linux_dsm_epyc7002/kernel/sched/debug.c
Wei Li 02d4ac5885 sched/debug: Reset watchdog on all CPUs while processing sysrq-t
Lengthy output of sysrq-t may take a lot of time on slow serial console
with lots of processes and CPUs.

So we need to reset NMI-watchdog to avoid spurious lockup messages, and
we also reset softlockup watchdogs on all other CPUs since another CPU
might be blocked waiting for us to process an IPI or stop_machine.

Add to sysrq_sched_debug_show() as what we did in show_state_filter().

Signed-off-by: Wei Li <liwei391@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20191226085224.48942-1-liwei391@huawei.com
2020-01-17 10:19:20 +01:00

994 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* kernel/sched/debug.c
*
* Print the CFS rbtree and other debugging details
*
* Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
*/
#include "sched.h"
static DEFINE_SPINLOCK(sched_debug_lock);
/*
* This allows printing both to /proc/sched_debug and
* to the console
*/
#define SEQ_printf(m, x...) \
do { \
if (m) \
seq_printf(m, x); \
else \
pr_cont(x); \
} while (0)
/*
* Ease the printing of nsec fields:
*/
static long long nsec_high(unsigned long long nsec)
{
if ((long long)nsec < 0) {
nsec = -nsec;
do_div(nsec, 1000000);
return -nsec;
}
do_div(nsec, 1000000);
return nsec;
}
static unsigned long nsec_low(unsigned long long nsec)
{
if ((long long)nsec < 0)
nsec = -nsec;
return do_div(nsec, 1000000);
}
#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
#define SCHED_FEAT(name, enabled) \
#name ,
static const char * const sched_feat_names[] = {
#include "features.h"
};
#undef SCHED_FEAT
static int sched_feat_show(struct seq_file *m, void *v)
{
int i;
for (i = 0; i < __SCHED_FEAT_NR; i++) {
if (!(sysctl_sched_features & (1UL << i)))
seq_puts(m, "NO_");
seq_printf(m, "%s ", sched_feat_names[i]);
}
seq_puts(m, "\n");
return 0;
}
#ifdef CONFIG_JUMP_LABEL
#define jump_label_key__true STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
#define SCHED_FEAT(name, enabled) \
jump_label_key__##enabled ,
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
#include "features.h"
};
#undef SCHED_FEAT
static void sched_feat_disable(int i)
{
static_key_disable_cpuslocked(&sched_feat_keys[i]);
}
static void sched_feat_enable(int i)
{
static_key_enable_cpuslocked(&sched_feat_keys[i]);
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* CONFIG_JUMP_LABEL */
static int sched_feat_set(char *cmp)
{
int i;
int neg = 0;
if (strncmp(cmp, "NO_", 3) == 0) {
neg = 1;
cmp += 3;
}
i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
if (i < 0)
return i;
if (neg) {
sysctl_sched_features &= ~(1UL << i);
sched_feat_disable(i);
} else {
sysctl_sched_features |= (1UL << i);
sched_feat_enable(i);
}
return 0;
}
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[64];
char *cmp;
int ret;
struct inode *inode;
if (cnt > 63)
cnt = 63;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
cmp = strstrip(buf);
/* Ensure the static_key remains in a consistent state */
inode = file_inode(filp);
cpus_read_lock();
inode_lock(inode);
ret = sched_feat_set(cmp);
inode_unlock(inode);
cpus_read_unlock();
if (ret < 0)
return ret;
*ppos += cnt;
return cnt;
}
static int sched_feat_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_feat_show, NULL);
}
static const struct file_operations sched_feat_fops = {
.open = sched_feat_open,
.write = sched_feat_write,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
__read_mostly bool sched_debug_enabled;
static __init int sched_init_debug(void)
{
debugfs_create_file("sched_features", 0644, NULL, NULL,
&sched_feat_fops);
debugfs_create_bool("sched_debug", 0644, NULL,
&sched_debug_enabled);
return 0;
}
late_initcall(sched_init_debug);
#ifdef CONFIG_SMP
#ifdef CONFIG_SYSCTL
static struct ctl_table sd_ctl_dir[] = {
{
.procname = "sched_domain",
.mode = 0555,
},
{}
};
static struct ctl_table sd_ctl_root[] = {
{
.procname = "kernel",
.mode = 0555,
.child = sd_ctl_dir,
},
{}
};
static struct ctl_table *sd_alloc_ctl_entry(int n)
{
struct ctl_table *entry =
kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
return entry;
}
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
struct ctl_table *entry;
/*
* In the intermediate directories, both the child directory and
* procname are dynamically allocated and could fail but the mode
* will always be set. In the lowest directory the names are
* static strings and all have proc handlers.
