hierarchy dependencies between devices which may be very
 indirect, like when AML for one device accesses locations in an
 operation region handled by another device's driver (usually, the
 device depended on this way is a serial bus or GPIO controller).
 The support added this time is sufficient to make the ACPI battery
 driver work on Asus T100A, but it is general enough to be able to
 cover some other use cases in the future.
 
 Finally, we have a new cpufreq driver for the Loongson1B processor.
 
 In addition to the above, there are fixes and cleanups all over the
 place as usual and a traditional ACPICA update to a recent upstream
 release.
 
 As far as the fixes go, the ACPI LPSS (Low-power Subsystem) driver
 for Intel platforms should be able to handle power management of
 the DMA engine correctly, the cpufreq-dt driver should interact
 with the thermal subsystem in a better way and the ACPI backlight
 driver should handle some more corner cases, among other things.
 
 On top of the ACPICA update there are fixes for race conditions
 in the ACPICA's interrupt handling code which might lead to some
 random and strange looking failures on some systems.
 
 In the cleanups department the most visible part is the series
 of commits targeted at getting rid of the CONFIG_PM_RUNTIME
 configuration option.  That was triggered by a discussion
 regarding the generic power domains code during which we realized
 that trying to support certain combinations of PM config options
 was painful and not really worth it, because nobody would use them
 in production anyway.  For this reason, we decided to make
 CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and that lead to the
 conclusion that the latter became redundant and CONFIG_PM could
 be used instead of it.  The material here makes that replacement
 in a major part of the tree, but there will be at least one more
 batch of that in the second part of the merge window.
 
 Specifics:
 
  - Support for retrieving device properties information from ACPI
    _DSD device configuration objects and a unified device properties
    interface for device drivers (and subsystems) on top of that.
    As stated above, this works with Device Trees and ACPI and allows
    device drivers to be written in a platform firmware (DT or ACPI)
    agnostic way.  The at25, leds-gpio and gpio_keys_polled drivers
    are now going to use this new interface and the GPIO subsystem
    is additionally modified to allow device drivers to assign names
    to GPIO resources returned by ACPI _CRS objects (in case _DSD is
    not present or does not provide the expected data).  The changes
    in this set are mostly from Mika Westerberg, Rafael J Wysocki,
    Aaron Lu, and Darren Hart with some fixes from others (Fabio Estevam,
    Geert Uytterhoeven).
 
  - Support for Hardware Managed Performance States (HWP) as described
    in Volume 3, section 14.4, of the Intel SDM in the intel_pstate
    driver.  CPUID is used to detect whether or not the feature is
    supported by the processor.  If supported, it will be enabled
    automatically unless the intel_pstate=no_hwp switch is present in
    the kernel command line.  From Dirk Brandewie.
 
  - New Intel Broadwell-H ID for intel_pstate (Dirk Brandewie).
 
  - Support for firmware interface based on ACPI operation regions
    used by the PMIC chips on the Intel Baytrail-T and Baytrail-T-CR
    platforms for power resource control and thermal management
    (Aaron Lu).
 
  - Limited support for retrieving off-the-hierarchy dependencies
    between devices from ACPI _DEP device configuration objects
    and deferred probing support for the ACPI battery driver based
    on the _DEP information to make that driver work on Asus T100A
    (Lan Tianyu).
 
  - New cpufreq driver for the Loongson1B processor (Kelvin Cheung).
 
  - ACPICA update to upstream revision 20141107 which only affects
    tools (Bob Moore).
 
  - Fixes for race conditions in the ACPICA's interrupt handling
    code and in the ACPI code related to system suspend and resume
    (Lv Zheng and Rafael J Wysocki).
 
  - ACPI core fix for an RCU-related issue in the ioremap() regions
    management code that slowed down significantly after CPUs had
    been allowed to enter idle states even if they'd had RCU callbakcs
    queued and triggered some problems in certain proprietary graphics
    driver (and elsewhere).  The fix replaces synchronize_rcu() in
    that code with synchronize_rcu_expedited() which makes the issue
    go away.  From Konstantin Khlebnikov.
 
  - ACPI LPSS (Low-Power Subsystem) driver fix to handle power
    management of the DMA engine included into the LPSS correctly.
    The problem is that the DMA engine doesn't have ACPI PM support
    of its own and it simply is turned off when the last LPSS device
    having ACPI PM support goes into D3cold.  To work around that,
    the PM domain used by the ACPI LPSS driver is redesigned so at
    least one device with ACPI PM support will be on as long as the
    DMA engine is in use.  From Andy Shevchenko.
 
  - ACPI backlight driver fix to avoid using it on "Win8-compatible"
    systems where it doesn't work and where it was used by default by
    mistake (Aaron Lu).
 
  - Assorted minor ACPI core fixes and cleanups from Tomasz Nowicki,
    Sudeep Holla, Huang Rui, Hanjun Guo, Fabian Frederick, and
    Ashwin Chaugule (mostly related to the upcoming ARM64 support).
 
  - Intel RAPL (Running Average Power Limit) power capping driver
    fixes and improvements including new processor IDs (Jacob Pan).
 
  - Generic power domains modification to power up domains after
    attaching devices to them to meet the expectations of device
    drivers and bus types assuming devices to be accessible at
    probe time (Ulf Hansson).
 
  - Preliminary support for controlling device clocks from the
    generic power domains core code and modifications of the
    ARM/shmobile platform to use that feature (Ulf Hansson).
 
  - Assorted minor fixes and cleanups of the generic power
    domains core code (Ulf Hansson, Geert Uytterhoeven).
 
  - Assorted minor fixes and cleanups of the device clocks control
    code in the PM core (Geert Uytterhoeven, Grygorii Strashko).
 
  - Consolidation of device power management Kconfig options by making
    CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and removing the latter
    which is now redundant (Rafael J Wysocki and Kevin Hilman).  That
    is the first batch of the changes needed for this purpose.
 
  - Core device runtime power management support code cleanup related
    to the execution of callbacks (Andrzej Hajda).
 
  - cpuidle ARM support improvements (Lorenzo Pieralisi).
 
  - cpuidle cleanup related to the CPUIDLE_FLAG_TIME_VALID flag and
    a new MAINTAINERS entry for ARM Exynos cpuidle (Daniel Lezcano and
    Bartlomiej Zolnierkiewicz).
 
  - New cpufreq driver callback (->ready) to be executed when the
    cpufreq core is ready to use a given policy object and cpufreq-dt
    driver modification to use that callback for cooling device
    registration (Viresh Kumar).
 
  - cpufreq core fixes and cleanups (Viresh Kumar, Vince Hsu,
    James Geboski, Tomeu Vizoso).
 
  - Assorted fixes and cleanups in the cpufreq-pcc, intel_pstate,
    cpufreq-dt, pxa2xx cpufreq drivers (Lenny Szubowicz, Ethan Zhao,
    Stefan Wahren, Petr Cvek).
 
  - OPP (Operating Performance Points) framework modification to
    allow OPPs to be removed too and update of a few cpufreq drivers
    (cpufreq-dt, exynos5440, imx6q, cpufreq) to remove OPPs (added
    during initialization) on driver removal (Viresh Kumar).
 
  - Hibernation core fixes and cleanups (Tina Ruchandani and
    Markus Elfring).
 
  - PM Kconfig fix related to CPU power management (Pankaj Dubey).
 
