linux_dsm_epyc7002/arch/mips/include/asm/fpu.h
Paul Burton 4227a2d4ef MIPS: Support for hybrid FPRs
Hybrid FPRs is a scheme where scalar FP registers are 64b wide, but
accesses to odd indexed single registers use bits 63:32 of the
preceeding even indexed 64b register. In this mode all FP code
except that built for the plain FP64 ABI can execute correctly. Most
notably a combination of FP64A & FP32 code can execute correctly,
allowing for existing FP32 binaries to be linked with new FP64A binaries
that can make use of 64 bit FP & MSA.

Hybrid FPRs are implemented by setting both the FR & FRE bits, trapping
& emulating single precision FP instructions (via Reserved Instruction
exceptions) whilst allowing others to execute natively. It therefore has
a penalty in terms of execution speed, and should only be used when no
fully native mode can be. As more binaries are recompiled to use either
the FPXX or FP64(A) ABIs, the need for hybrid FPRs should diminish.
However in the short to mid term it allows for a gradual transition
towards that world, rather than a complete ABI break which is not
feasible for some users & not desirable for many.

A task will be executed using the hybrid FPR scheme when its
TIF_HYBRID_FPREGS flag is set & TIF_32BIT_FPREGS is clear. A further
patch will set the flags as necessary, this patch simply adds the
infrastructure necessary for the hybrid FPR mode to work.

Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/7683/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2014-11-24 07:45:07 +01:00

235 lines
4.7 KiB
C

/*
* Copyright (C) 2002 MontaVista Software Inc.
* Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef _ASM_FPU_H
#define _ASM_FPU_H
#include <linux/sched.h>
#include <linux/thread_info.h>
#include <linux/bitops.h>
#include <asm/mipsregs.h>
#include <asm/cpu.h>
#include <asm/cpu-features.h>
#include <asm/fpu_emulator.h>
#include <asm/hazards.h>
#include <asm/processor.h>
#include <asm/current.h>
#include <asm/msa.h>
#ifdef CONFIG_MIPS_MT_FPAFF
#include <asm/mips_mt.h>
#endif
struct sigcontext;
struct sigcontext32;
extern void _init_fpu(void);
extern void _save_fp(struct task_struct *);
extern void _restore_fp(struct task_struct *);
/*
* This enum specifies a mode in which we want the FPU to operate, for cores
* which implement the Status.FR bit. Note that the bottom bit of the value
* purposefully matches the desired value of the Status.FR bit.
*/
enum fpu_mode {
FPU_32BIT = 0, /* FR = 0 */
FPU_64BIT, /* FR = 1, FRE = 0 */
FPU_AS_IS,
FPU_HYBRID, /* FR = 1, FRE = 1 */
#define FPU_FR_MASK 0x1
};
static inline int __enable_fpu(enum fpu_mode mode)
{
int fr;
switch (mode) {
case FPU_AS_IS:
/* just enable the FPU in its current mode */
set_c0_status(ST0_CU1);
enable_fpu_hazard();
return 0;
case FPU_HYBRID:
if (!cpu_has_fre)
return SIGFPE;
/* set FRE */
write_c0_config5(read_c0_config5() | MIPS_CONF5_FRE);
goto fr_common;
case FPU_64BIT:
#if !(defined(CONFIG_CPU_MIPS32_R2) || defined(CONFIG_64BIT))
/* we only have a 32-bit FPU */
return SIGFPE;
#endif
/* fall through */
case FPU_32BIT:
/* clear FRE */
write_c0_config5(read_c0_config5() & ~MIPS_CONF5_FRE);
fr_common:
/* set CU1 & change FR appropriately */
fr = (int)mode & FPU_FR_MASK;
change_c0_status(ST0_CU1 | ST0_FR, ST0_CU1 | (fr ? ST0_FR : 0));
enable_fpu_hazard();
/* check FR has the desired value */
return (!!(read_c0_status() & ST0_FR) == !!fr) ? 0 : SIGFPE;
default:
BUG();
}
return SIGFPE;
}
#define __disable_fpu() \
do { \
clear_c0_status(ST0_CU1); \
disable_fpu_hazard(); \
} while (0)
#define clear_fpu_owner() clear_thread_flag(TIF_USEDFPU)
static inline int __is_fpu_owner(void)
{
return test_thread_flag(TIF_USEDFPU);
}
static inline int is_fpu_owner(void)
{
return cpu_has_fpu && __is_fpu_owner();
}
static inline int __own_fpu(void)
{
enum fpu_mode mode;
int ret;
if (test_thread_flag(TIF_HYBRID_FPREGS))
mode = FPU_HYBRID;
else
mode = !test_thread_flag(TIF_32BIT_FPREGS);
ret = __enable_fpu(mode);
if (ret)
return ret;
KSTK_STATUS(current) |= ST0_CU1;
if (mode == FPU_64BIT || mode == FPU_HYBRID)
KSTK_STATUS(current) |= ST0_FR;
else /* mode == FPU_32BIT */
KSTK_STATUS(current) &= ~ST0_FR;
set_thread_flag(TIF_USEDFPU);
return 0;
}
static inline int own_fpu_inatomic(int restore)
{
int ret = 0;
if (cpu_has_fpu && !__is_fpu_owner()) {
ret = __own_fpu();
if (restore && !ret)
_restore_fp(current);
}
return ret;
}
static inline int own_fpu(int restore)
{
int ret;
preempt_disable();
ret = own_fpu_inatomic(restore);
preempt_enable();
return ret;
}
static inline void lose_fpu(int save)
{
preempt_disable();
if (is_msa_enabled()) {
if (save) {
save_msa(current);
current->thread.fpu.fcr31 =
read_32bit_cp1_register(CP1_STATUS);
}
disable_msa();
clear_thread_flag(TIF_USEDMSA);
} else if (is_fpu_owner()) {
if (save)
_save_fp(current);
__disable_fpu();
}
KSTK_STATUS(current) &= ~ST0_CU1;
clear_thread_flag(TIF_USEDFPU);
preempt_enable();
}
static inline int init_fpu(void)
{
int ret = 0;
if (cpu_has_fpu) {
ret = __own_fpu();
if (!ret) {
unsigned int config5 = read_c0_config5();
/*
* Ensure FRE is clear whilst running _init_fpu, since
* single precision FP instructions are used. If FRE
* was set then we'll just end up initialising all 32
* 64b registers.
*/
write_c0_config5(config5 & ~MIPS_CONF5_FRE);
enable_fpu_hazard();
_init_fpu();
/* Restore FRE */
write_c0_config5(config5);
enable_fpu_hazard();
}
} else
fpu_emulator_init_fpu();
return ret;
}
static inline void save_fp(struct task_struct *tsk)
{
if (cpu_has_fpu)
_save_fp(tsk);
}
static inline void restore_fp(struct task_struct *tsk)
{
if (cpu_has_fpu)
_restore_fp(tsk);
}
static inline union fpureg *get_fpu_regs(struct task_struct *tsk)
{
if (tsk == current) {
preempt_disable();
if (is_fpu_owner())
_save_fp(current);
preempt_enable();
}
return tsk->thread.fpu.fpr;
}
#endif /* _ASM_FPU_H */