*/
for (entry = *tablep; entry->mode; entry++) {
if (entry->child)
sd_free_ctl_entry(&entry->child);
if (entry->proc_handler == NULL)
kfree(entry->procname);
}
kfree(*tablep);
*tablep = NULL;
}
static void
set_table_entry(struct ctl_table *entry,
const char *procname, void *data, int maxlen,
umode_t mode, proc_handler *proc_handler)
{
entry->procname = procname;
entry->data = data;
entry->maxlen = maxlen;
entry->mode = mode;
entry->proc_handler = proc_handler;
}
static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
struct ctl_table *table = sd_alloc_ctl_entry(9);
if (table == NULL)
return NULL;
set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax);
set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax);
set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring);
/* &table[8] is terminator */
return table;
}
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
struct ctl_table *entry, *table;
struct sched_domain *sd;
int domain_num = 0, i;
char buf[32];
for_each_domain(cpu, sd)
domain_num++;
entry = table = sd_alloc_ctl_entry(domain_num + 1);
if (table == NULL)
return NULL;
i = 0;
for_each_domain(cpu, sd) {
snprintf(buf, 32, "domain%d", i);
entry->procname = kstrdup(buf, GFP_KERNEL);
entry->mode = 0555;
entry->child = sd_alloc_ctl_domain_table(sd);
entry++;
i++;
}
return table;
}
static cpumask_var_t sd_sysctl_cpus;
static struct ctl_table_header *sd_sysctl_header;
void register_sched_domain_sysctl(void)
{
static struct ctl_table *cpu_entries;
static struct ctl_table **cpu_idx;
static bool init_done = false;
char buf[32];
int i;
if (!cpu_entries) {
cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
if (!cpu_entries)
return;
WARN_ON(sd_ctl_dir[0].child);
sd_ctl_dir[0].child = cpu_entries;
}
if (!cpu_idx) {
struct ctl_table *e = cpu_entries;
cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
if (!cpu_idx)
return;
/* deal with sparse possible map */
for_each_possible_cpu(i) {
cpu_idx[i] = e;
e++;
}
}
if (!cpumask_available(sd_sysctl_cpus)) {
if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
return;
}
if (!init_done) {
init_done = true;
/* init to possible to not have holes in @cpu_entries */
cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
}
for_each_cpu(i, sd_sysctl_cpus) {
struct ctl_table *e = cpu_idx[i];
if (e->child)
sd_free_ctl_entry(&e->child);
if (!e->procname) {
snprintf(buf, 32, "cpu%d", i);
e->procname = kstrdup(buf, GFP_KERNEL);
}
e->mode = 0555;
e->child = sd_alloc_ctl_cpu_table(i);
__cpumask_clear_cpu(i, sd_sysctl_cpus);
}
WARN_ON(sd_sysctl_header);
sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
void dirty_sched_domain_sysctl(int cpu)
{
if (cpumask_available(sd_sysctl_cpus))
__cpumask_set_cpu(cpu, sd_sysctl_cpus);
}
/* may be called multiple times per register */
void unregister_sched_domain_sysctl(void)
{
unregister_sysctl_table(sd_sysctl_header);
sd_sysctl_header = NULL;
}
#endif /* CONFIG_SYSCTL */
#endif /* CONFIG_SMP */
#ifdef CONFIG_FAIR_GROUP_SCHED
static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
{
struct sched_entity *se = tg->se[cpu];
#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
if (!se)
return;
PN(se->exec_start);
PN(se->vruntime);
PN(se->sum_exec_runtime);
if (schedstat_enabled()) {
PN_SCHEDSTAT(se->statistics.wait_start);
PN_SCHEDSTAT(se->statistics.sleep_start);
PN_SCHEDSTAT(se->statistics.block_start);
PN_SCHEDSTAT(se->statistics.sleep_max);
PN_SCHEDSTAT(se->statistics.block_max);
PN_SCHEDSTAT(se->statistics.exec_max);
PN_SCHEDSTAT(se->statistics.slice_max);
PN_SCHEDSTAT(se->statistics.wait_max);
PN_SCHEDSTAT(se->statistics.wait_sum);
P_SCHEDSTAT(se->statistics.wait_count);
}
P(se->load.weight);
P(se->runnable_weight);
#ifdef CONFIG_SMP
P(se->avg.load_avg);
P(se->avg.util_avg);
P(se->avg.runnable_load_avg);
#endif
#undef PN_SCHEDSTAT
#undef PN
#undef P_SCHEDSTAT
#undef P
}
#endif
#ifdef CONFIG_CGROUP_SCHED
static char group_path[PATH_MAX];
static char *task_group_path(struct task_group *tg)