  - cpupower tool fix (Prarit Bhargava).
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJUhj6JAAoJEILEb/54YlRxTM4P/j5g5SfqvY0QKsn7sR7MGZ6v
 nsgCBhJAqTw3ocNC7EAs8z9h2GWy1KbKpakKYWAh9Fs1yZoey7tFSlcv/Rgjlp70
 uU5sDQHtpE9mHKiymdsowiQuWgpl962L4k+k8hUslhlvgk1PvVbpajR6OqG8G+pD
 asuIW9eh1APNkLyXmRJ3ZPomzs0VmRdZJ0NEs0lKX9mJskqEvxPIwdaxq3iaJq9B
 Fo0J345zUDcJnxWblDRdHlOigCimglElfN5qJwaC4KpwUKuBvLRKbp4f69+wfT0c
 kYFiR29X5KjJ2kLfP/wKsLyuDCYYXRq3tCia5M1tAqOjZ+UA89H/GDftx/5lntmv
 qUlBa35VfdS1SX4HyApZitOHiLgo+It/hl8Z9bJnhyVw66NxmMQ8JYN2imb8Lhqh
 XCLR7BxLTah82AapLJuQ0ZDHPzZqMPG2veC2vAzRMYzVijict/p4Y2+qBqONltER
 4rs9uRVn+hamX33lCLg8BEN8zqlnT3rJFIgGaKjq/wXHAU/zpE9CjOrKMQcAg9+s
 t51XMNPwypHMAYyGVhEL89ImjXnXxBkLRuquhlmEpvQchIhR+mR3dLsarGn7da44
 WPIQJXzcsojXczcwwfqsJCR4I1FTFyQIW+UNh02GkDRgRovQqo+Jk762U7vQwqH+
 LBdhvVaS1VW4v+FWXEoZ
 =5dox
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI and power management updates from Rafael Wysocki:
 "This time we have some more new material than we used to have during
  the last couple of development cycles.

  The most important part of it to me is the introduction of a unified
  interface for accessing device properties provided by platform
  firmware.  It works with Device Trees and ACPI in a uniform way and
  drivers using it need not worry about where the properties come from
  as long as the platform firmware (either DT or ACPI) makes them
  available.  It covers both devices and "bare" device node objects
  without struct device representation as that turns out to be necessary
  in some cases.  This has been in the works for quite a few months (and
  development cycles) and has been approved by all of the relevant
  maintainers.

  On top of that, some drivers are switched over to the new interface
  (at25, leds-gpio, gpio_keys_polled) and some additional changes are
  made to the core GPIO subsystem to allow device drivers to manipulate
  GPIOs in the "canonical" way on platforms that provide GPIO
  information in their ACPI tables, but don't assign names to GPIO lines
  (in which case the driver needs to do that on the basis of what it
  knows about the device in question).  That also has been approved by
  the GPIO core maintainers and the rfkill driver is now going to use
  it.

  Second is support for hardware P-states in the intel_pstate driver.
  It uses CPUID to detect whether or not the feature is supported by the
  processor in which case it will be enabled by default.  However, it
  can be disabled entirely from the kernel command line if necessary.

  Next is support for a platform firmware interface based on ACPI
  operation regions used by the PMIC (Power Management Integrated
  Circuit) chips on the Intel Baytrail-T and Baytrail-T-CR platforms.
  That interface is used for manipulating power resources and for
  thermal management: sensor temperature reporting, trip point setting
  and so on.

  Also the ACPI core is now going to support the _DEP configuration
  information in a limited way.  Basically, _DEP it supposed to reflect
  off-the-hierarchy dependencies between devices which may be very
  indirect, like when AML for one device accesses locations in an
  operation region handled by another device's driver (usually, the
  device depended on this way is a serial bus or GPIO controller).  The
  support added this time is sufficient to make the ACPI battery driver
  work on Asus T100A, but it is general enough to be able to cover some
  other use cases in the future.

  Finally, we have a new cpufreq driver for the Loongson1B processor.

  In addition to the above, there are fixes and cleanups all over the
  place as usual and a traditional ACPICA update to a recent upstream
  release.

  As far as the fixes go, the ACPI LPSS (Low-power Subsystem) driver for
  Intel platforms should be able to handle power management of the DMA
  engine correctly, the cpufreq-dt driver should interact with the
  thermal subsystem in a better way and the ACPI backlight driver should
  handle some more corner cases, among other things.

  On top of the ACPICA update there are fixes for race conditions in the
  ACPICA's interrupt handling code which might lead to some random and
  strange looking failures on some systems.

  In the cleanups department the most visible part is the series of
  commits targeted at getting rid of the CONFIG_PM_RUNTIME configuration
  option.  That was triggered by a discussion regarding the generic
  power domains code during which we realized that trying to support
  certain combinations of PM config options was painful and not really
  worth it, because nobody would use them in production anyway.  For
  this reason, we decided to make CONFIG_PM_SLEEP select
  CONFIG_PM_RUNTIME and that lead to the conclusion that the latter
  became redundant and CONFIG_PM could be used instead of it.  The
  material here makes that replacement in a major part of the tree, but
  there will be at least one more batch of that in the second part of
  the merge window.

  Specifics:

   - Support for retrieving device properties information from ACPI _DSD
     device configuration objects and a unified device properties
     interface for device drivers (and subsystems) on top of that.  As
     stated above, this works with Device Trees and ACPI and allows
     device drivers to be written in a platform firmware (DT or ACPI)
     agnostic way.  The at25, leds-gpio and gpio_keys_polled drivers are
     now going to use this new interface and the GPIO subsystem is
     additionally modified to allow device drivers to assign names to
     GPIO resources returned by ACPI _CRS objects (in case _DSD is not
     present or does not provide the expected data).  The changes in
     this set are mostly from Mika Westerberg, Rafael J Wysocki, Aaron
     Lu, and Darren Hart with some fixes from others (Fabio Estevam,
     Geert Uytterhoeven).

   - Support for Hardware Managed Performance States (HWP) as described
     in Volume 3, section 14.4, of the Intel SDM in the intel_pstate
     driver.  CPUID is used to detect whether or not the feature is
     supported by the processor.  If supported, it will be enabled
     automatically unless the intel_pstate=no_hwp switch is present in
     the kernel command line.  From Dirk Brandewie.

   - New Intel Broadwell-H ID for intel_pstate (Dirk Brandewie).

   - Support for firmware interface based on ACPI operation regions used
     by the PMIC chips on the Intel Baytrail-T and Baytrail-T-CR
     platforms for power resource control and thermal management (Aaron
     Lu).

   - Limited support for retrieving off-the-hierarchy dependencies
     between devices from ACPI _DEP device configuration objects and
     deferred probing support for the ACPI battery driver based on the
     _DEP information to make that driver work on Asus T100A (Lan
     Tianyu).

   - New cpufreq driver for the Loongson1B processor (Kelvin Cheung).

   - ACPICA update to upstream revision 20141107 which only affects
     tools (Bob Moore).

   - Fixes for race conditions in the ACPICA's interrupt handling code
     and in the ACPI code related to system suspend and resume (Lv Zheng
     and Rafael J Wysocki).

   - ACPI core fix for an RCU-related issue in the ioremap() regions
     management code that slowed down significantly after CPUs had been
     allowed to enter idle states even if they'd had RCU callbakcs
     queued and triggered some problems in certain proprietary graphics
     driver (and elsewhere).  The fix replaces synchronize_rcu() in that
     code with synchronize_rcu_expedited() which makes the issue go
     away.  From Konstantin Khlebnikov.

   - ACPI LPSS (Low-Power Subsystem) driver fix to handle power
     management of the DMA engine included into the LPSS correctly.  The
     problem is that the DMA engine doesn't have ACPI PM support of its
     own and it simply is turned off when the last LPSS device having
     ACPI PM support goes into D3cold.  To work around that, the PM
     domain used by the ACPI LPSS driver is redesigned so at least one
     device with ACPI PM support will be on as long as the DMA engine is
     in use.  From Andy Shevchenko.

   - ACPI backlight driver fix to avoid using it on "Win8-compatible"
     systems where it doesn't work and where it was used by default by
     mistake (Aaron Lu).

   - Assorted minor ACPI core fixes and cleanups from Tomasz Nowicki,
     Sudeep Holla, Huang Rui, Hanjun Guo, Fabian Frederick, and Ashwin
     Chaugule (mostly related to the upcoming ARM64 support).

   - Intel RAPL (Running Average Power Limit) power capping driver fixes
     and improvements including new processor IDs (Jacob Pan).

   - Generic power domains modification to power up domains after
     attaching devices to them to meet the expectations of device
     drivers and bus types assuming devices to be accessible at probe
     time (Ulf Hansson).

   - Preliminary support for controlling device clocks from the generic
     power domains core code and modifications of the ARM/shmobile
     platform to use that feature (Ulf Hansson).

   - Assorted minor fixes and cleanups of the generic power domains core
     code (Ulf Hansson, Geert Uytterhoeven).

   - Assorted minor fixes and cleanups of the device clocks control code
     in the PM core (Geert Uytterhoeven, Grygorii Strashko).

   - Consolidation of device power management Kconfig options by making
     CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and removing the latter
     which is now redundant (Rafael J Wysocki and Kevin Hilman).  That
     is the first batch of the changes needed for this purpose.

   - Core device runtime power management support code cleanup related
     to the execution of callbacks (Andrzej Hajda).

   - cpuidle ARM support improvements (Lorenzo Pieralisi).

   - cpuidle cleanup related to the CPUIDLE_FLAG_TIME_VALID flag and a
     new MAINTAINERS entry for ARM Exynos cpuidle (Daniel Lezcano and
     Bartlomiej Zolnierkiewicz).

   - New cpufreq driver callback (->ready) to be executed when the
     cpufreq core is ready to use a given policy object and cpufreq-dt
     driver modification to use that callback for cooling device
     registration (Viresh Kumar).

   - cpufreq core fixes and cleanups (Viresh Kumar, Vince Hsu, James
     Geboski, Tomeu Vizoso).

   - Assorted fixes and cleanups in the cpufreq-pcc, intel_pstate,
     cpufreq-dt, pxa2xx cpufreq drivers (Lenny Szubowicz, Ethan Zhao,
     Stefan Wahren, Petr Cvek).

   - OPP (Operating Performance Points) framework modification to allow
     OPPs to be removed too and update of a few cpufreq drivers
     (cpufreq-dt, exynos5440, imx6q, cpufreq) to remove OPPs (added
     during initialization) on driver removal (Viresh Kumar).

   - Hibernation core fixes and cleanups (Tina Ruchandani and Markus
     Elfring).

   - PM Kconfig fix related to CPU power management (Pankaj Dubey).

   - cpupower tool fix (Prarit Bhargava)"

* tag 'pm+acpi-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (120 commits)
  i2c-omap / PM: Drop CONFIG_PM_RUNTIME from i2c-omap.c
  dmaengine / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  tools: cpupower: fix return checks for sysfs_get_idlestate_count()
  drivers: sh / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  e1000e / igb / PM: Eliminate CONFIG_PM_RUNTIME
  MMC / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  MFD / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  misc / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  media / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  input / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  leds: leds-gpio: Fix multiple instances registration without 'label' property
  iio / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  hsi / OMAP / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  i2c-hid / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  drm / exynos / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  gpio / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  hwrandom / exynos / PM: Use CONFIG_PM in #ifdef
  block / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  USB / PM: Drop CONFIG_PM_RUNTIME from the USB core
  PM: Merge the SET*_RUNTIME_PM_OPS() macros
  ...
2014-12-10 21:17:00 -08:00