{
if (autogroup_path(tg, group_path, PATH_MAX))
return group_path;
cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
return group_path;
}
#endif
static void
print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
{
if (rq->curr == p)
SEQ_printf(m, ">R");
else
SEQ_printf(m, " %c", task_state_to_char(p));
SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
p->comm, task_pid_nr(p),
SPLIT_NS(p->se.vruntime),
(long long)(p->nvcsw + p->nivcsw),
p->prio);
SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
SPLIT_NS(p->se.sum_exec_runtime),
SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
#ifdef CONFIG_NUMA_BALANCING
SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
#endif
#ifdef CONFIG_CGROUP_SCHED
SEQ_printf(m, " %s", task_group_path(task_group(p)));
#endif
SEQ_printf(m, "\n");
}
static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
{
struct task_struct *g, *p;
SEQ_printf(m, "\n");
SEQ_printf(m, "runnable tasks:\n");
SEQ_printf(m, " S task PID tree-key switches prio"
" wait-time sum-exec sum-sleep\n");
SEQ_printf(m, "-------------------------------------------------------"
"----------------------------------------------------\n");
rcu_read_lock();
for_each_process_thread(g, p) {
if (task_cpu(p) != rq_cpu)
continue;
print_task(m, rq, p);
}
rcu_read_unlock();
}
void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
spread, rq0_min_vruntime, spread0;
struct rq *rq = cpu_rq(cpu);
struct sched_entity *last;
unsigned long flags;
#ifdef CONFIG_FAIR_GROUP_SCHED
SEQ_printf(m, "\n");
SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
#else
SEQ_printf(m, "\n");
SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
#endif
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
SPLIT_NS(cfs_rq->exec_clock));
raw_spin_lock_irqsave(&rq->lock, flags);
if (rb_first_cached(&cfs_rq->tasks_timeline))
MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
last = __pick_last_entity(cfs_rq);
if (last)
max_vruntime = last->vruntime;
min_vruntime = cfs_rq->min_vruntime;
rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
raw_spin_unlock_irqrestore(&rq->lock, flags);
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
SPLIT_NS(MIN_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
SPLIT_NS(min_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
SPLIT_NS(max_vruntime));
spread = max_vruntime - MIN_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
SPLIT_NS(spread));
spread0 = min_vruntime - rq0_min_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
SPLIT_NS(spread0));
SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
cfs_rq->nr_spread_over);
SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
#ifdef CONFIG_SMP
SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
cfs_rq->avg.load_avg);
SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
cfs_rq->avg.runnable_load_avg);
SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
cfs_rq->avg.util_avg);
SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
cfs_rq->avg.util_est.enqueued);
SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
cfs_rq->removed.load_avg);
SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
cfs_rq->removed.util_avg);
SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
cfs_rq->removed.runnable_sum);
#ifdef CONFIG_FAIR_GROUP_SCHED
SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
cfs_rq->tg_load_avg_contrib);
SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
atomic_long_read(&cfs_rq->tg->load_avg));
#endif
#endif
#ifdef CONFIG_CFS_BANDWIDTH
SEQ_printf(m, " .%-30s: %d\n", "throttled",
cfs_rq->throttled);
SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
cfs_rq->throttle_count);
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(m, cpu, cfs_rq->tg);
#endif
}
void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
{
#ifdef CONFIG_RT_GROUP_SCHED
SEQ_printf(m, "\n");
SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