1603 lines
39 KiB
C

/*
* drivers/pci/pci-sysfs.c
*
* (C) Copyright 2002-2004 Greg Kroah-Hartman <greg@kroah.com>
* (C) Copyright 2002-2004 IBM Corp.
* (C) Copyright 2003 Matthew Wilcox
* (C) Copyright 2003 Hewlett-Packard
* (C) Copyright 2004 Jon Smirl <jonsmirl@yahoo.com>
* (C) Copyright 2004 Silicon Graphics, Inc. Jesse Barnes <jbarnes@sgi.com>
*
* File attributes for PCI devices
*
* Modeled after usb's driverfs.c
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/stat.h>
#include <linux/export.h>
#include <linux/topology.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/capability.h>
#include <linux/security.h>
#include <linux/pci-aspm.h>
#include <linux/slab.h>
#include <linux/vgaarb.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include "pci.h"
static int sysfs_initialized; /* = 0 */
/* show configuration fields */
#define pci_config_attr(field, format_string) \
static ssize_t \
field##_show(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct pci_dev *pdev; \
\
pdev = to_pci_dev(dev); \
return sprintf(buf, format_string, pdev->field); \
} \
static DEVICE_ATTR_RO(field)
pci_config_attr(vendor, "0x%04x\n");
pci_config_attr(device, "0x%04x\n");
pci_config_attr(subsystem_vendor, "0x%04x\n");
pci_config_attr(subsystem_device, "0x%04x\n");
pci_config_attr(class, "0x%06x\n");
pci_config_attr(irq, "%u\n");
static ssize_t broken_parity_status_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return sprintf(buf, "%u\n", pdev->broken_parity_status);
}
static ssize_t broken_parity_status_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
unsigned long val;
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
pdev->broken_parity_status = !!val;
return count;
}
static DEVICE_ATTR_RW(broken_parity_status);
static ssize_t pci_dev_show_local_cpu(struct device *dev, int type,
struct device_attribute *attr, char *buf)
{
const struct cpumask *mask;
int len;
#ifdef CONFIG_NUMA
mask = (dev_to_node(dev) == -1) ? cpu_online_mask :
cpumask_of_node(dev_to_node(dev));
#else
mask = cpumask_of_pcibus(to_pci_dev(dev)->bus);
#endif
len = type ?
cpumask_scnprintf(buf, PAGE_SIZE-2, mask) :
cpulist_scnprintf(buf, PAGE_SIZE-2, mask);
buf[len++] = '\n';
buf[len] = '\0';
return len;
}
static ssize_t local_cpus_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return pci_dev_show_local_cpu(dev, 1, attr, buf);
}
static DEVICE_ATTR_RO(local_cpus);
static ssize_t local_cpulist_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return pci_dev_show_local_cpu(dev, 0, attr, buf);
}
static DEVICE_ATTR_RO(local_cpulist);
/*
* PCI Bus Class Devices
*/
static ssize_t pci_bus_show_cpuaffinity(struct device *dev, int type,
struct device_attribute *attr,
char *buf)
{
int ret;
const struct cpumask *cpumask;
cpumask = cpumask_of_pcibus(to_pci_bus(dev));
ret = type ?
cpulist_scnprintf(buf, PAGE_SIZE-2, cpumask) :
cpumask_scnprintf(buf, PAGE_SIZE-2, cpumask);
buf[ret++] = '\n';
buf[ret] = '\0';
return ret;
}
static ssize_t cpuaffinity_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return pci_bus_show_cpuaffinity(dev, 0, attr, buf);
}
static DEVICE_ATTR_RO(cpuaffinity);
static ssize_t cpulistaffinity_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return pci_bus_show_cpuaffinity(dev, 1, attr, buf);
}
static DEVICE_ATTR_RO(cpulistaffinity);
/* show resources */
static ssize_t resource_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
char *str = buf;
int i;
int max;
resource_size_t start, end;
if (pci_dev->subordinate)
max = DEVICE_COUNT_RESOURCE;
else
max = PCI_BRIDGE_RESOURCES;
for (i = 0; i < max; i++) {
struct resource *res = &pci_dev->resource[i];
pci_resource_to_user(pci_dev, i, res, &start, &end);
str += sprintf(str, "0x%016llx 0x%016llx 0x%016llx\n",
(unsigned long long)start,
(unsigned long long)end,
(unsigned long long)res->flags);
}
return (str - buf);
}
static DEVICE_ATTR_RO(resource);
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
return sprintf(buf, "pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X\n",
pci_dev->vendor, pci_dev->device,
pci_dev->subsystem_vendor, pci_dev->subsystem_device,
(u8)(pci_dev->class >> 16), (u8)(pci_dev->class >> 8),
(u8)(pci_dev->class));
}
static DEVICE_ATTR_RO(modalias);
static ssize_t enable_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
unsigned long val;
ssize_t result = kstrtoul(buf, 0, &val);
if (result < 0)
return result;
/* this can crash the machine when done on the "wrong" device */
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!val) {
if (pci_is_enabled(pdev))
pci_disable_device(pdev);
else
result = -EIO;
} else
result = pci_enable_device(pdev);
return result < 0 ? result : count;
}
static ssize_t enable_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev;
pdev = to_pci_dev(dev);
return sprintf(buf, "%u\n", atomic_read(&pdev->enable_cnt));
}
static DEVICE_ATTR_RW(enable);
#ifdef CONFIG_NUMA
static ssize_t numa_node_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
int node, ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = kstrtoint(buf, 0, &node);
if (ret)
return ret;
if (!node_online(node))
return -EINVAL;
add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
dev_alert(&pdev->dev, FW_BUG "Overriding NUMA node to %d. Contact your vendor for updates.",
node);
dev->numa_node = node;
return count;
}
static ssize_t numa_node_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", dev->numa_node);
}
static DEVICE_ATTR_RW(numa_node);
#endif
static ssize_t dma_mask_bits_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return sprintf(buf, "%d\n", fls64(pdev->dma_mask));
}
static DEVICE_ATTR_RO(dma_mask_bits);
static ssize_t consistent_dma_mask_bits_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", fls64(dev->coherent_dma_mask));
}
static DEVICE_ATTR_RO(consistent_dma_mask_bits);
static ssize_t msi_bus_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pci_bus *subordinate = pdev->subordinate;
return sprintf(buf, "%u\n", subordinate ?
!(subordinate->bus_flags & PCI_BUS_FLAGS_NO_MSI)
: !pdev->no_msi);
}
static ssize_t msi_bus_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pci_bus *subordinate = pdev->subordinate;
unsigned long val;
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
/*
* "no_msi" and "bus_flags" only affect what happens when a driver
* requests MSI or MSI-X. They don't affect any drivers that have
* already requested MSI or MSI-X.
*/
if (!subordinate) {
pdev->no_msi = !val;
dev_info(&pdev->dev, "MSI/MSI-X %s for future drivers\n",
val ? "allowed" : "disallowed");
return count;
}
if (val)
subordinate->bus_flags &= ~PCI_BUS_FLAGS_NO_MSI;
else
subordinate->bus_flags |= PCI_BUS_FLAGS_NO_MSI;
dev_info(&subordinate->dev, "MSI/MSI-X %s for future drivers of devices on this bus\n",
val ? "allowed" : "disallowed");
return count;
}
static DEVICE_ATTR_RW(msi_bus);
static ssize_t bus_rescan_store(struct bus_type *bus, const char *buf,
size_t count)
{
unsigned long val;
struct pci_bus *b = NULL;
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
if (val) {
pci_lock_rescan_remove();
while ((b = pci_find_next_bus(b)) != NULL)
pci_rescan_bus(b);
pci_unlock_rescan_remove();
}
return count;
}
static BUS_ATTR(rescan, (S_IWUSR|S_IWGRP), NULL, bus_rescan_store);
static struct attribute *pci_bus_attrs[] = {
&bus_attr_rescan.attr,
NULL,
};
static const struct attribute_group pci_bus_group = {
.attrs = pci_bus_attrs,
};
const struct attribute_group *pci_bus_groups[] = {
&pci_bus_group,
NULL,
};
static ssize_t dev_rescan_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
unsigned long val;
struct pci_dev *pdev = to_pci_dev(dev);
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
if (val) {
pci_lock_rescan_remove();
pci_rescan_bus(pdev->bus);
pci_unlock_rescan_remove();
}
return count;
}
static struct device_attribute dev_rescan_attr = __ATTR(rescan,
(S_IWUSR|S_IWGRP),
NULL, dev_rescan_store);
static ssize_t remove_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long val;
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
if (val && device_remove_file_self(dev, attr))
pci_stop_and_remove_bus_device_locked(to_pci_dev(dev));
return count;
}
static struct device_attribute dev_remove_attr = __ATTR(remove,
(S_IWUSR|S_IWGRP),
NULL, remove_store);
static ssize_t dev_bus_rescan_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long val;
struct pci_bus *bus = to_pci_bus(dev);
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
if (val) {
pci_lock_rescan_remove();
if (!pci_is_root_bus(bus) && list_empty(&bus->devices))
pci_rescan_bus_bridge_resize(bus->self);
else
pci_rescan_bus(bus);
pci_unlock_rescan_remove();
}
return count;
}
static DEVICE_ATTR(rescan, (S_IWUSR|S_IWGRP), NULL, dev_bus_rescan_store);
#if defined(CONFIG_PM) && defined(CONFIG_ACPI)
static ssize_t d3cold_allowed_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
unsigned long val;
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
pdev->d3cold_allowed = !!val;
pm_runtime_resume(dev);
return count;
}
static ssize_t d3cold_allowed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return sprintf(buf, "%u\n", pdev->d3cold_allowed);
}
static DEVICE_ATTR_RW(d3cold_allowed);
#endif
#ifdef CONFIG_OF
static ssize_t devspec_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct device_node *np = pci_device_to_OF_node(pdev);
if (np == NULL || np->full_name == NULL)
return 0;
return sprintf(buf, "%s", np->full_name);
}
static DEVICE_ATTR_RO(devspec);
#endif
#ifdef CONFIG_PCI_IOV
static ssize_t sriov_totalvfs_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return sprintf(buf, "%u\n", pci_sriov_get_totalvfs(pdev));
}
static ssize_t sriov_numvfs_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return sprintf(buf, "%u\n", pdev->sriov->num_VFs);
}
/*
* num_vfs > 0; number of VFs to enable
* num_vfs = 0; disable all VFs
*
* Note: SRIOV spec doesn't allow partial VF
* disable, so it's all or none.
*/
static ssize_t sriov_numvfs_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
int ret;
u16 num_vfs;
ret = kstrtou16(buf, 0, &num_vfs);
if (ret < 0)
return ret;
if (num_vfs > pci_sriov_get_totalvfs(pdev))
return -ERANGE;
if (num_vfs == pdev->sriov->num_VFs)
return count; /* no change */
/* is PF driver loaded w/callback */
if (!pdev->driver || !pdev->driver->sriov_configure) {
dev_info(&pdev->dev, "Driver doesn't support SRIOV configuration via sysfs\n");
return -ENOSYS;
}
if (num_vfs == 0) {
/* disable VFs */
ret = pdev->driver->sriov_configure(pdev, 0);
if (ret < 0)
return ret;
return count;
}
/* enable VFs */
if (pdev->sriov->num_VFs) {
dev_warn(&pdev->dev, "%d VFs already enabled. Disable before enabling %d VFs\n",
pdev->sriov->num_VFs, num_vfs);
return -EBUSY;
}
ret = pdev->driver->sriov_configure(pdev, num_vfs);
if (ret < 0)
return ret;
if (ret != num_vfs)
dev_warn(&pdev->dev, "%d VFs requested; only %d enabled\n",
num_vfs, ret);
return count;
}
static struct device_attribute sriov_totalvfs_attr = __ATTR_RO(sriov_totalvfs);
static struct device_attribute sriov_numvfs_attr =
__ATTR(sriov_numvfs, (S_IRUGO|S_IWUSR|S_IWGRP),
sriov_numvfs_show, sriov_numvfs_store);
#endif /* CONFIG_PCI_IOV */
static ssize_t driver_override_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
char *driver_override, *old = pdev->driver_override, *cp;
if (count > PATH_MAX)
return -EINVAL;
driver_override = kstrndup(buf, count, GFP_KERNEL);
if (!driver_override)
return -ENOMEM;
cp = strchr(driver_override, '\n');
if (cp)
*cp = '\0';
if (strlen(driver_override)) {
pdev->driver_override = driver_override;
} else {
kfree(driver_override);
pdev->driver_override = NULL;
}
kfree(old);
return count;
}
static ssize_t driver_override_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return sprintf(buf, "%s\n", pdev->driver_override);
}
static DEVICE_ATTR_RW(driver_override);
static struct attribute *pci_dev_attrs[] = {
&dev_attr_resource.attr,
&dev_attr_vendor.attr,
&dev_attr_device.attr,
&dev_attr_subsystem_vendor.attr,
&dev_attr_subsystem_device.attr,
&dev_attr_class.attr,
&dev_attr_irq.attr,
&dev_attr_local_cpus.attr,
&dev_attr_local_cpulist.attr,
&dev_attr_modalias.attr,
#ifdef CONFIG_NUMA
&dev_attr_numa_node.attr,
#endif
&dev_attr_dma_mask_bits.attr,
&dev_attr_consistent_dma_mask_bits.attr,
&dev_attr_enable.attr,
&dev_attr_broken_parity_status.attr,
&dev_attr_msi_bus.attr,
#if defined(CONFIG_PM) && defined(CONFIG_ACPI)
&dev_attr_d3cold_allowed.attr,
#endif
#ifdef CONFIG_OF
&dev_attr_devspec.attr,
#endif
&dev_attr_driver_override.attr,
NULL,
};
static const struct attribute_group pci_dev_group = {
.attrs = pci_dev_attrs,
};
const struct attribute_group *pci_dev_groups[] = {
&pci_dev_group,
NULL,
};
static struct attribute *pcibus_attrs[] = {
&dev_attr_rescan.attr,
&dev_attr_cpuaffinity.attr,
&dev_attr_cpulistaffinity.attr,
NULL,
};
static const struct attribute_group pcibus_group = {
.attrs = pcibus_attrs,
};
const struct attribute_group *pcibus_groups[] = {
&pcibus_group,
NULL,
};
static ssize_t boot_vga_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pci_dev *vga_dev = vga_default_device();
if (vga_dev)
return sprintf(buf, "%u\n", (pdev == vga_dev));
return sprintf(buf, "%u\n",
!!(pdev->resource[PCI_ROM_RESOURCE].flags &
IORESOURCE_ROM_SHADOW));
}
static struct device_attribute vga_attr = __ATTR_RO(boot_vga);
static ssize_t pci_read_config(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct pci_dev *dev = to_pci_dev(container_of(kobj, struct device,
kobj));
unsigned int size = 64;
loff_t init_off = off;
u8 *data = (u8 *) buf;
/* Several chips lock up trying to read undefined config space */
if (security_capable(filp->f_cred, &init_user_ns, CAP_SYS_ADMIN) == 0)
size = dev->cfg_size;
else if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS)
size = 128;
if (off > size)
return 0;
if (off + count > size) {
size -= off;
count = size;
} else {
size = count;
}
pci_config_pm_runtime_get(dev);
if ((off & 1) && size) {
u8 val;
pci_user_read_config_byte(dev, off, &val);
data[off - init_off] = val;
off++;
size--;
}
if ((off & 3) && size > 2) {
u16 val;
pci_user_read_config_word(dev, off, &val);
data[off - init_off] = val & 0xff;
data[off - init_off + 1] = (val >> 8) & 0xff;
off += 2;
size -= 2;
}
while (size > 3) {