#else
SEQ_printf(m, "\n");
SEQ_printf(m, "rt_rq[%d]:\n", cpu);
#endif
#define P(x) \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
#define PU(x) \
SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
PU(rt_nr_running);
#ifdef CONFIG_SMP
PU(rt_nr_migratory);
#endif
P(rt_throttled);
PN(rt_time);
PN(rt_runtime);
#undef PN
#undef PU
#undef P
}
void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
{
struct dl_bw *dl_bw;
SEQ_printf(m, "\n");
SEQ_printf(m, "dl_rq[%d]:\n", cpu);
#define PU(x) \
SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
PU(dl_nr_running);
#ifdef CONFIG_SMP
PU(dl_nr_migratory);
dl_bw = &cpu_rq(cpu)->rd->dl_bw;
#else
dl_bw = &dl_rq->dl_bw;
#endif
SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
#undef PU
}
static void print_cpu(struct seq_file *m, int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
#ifdef CONFIG_X86
{
unsigned int freq = cpu_khz ? : 1;
SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
cpu, freq / 1000, (freq % 1000));
}
#else
SEQ_printf(m, "cpu#%d\n", cpu);
#endif
#define P(x) \
do { \
if (sizeof(rq->x) == 4) \
SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
else \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
} while (0)
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
P(nr_running);
P(nr_switches);
P(nr_load_updates);
P(nr_uninterruptible);
PN(next_balance);
SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
PN(clock);
PN(clock_task);
#undef P
#undef PN
#ifdef CONFIG_SMP
#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
P64(avg_idle);
P64(max_idle_balance_cost);
#undef P64
#endif
#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
if (schedstat_enabled()) {
P(yld_count);
P(sched_count);
P(sched_goidle);
P(ttwu_count);
P(ttwu_local);
}
#undef P
spin_lock_irqsave(&sched_debug_lock, flags);
print_cfs_stats(m, cpu);
print_rt_stats(m, cpu);
print_dl_stats(m, cpu);
print_rq(m, rq, cpu);
spin_unlock_irqrestore(&sched_debug_lock, flags);
SEQ_printf(m, "\n");
}
static const char *sched_tunable_scaling_names[] = {
"none",
"logarithmic",
"linear"
};
static void sched_debug_header(struct seq_file *m)
{
u64 ktime, sched_clk, cpu_clk;
unsigned long flags;
local_irq_save(flags);
ktime = ktime_to_ns(ktime_get());
sched_clk = sched_clock();
cpu_clk = local_clock();
local_irq_restore(flags);
SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
#define P(x) \
SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
#define PN(x) \
SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
PN(ktime);
PN(sched_clk);
PN(cpu_clk);
P(jiffies);
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
P(sched_clock_stable());
#endif
#undef PN
#undef P
SEQ_printf(m, "\n");
SEQ_printf(m, "sysctl_sched\n");
#define P(x) \
SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
#define PN(x) \
SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
PN(sysctl_sched_latency);
PN(sysctl_sched_min_granularity);
PN(sysctl_sched_wakeup_granularity);
P(sysctl_sched_child_runs_first);
P(sysctl_sched_features);
#undef PN
#undef P
SEQ_printf(m, " .%-40s: %d (%s)\n",
"sysctl_sched_tunable_scaling",
sysctl_sched_tunable_scaling,
sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
SEQ_printf(m, "\n");
}
static int sched_debug_show(struct seq_file *m, void *v)
{
int cpu = (unsigned long)(v - 2);
if (cpu != -1)
print_cpu(m, cpu);
else
sched_debug_header(m);
return 0;
}
void sysrq_sched_debug_show(void)
{
int cpu;
sched_debug_header(NULL);
for_each_online_cpu(cpu) {
/*
* Need to reset softlockup watchdogs on all CPUs, because
* another CPU might be blocked waiting for us to process
* an IPI or stop_machine.
*/
touch_nmi_watchdog();
touch_all_softlockup_watchdogs();
print_cpu(NULL, cpu);
}
}
/*
* This itererator needs some explanation.
* It returns 1 for the header position.
* This means 2 is CPU 0.
* In a hotplugged system some CPUs, including CPU 0, may be missing so we have
* to use cpumask_* to iterate over the CPUs.