u32 val;
pci_user_read_config_dword(dev, off, &val);
data[off - init_off] = val & 0xff;
data[off - init_off + 1] = (val >> 8) & 0xff;
data[off - init_off + 2] = (val >> 16) & 0xff;
data[off - init_off + 3] = (val >> 24) & 0xff;
off += 4;
size -= 4;
}
if (size >= 2) {
u16 val;
pci_user_read_config_word(dev, off, &val);
data[off - init_off] = val & 0xff;
data[off - init_off + 1] = (val >> 8) & 0xff;
off += 2;
size -= 2;
}
if (size > 0) {
u8 val;
pci_user_read_config_byte(dev, off, &val);
data[off - init_off] = val;
off++;
--size;
}
pci_config_pm_runtime_put(dev);
return count;
}
static ssize_t pci_write_config(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct pci_dev *dev = to_pci_dev(container_of(kobj, struct device,
kobj));
unsigned int size = count;
loff_t init_off = off;
u8 *data = (u8 *) buf;
if (off > dev->cfg_size)
return 0;
if (off + count > dev->cfg_size) {
size = dev->cfg_size - off;
count = size;
}
pci_config_pm_runtime_get(dev);
if ((off & 1) && size) {
pci_user_write_config_byte(dev, off, data[off - init_off]);
off++;
size--;
}
if ((off & 3) && size > 2) {
u16 val = data[off - init_off];
val |= (u16) data[off - init_off + 1] << 8;
pci_user_write_config_word(dev, off, val);
off += 2;
size -= 2;
}
while (size > 3) {
u32 val = data[off - init_off];
val |= (u32) data[off - init_off + 1] << 8;
val |= (u32) data[off - init_off + 2] << 16;
val |= (u32) data[off - init_off + 3] << 24;
pci_user_write_config_dword(dev, off, val);
off += 4;
size -= 4;
}
if (size >= 2) {
u16 val = data[off - init_off];
val |= (u16) data[off - init_off + 1] << 8;
pci_user_write_config_word(dev, off, val);
off += 2;
size -= 2;
}
if (size) {
pci_user_write_config_byte(dev, off, data[off - init_off]);
off++;
--size;
}
pci_config_pm_runtime_put(dev);
return count;
}
static ssize_t read_vpd_attr(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct pci_dev *dev =
to_pci_dev(container_of(kobj, struct device, kobj));
if (off > bin_attr->size)
count = 0;
else if (count > bin_attr->size - off)
count = bin_attr->size - off;
return pci_read_vpd(dev, off, count, buf);
}
static ssize_t write_vpd_attr(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct pci_dev *dev =
to_pci_dev(container_of(kobj, struct device, kobj));
if (off > bin_attr->size)
count = 0;
else if (count > bin_attr->size - off)
count = bin_attr->size - off;
return pci_write_vpd(dev, off, count, buf);
}
#ifdef HAVE_PCI_LEGACY
/**
* pci_read_legacy_io - read byte(s) from legacy I/O port space
* @filp: open sysfs file
* @kobj: kobject corresponding to file to read from
* @bin_attr: struct bin_attribute for this file
* @buf: buffer to store results
* @off: offset into legacy I/O port space
* @count: number of bytes to read
*
* Reads 1, 2, or 4 bytes from legacy I/O port space using an arch specific
* callback routine (pci_legacy_read).
*/
static ssize_t pci_read_legacy_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct pci_bus *bus = to_pci_bus(container_of(kobj, struct device,
kobj));
/* Only support 1, 2 or 4 byte accesses */
if (count != 1 && count != 2 && count != 4)
return -EINVAL;
return pci_legacy_read(bus, off, (u32 *)buf, count);
}
/**
* pci_write_legacy_io - write byte(s) to legacy I/O port space
* @filp: open sysfs file
* @kobj: kobject corresponding to file to read from
* @bin_attr: struct bin_attribute for this file
* @buf: buffer containing value to be written
* @off: offset into legacy I/O port space
* @count: number of bytes to write
*
* Writes 1, 2, or 4 bytes from legacy I/O port space using an arch specific
* callback routine (pci_legacy_write).
*/
static ssize_t pci_write_legacy_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct pci_bus *bus = to_pci_bus(container_of(kobj, struct device,
kobj));
/* Only support 1, 2 or 4 byte accesses */
if (count != 1 && count != 2 && count != 4)
return -EINVAL;
return pci_legacy_write(bus, off, *(u32 *)buf, count);
}
/**
* pci_mmap_legacy_mem - map legacy PCI memory into user memory space
* @filp: open sysfs file
* @kobj: kobject corresponding to device to be mapped
* @attr: struct bin_attribute for this file
* @vma: struct vm_area_struct passed to mmap
*
* Uses an arch specific callback, pci_mmap_legacy_mem_page_range, to mmap
* legacy memory space (first meg of bus space) into application virtual
* memory space.
*/
static int pci_mmap_legacy_mem(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
struct vm_area_struct *vma)
{
struct pci_bus *bus = to_pci_bus(container_of(kobj, struct device,
kobj));
return pci_mmap_legacy_page_range(bus, vma, pci_mmap_mem);
}
/**
* pci_mmap_legacy_io - map legacy PCI IO into user memory space
* @filp: open sysfs file
* @kobj: kobject corresponding to device to be mapped
* @attr: struct bin_attribute for this file
* @vma: struct vm_area_struct passed to mmap
*
* Uses an arch specific callback, pci_mmap_legacy_io_page_range, to mmap
* legacy IO space (first meg of bus space) into application virtual
* memory space. Returns -ENOSYS if the operation isn't supported
*/
static int pci_mmap_legacy_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
struct vm_area_struct *vma)
{
struct pci_bus *bus = to_pci_bus(container_of(kobj, struct device,
kobj));
return pci_mmap_legacy_page_range(bus, vma, pci_mmap_io);
}
/**
* pci_adjust_legacy_attr - adjustment of legacy file attributes
* @b: bus to create files under
* @mmap_type: I/O port or memory
*
* Stub implementation. Can be overridden by arch if necessary.
*/
void __weak pci_adjust_legacy_attr(struct pci_bus *b,
enum pci_mmap_state mmap_type)
{
}
/**
* pci_create_legacy_files - create legacy I/O port and memory files
* @b: bus to create files under
*
* Some platforms allow access to legacy I/O port and ISA memory space on
* a per-bus basis. This routine creates the files and ties them into
* their associated read, write and mmap files from pci-sysfs.c
*
* On error unwind, but don't propagate the error to the caller
* as it is ok to set up the PCI bus without these files.
*/
void pci_create_legacy_files(struct pci_bus *b)
{
int error;
b->legacy_io = kzalloc(sizeof(struct bin_attribute) * 2,
GFP_ATOMIC);
if (!b->legacy_io)
goto kzalloc_err;
sysfs_bin_attr_init(b->legacy_io);
b->legacy_io->attr.name = "legacy_io";
b->legacy_io->size = 0xffff;
b->legacy_io->attr.mode = S_IRUSR | S_IWUSR;
b->legacy_io->read = pci_read_legacy_io;
b->legacy_io->write = pci_write_legacy_io;
b->legacy_io->mmap = pci_mmap_legacy_io;
pci_adjust_legacy_attr(b, pci_mmap_io);
error = device_create_bin_file(&b->dev, b->legacy_io);
if (error)
goto legacy_io_err;
/* Allocated above after the legacy_io struct */
b->legacy_mem = b->legacy_io + 1;
sysfs_bin_attr_init(b->legacy_mem);
b->legacy_mem->attr.name = "legacy_mem";
b->legacy_mem->size = 1024*1024;
b->legacy_mem->attr.mode = S_IRUSR | S_IWUSR;
b->legacy_mem->mmap = pci_mmap_legacy_mem;
pci_adjust_legacy_attr(b, pci_mmap_mem);
error = device_create_bin_file(&b->dev, b->legacy_mem);
if (error)
goto legacy_mem_err;
return;
legacy_mem_err:
device_remove_bin_file(&b->dev, b->legacy_io);
legacy_io_err:
kfree(b->legacy_io);
b->legacy_io = NULL;