*/
static void *sched_debug_start(struct seq_file *file, loff_t *offset)
{
unsigned long n = *offset;
if (n == 0)
return (void *) 1;
n--;
if (n > 0)
n = cpumask_next(n - 1, cpu_online_mask);
else
n = cpumask_first(cpu_online_mask);
*offset = n + 1;
if (n < nr_cpu_ids)
return (void *)(unsigned long)(n + 2);
return NULL;
}
static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
return sched_debug_start(file, offset);
}
static void sched_debug_stop(struct seq_file *file, void *data)
{
}
static const struct seq_operations sched_debug_sops = {
.start = sched_debug_start,
.next = sched_debug_next,
.stop = sched_debug_stop,
.show = sched_debug_show,
};
static int __init init_sched_debug_procfs(void)
{
if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
return -ENOMEM;
return 0;
}
__initcall(init_sched_debug_procfs);
#define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
#define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
#define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
#define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
#ifdef CONFIG_NUMA_BALANCING
void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
unsigned long tpf, unsigned long gsf, unsigned long gpf)
{
SEQ_printf(m, "numa_faults node=%d ", node);
SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
}
#endif
static void sched_show_numa(struct task_struct *p, struct seq_file *m)
{
#ifdef CONFIG_NUMA_BALANCING
struct mempolicy *pol;
if (p->mm)
P(mm->numa_scan_seq);
task_lock(p);
pol = p->mempolicy;
if (pol && !(pol->flags & MPOL_F_MORON))
pol = NULL;
mpol_get(pol);
task_unlock(p);
P(numa_pages_migrated);
P(numa_preferred_nid);
P(total_numa_faults);
SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
task_node(p), task_numa_group_id(p));
show_numa_stats(p, m);
mpol_put(pol);
#endif
}
void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
struct seq_file *m)
{
unsigned long nr_switches;
SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
get_nr_threads(p));
SEQ_printf(m,
"---------------------------------------------------------"
"----------\n");
#define __P(F) \
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
#define P(F) \
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
#define P_SCHEDSTAT(F) \
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
#define __PN(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
#define PN(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
#define PN_SCHEDSTAT(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
PN(se.exec_start);
PN(se.vruntime);
PN(se.sum_exec_runtime);
nr_switches = p->nvcsw + p->nivcsw;
P(se.nr_migrations);
if (schedstat_enabled()) {
u64 avg_atom, avg_per_cpu;
PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
PN_SCHEDSTAT(se.statistics.wait_start);
PN_SCHEDSTAT(se.statistics.sleep_start);
PN_SCHEDSTAT(se.statistics.block_start);
PN_SCHEDSTAT(se.statistics.sleep_max);
PN_SCHEDSTAT(se.statistics.block_max);
PN_SCHEDSTAT(se.statistics.exec_max);
PN_SCHEDSTAT(se.statistics.slice_max);
PN_SCHEDSTAT(se.statistics.wait_max);
PN_SCHEDSTAT(se.statistics.wait_sum);
P_SCHEDSTAT(se.statistics.wait_count);
PN_SCHEDSTAT(se.statistics.iowait_sum);
P_SCHEDSTAT(se.statistics.iowait_count);
P_SCHEDSTAT(se.statistics.nr_migrations_cold);
P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
P_SCHEDSTAT(se.statistics.nr_forced_migrations);
P_SCHEDSTAT(se.statistics.nr_wakeups);
P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
P_SCHEDSTAT(se.statistics.nr_wakeups_local);
P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
avg_atom = p->se.sum_exec_runtime;
if (nr_switches)
avg_atom = div64_ul(avg_atom, nr_switches);
else
avg_atom = -1LL;
avg_per_cpu = p->se.sum_exec_runtime;
if (p->se.nr_migrations) {
avg_per_cpu = div64_u64(avg_per_cpu,
p->se.nr_migrations);
} else {
avg_per_cpu = -1LL;
}
__PN(avg_atom);
__PN(avg_per_cpu);
}
__P(nr_switches);
SEQ_printf(m, "%-45s:%21Ld\n",
"nr_voluntary_switches", (long long)p->nvcsw);
SEQ_printf(m, "%-45s:%21Ld\n",
"nr_involuntary_switches", (long long)p->nivcsw);
P(se.load.weight);
P(se.runnable_weight);
#ifdef CONFIG_SMP
P(se.avg.load_sum);
P(se.avg.runnable_load_sum);
P(se.avg.util_sum);
P(se.avg.load_avg);
P(se.avg.runnable_load_avg);
P(se.avg.util_avg);
P(se.avg.last_update_time);
P(se.avg.util_est.ewma);
P(se.avg.util_est.enqueued);
#endif
P(policy);
P(prio);
if (task_has_dl_policy(p)) {
P(dl.runtime);
P(dl.deadline);
}
#undef PN_SCHEDSTAT
#undef PN
#undef __PN
#undef P_SCHEDSTAT
#undef P
#undef __P
{
unsigned int this_cpu = raw_smp_processor_id();
u64 t0, t1;
t0 = cpu_clock(this_cpu);
t1 = cpu_clock(this_cpu);
SEQ_printf(m, "%-45s:%21Ld\n",
"clock-delta", (long long)(t1-t0));
}
sched_show_numa(p, m);
}
void proc_sched_set_task(struct task_struct *p)
{
#ifdef CONFIG_SCHEDSTATS
memset(&p->se.statistics, 0, sizeof(p->se.statistics));
#endif
}