kzalloc_err:
printk(KERN_WARNING "pci: warning: could not create legacy I/O port and ISA memory resources to sysfs\n");
return;
}
void pci_remove_legacy_files(struct pci_bus *b)
{
if (b->legacy_io) {
device_remove_bin_file(&b->dev, b->legacy_io);
device_remove_bin_file(&b->dev, b->legacy_mem);
kfree(b->legacy_io); /* both are allocated here */
}
}
#endif /* HAVE_PCI_LEGACY */
#ifdef HAVE_PCI_MMAP
int pci_mmap_fits(struct pci_dev *pdev, int resno, struct vm_area_struct *vma,
enum pci_mmap_api mmap_api)
{
unsigned long nr, start, size, pci_start;
if (pci_resource_len(pdev, resno) == 0)
return 0;
nr = vma_pages(vma);
start = vma->vm_pgoff;
size = ((pci_resource_len(pdev, resno) - 1) >> PAGE_SHIFT) + 1;
pci_start = (mmap_api == PCI_MMAP_PROCFS) ?
pci_resource_start(pdev, resno) >> PAGE_SHIFT : 0;
if (start >= pci_start && start < pci_start + size &&
start + nr <= pci_start + size)
return 1;
return 0;
}
/**
* pci_mmap_resource - map a PCI resource into user memory space
* @kobj: kobject for mapping
* @attr: struct bin_attribute for the file being mapped
* @vma: struct vm_area_struct passed into the mmap
* @write_combine: 1 for write_combine mapping
*
* Use the regular PCI mapping routines to map a PCI resource into userspace.
*/
static int pci_mmap_resource(struct kobject *kobj, struct bin_attribute *attr,
struct vm_area_struct *vma, int write_combine)
{
struct pci_dev *pdev = to_pci_dev(container_of(kobj,
struct device, kobj));
struct resource *res = attr->private;
enum pci_mmap_state mmap_type;
resource_size_t start, end;
int i;
for (i = 0; i < PCI_ROM_RESOURCE; i++)
if (res == &pdev->resource[i])
break;
if (i >= PCI_ROM_RESOURCE)
return -ENODEV;
if (!pci_mmap_fits(pdev, i, vma, PCI_MMAP_SYSFS)) {
WARN(1, "process \"%s\" tried to map 0x%08lx bytes at page 0x%08lx on %s BAR %d (start 0x%16Lx, size 0x%16Lx)\n",
current->comm, vma->vm_end-vma->vm_start, vma->vm_pgoff,
pci_name(pdev), i,
(u64)pci_resource_start(pdev, i),
(u64)pci_resource_len(pdev, i));
return -EINVAL;
}
/* pci_mmap_page_range() expects the same kind of entry as coming
* from /proc/bus/pci/ which is a "user visible" value. If this is
* different from the resource itself, arch will do necessary fixup.
*/
pci_resource_to_user(pdev, i, res, &start, &end);
vma->vm_pgoff += start >> PAGE_SHIFT;
mmap_type = res->flags & IORESOURCE_MEM ? pci_mmap_mem : pci_mmap_io;
if (res->flags & IORESOURCE_MEM && iomem_is_exclusive(start))
return -EINVAL;
return pci_mmap_page_range(pdev, vma, mmap_type, write_combine);
}
static int pci_mmap_resource_uc(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
struct vm_area_struct *vma)
{
return pci_mmap_resource(kobj, attr, vma, 0);
}
static int pci_mmap_resource_wc(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
struct vm_area_struct *vma)
{
return pci_mmap_resource(kobj, attr, vma, 1);
}
static ssize_t pci_resource_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count, bool write)
{
struct pci_dev *pdev = to_pci_dev(container_of(kobj,
struct device, kobj));
struct resource *res = attr->private;
unsigned long port = off;
int i;
for (i = 0; i < PCI_ROM_RESOURCE; i++)
if (res == &pdev->resource[i])
break;
if (i >= PCI_ROM_RESOURCE)
return -ENODEV;
port += pci_resource_start(pdev, i);
if (port > pci_resource_end(pdev, i))
return 0;
if (port + count - 1 > pci_resource_end(pdev, i))
return -EINVAL;
switch (count) {
case 1:
if (write)
outb(*(u8 *)buf, port);
else
*(u8 *)buf = inb(port);
return 1;
case 2:
if (write)
outw(*(u16 *)buf, port);
else
*(u16 *)buf = inw(port);
return 2;
case 4:
if (write)
outl(*(u32 *)buf, port);
else
*(u32 *)buf = inl(port);
return 4;
}
return -EINVAL;
}
static ssize_t pci_read_resource_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count)
{
return pci_resource_io(filp, kobj, attr, buf, off, count, false);
}
static ssize_t pci_write_resource_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count)
{
return pci_resource_io(filp, kobj, attr, buf, off, count, true);
}
/**
* pci_remove_resource_files - cleanup resource files
* @pdev: dev to cleanup
*
* If we created resource files for @pdev, remove them from sysfs and
* free their resources.
*/
static void pci_remove_resource_files(struct pci_dev *pdev)
{
int i;
for (i = 0; i < PCI_ROM_RESOURCE; i++) {
struct bin_attribute *res_attr;
res_attr = pdev->res_attr[i];
if (res_attr) {
sysfs_remove_bin_file(&pdev->dev.kobj, res_attr);
kfree(res_attr);
}
res_attr = pdev->res_attr_wc[i];
if (res_attr) {
sysfs_remove_bin_file(&pdev->dev.kobj, res_attr);
kfree(res_attr);
}
}
}
static int pci_create_attr(struct pci_dev *pdev, int num, int write_combine)
{
/* allocate attribute structure, piggyback attribute name */
int name_len = write_combine ? 13 : 10;
struct bin_attribute *res_attr;
int retval;
res_attr = kzalloc(sizeof(*res_attr) + name_len, GFP_ATOMIC);
if (res_attr) {
char *res_attr_name = (char *)(res_attr + 1);
sysfs_bin_attr_init(res_attr);
if (write_combine) {
pdev->res_attr_wc[num] = res_attr;
sprintf(res_attr_name, "resource%d_wc", num);
res_attr->mmap = pci_mmap_resource_wc;
} else {
pdev->res_attr[num] = res_attr;
sprintf(res_attr_name, "resource%d", num);
res_attr->mmap = pci_mmap_resource_uc;
}
if (pci_resource_flags(pdev, num) & IORESOURCE_IO) {
res_attr->read = pci_read_resource_io;
res_attr->write = pci_write_resource_io;
}
res_attr->attr.name = res_attr_name;
res_attr->attr.mode = S_IRUSR | S_IWUSR;
res_attr->size = pci_resource_len(pdev, num);
res_attr->private = &pdev->resource[num];
retval = sysfs_create_bin_file(&pdev->dev.kobj, res_attr);
} else
retval = -ENOMEM;
return retval;
}
/**
* pci_create_resource_files - create resource files in sysfs for @dev
* @pdev: dev in question
*
* Walk the resources in @pdev creating files for each resource available.
*/
static int pci_create_resource_files(struct pci_dev *pdev)
{
int i;
int retval;
/* Expose the PCI resources from this device as files */
for (i = 0; i < PCI_ROM_RESOURCE; i++) {
/* skip empty resources */
if (!pci_resource_len(pdev, i))
continue;
retval = pci_create_attr(pdev, i, 0);
/* for prefetchable resources, create a WC mappable file */
if (!retval && pdev->resource[i].flags & IORESOURCE_PREFETCH)
retval = pci_create_attr(pdev, i, 1);
if (retval) {
pci_remove_resource_files(pdev);
return retval;
}
}
return 0;
}
#else /* !HAVE_PCI_MMAP */
int __weak pci_create_resource_files(struct pci_dev *dev) { return 0; }
void __weak pci_remove_resource_files(struct pci_dev *dev) { return; }
#endif /* HAVE_PCI_MMAP */
/**
* pci_write_rom - used to enable access to the PCI ROM display
* @filp: sysfs file
* @kobj: kernel object handle
* @bin_attr: struct bin_attribute for this file
* @buf: user input
* @off: file offset
* @count: number of byte in input
*
* writing anything except 0 enables it
*/
static ssize_t pci_write_rom(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct pci_dev *pdev = to_pci_dev(container_of(kobj, struct device, kobj));
if ((off == 0) && (*buf == '0') && (count == 2))
pdev->rom_attr_enabled = 0;
else
pdev->rom_attr_enabled = 1;
return count;
}
/**
* pci_read_rom - read a PCI ROM
* @filp: sysfs file
* @kobj: kernel object handle
* @bin_attr: struct bin_attribute for this file
* @buf: where to put the data we read from the ROM
* @off: file offset
* @count: number of bytes to read
*
* Put @count bytes starting at @off into @buf from the ROM in the PCI
* device corresponding to @kobj.
*/
static ssize_t pci_read_rom(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct pci_dev *pdev = to_pci_dev(container_of(kobj, struct device, kobj));
void __iomem *rom;
size_t size;
if (!pdev->rom_attr_enabled)
return -EINVAL;
rom = pci_map_rom(pdev, &size); /* size starts out as PCI window size */
if (!rom || !size)
return -EIO;
if (off >= size)
count = 0;
else {
if (off + count > size)
count = size - off;
memcpy_fromio(buf, rom + off, count);
}
pci_unmap_rom(pdev, rom);
return count;
}
static struct bin_attribute pci_config_attr = {
.attr = {
.name = "config",
.mode = S_IRUGO | S_IWUSR,
},
.size = PCI_CFG_SPACE_SIZE,
.read = pci_read_config,
.write = pci_write_config,
};
static struct bin_attribute pcie_config_attr = {
.attr = {
.name = "config",
.mode = S_IRUGO | S_IWUSR,
},
.size = PCI_CFG_SPACE_EXP_SIZE,
.read = pci_read_config,
.write = pci_write_config,
};
static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
unsigned long val;
ssize_t result = kstrtoul(buf, 0, &val);
if (result < 0)
return result;
if (val != 1)
return -EINVAL;
result = pci_reset_function(pdev);
if (result < 0)
return result;
return count;
}
static struct device_attribute reset_attr = __ATTR(reset, 0200, NULL, reset_store);
static int pci_create_capabilities_sysfs(struct pci_dev *dev)
{
int retval;
struct bin_attribute *attr;
/* If the device has VPD, try to expose it in sysfs. */
if (dev->vpd) {
attr = kzalloc(sizeof(*attr), GFP_ATOMIC);
if (!attr)
return -ENOMEM;
sysfs_bin_attr_init(attr);
attr->size = dev->vpd->len;
attr->attr.name = "vpd";
attr->attr.mode = S_IRUSR | S_IWUSR;
attr->read = read_vpd_attr;
attr->write = write_vpd_attr;
retval = sysfs_create_bin_file(&dev->dev.kobj, attr);
if (retval) {
kfree(attr);
return retval;
}
dev->vpd->attr = attr;
}
/* Active State Power Management */
pcie_aspm_create_sysfs_dev_files(dev);
if (!pci_probe_reset_function(dev)) {
retval = device_create_file(&dev->dev, &reset_attr);
if (retval)
goto error;
dev->reset_fn = 1;
}
return 0;
error:
pcie_aspm_remove_sysfs_dev_files(dev);
if (dev->vpd && dev->vpd->attr) {
sysfs_remove_bin_file(&dev->dev.kobj, dev->vpd->attr);
kfree(dev->vpd->attr);
}
return retval;
}
int __must_check pci_create_sysfs_dev_files(struct pci_dev *pdev)
{
int retval;
int rom_size = 0;
struct bin_attribute *attr;
if (!sysfs_initialized)
return -EACCES;
if (pdev->cfg_size < PCI_CFG_SPACE_EXP_SIZE)
retval = sysfs_create_bin_file(&pdev->dev.kobj, &pci_config_attr);
else
retval = sysfs_create_bin_file(&pdev->dev.kobj, &pcie_config_attr);
if (retval)
goto err;
retval = pci_create_resource_files(pdev);
if (retval)
goto err_config_file;
if (pci_resource_len(pdev, PCI_ROM_RESOURCE))
rom_size = pci_resource_len(pdev, PCI_ROM_RESOURCE);
else if (pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW)
rom_size = 0x20000;
/* If the device has a ROM, try to expose it in sysfs. */
if (rom_size) {
attr = kzalloc(sizeof(*attr), GFP_ATOMIC);
if (!attr) {
retval = -ENOMEM;
goto err_resource_files;
}
sysfs_bin_attr_init(attr);
attr->size = rom_size;
attr->attr.name = "rom";
attr->attr.mode = S_IRUSR | S_IWUSR;
attr->read = pci_read_rom;
attr->write = pci_write_rom;
retval = sysfs_create_bin_file(&pdev->dev.kobj, attr);
if (retval) {
kfree(attr);
goto err_resource_files;
}
pdev->rom_attr = attr;
}
/* add sysfs entries for various capabilities */
retval = pci_create_capabilities_sysfs(pdev);
if (retval)
goto err_rom_file;
pci_create_firmware_label_files(pdev);
return 0;
err_rom_file:
if (rom_size) {
sysfs_remove_bin_file(&pdev->dev.kobj, pdev->rom_attr);
kfree(pdev->rom_attr);
pdev->rom_attr = NULL;
}
err_resource_files:
pci_remove_resource_files(pdev);
err_config_file:
if (pdev->cfg_size < PCI_CFG_SPACE_EXP_SIZE)
sysfs_remove_bin_file(&pdev->dev.kobj, &pci_config_attr);
else
sysfs_remove_bin_file(&pdev->dev.kobj, &pcie_config_attr);
err:
return retval;
}
static void pci_remove_capabilities_sysfs(struct pci_dev *dev)
{
if (dev->vpd && dev->vpd->attr) {
sysfs_remove_bin_file(&dev->dev.kobj, dev->vpd->attr);
kfree(dev->vpd->attr);
}
pcie_aspm_remove_sysfs_dev_files(dev);
if (dev->reset_fn) {
device_remove_file(&dev->dev, &reset_attr);
dev->reset_fn = 0;
}
}
/**
* pci_remove_sysfs_dev_files - cleanup PCI specific sysfs files
* @pdev: device whose entries we should free
*
* Cleanup when @pdev is removed from sysfs.
*/
void pci_remove_sysfs_dev_files(struct pci_dev *pdev)
{
int rom_size = 0;
if (!sysfs_initialized)
return;
pci_remove_capabilities_sysfs(pdev);
if (pdev->cfg_size < PCI_CFG_SPACE_EXP_SIZE)
sysfs_remove_bin_file(&pdev->dev.kobj, &pci_config_attr);
else
sysfs_remove_bin_file(&pdev->dev.kobj, &pcie_config_attr);
pci_remove_resource_files(pdev);
if (pci_resource_len(pdev, PCI_ROM_RESOURCE))
rom_size = pci_resource_len(pdev, PCI_ROM_RESOURCE);
else if (pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW)
rom_size = 0x20000;
if (rom_size && pdev->rom_attr) {
sysfs_remove_bin_file(&pdev->dev.kobj, pdev->rom_attr);
kfree(pdev->rom_attr);
}
pci_remove_firmware_label_files(pdev);
}
static int __init pci_sysfs_init(void)
{
struct pci_dev *pdev = NULL;
int retval;
sysfs_initialized = 1;
for_each_pci_dev(pdev) {
retval = pci_create_sysfs_dev_files(pdev);
if (retval) {
pci_dev_put(pdev);
return retval;
}
}
return 0;
}
late_initcall(pci_sysfs_init);
static struct attribute *pci_dev_dev_attrs[] = {
&vga_attr.attr,
NULL,
};
static umode_t pci_dev_attrs_are_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct pci_dev *pdev = to_pci_dev(dev);
if (a == &vga_attr.attr)
if ((pdev->class >> 8) != PCI_CLASS_DISPLAY_VGA)
return 0;
return a->mode;
}
static struct attribute *pci_dev_hp_attrs[] = {
&dev_remove_attr.attr,
&dev_rescan_attr.attr,
NULL,
};
static umode_t pci_dev_hp_attrs_are_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct pci_dev *pdev = to_pci_dev(dev);
if (pdev->is_virtfn)
return 0;
return a->mode;
}
static struct attribute_group pci_dev_hp_attr_group = {
.attrs = pci_dev_hp_attrs,
.is_visible = pci_dev_hp_attrs_are_visible,
};
#ifdef CONFIG_PCI_IOV
static struct attribute *sriov_dev_attrs[] = {
&sriov_totalvfs_attr.attr,
&sriov_numvfs_attr.attr,
NULL,
};
static umode_t sriov_attrs_are_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
if (!dev_is_pf(dev))
return 0;
return a->mode;
}
static struct attribute_group sriov_dev_attr_group = {
.attrs = sriov_dev_attrs,
.is_visible = sriov_attrs_are_visible,
};
#endif /* CONFIG_PCI_IOV */
static struct attribute_group pci_dev_attr_group = {
.attrs = pci_dev_dev_attrs,
.is_visible = pci_dev_attrs_are_visible,
};
static const struct attribute_group *pci_dev_attr_groups[] = {
&pci_dev_attr_group,
&pci_dev_hp_attr_group,
#ifdef CONFIG_PCI_IOV
&sriov_dev_attr_group,
#endif
NULL,
};
struct device_type pci_dev_type = {
.groups = pci_dev_attr_groups,
};