mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-18 01:36:55 +07:00
981aa8c091
Removed gc_move_threshold because picking buckets only by threshold could lead moving extra buckets (ei. if there are buckets at the threshold that aren't supposed to be moved do to space considerations). This is replaced by a GC_MOVE bit in the gc_mark bitmask. Now only marked buckets get moved. Signed-off-by: Nicholas Swenson <nks@daterainc.com> Signed-off-by: Kent Overstreet <kmo@daterainc.com>
705 lines
18 KiB
C
705 lines
18 KiB
C
/*
|
|
* Primary bucket allocation code
|
|
*
|
|
* Copyright 2012 Google, Inc.
|
|
*
|
|
* Allocation in bcache is done in terms of buckets:
|
|
*
|
|
* Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
|
|
* btree pointers - they must match for the pointer to be considered valid.
|
|
*
|
|
* Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
|
|
* bucket simply by incrementing its gen.
|
|
*
|
|
* The gens (along with the priorities; it's really the gens are important but
|
|
* the code is named as if it's the priorities) are written in an arbitrary list
|
|
* of buckets on disk, with a pointer to them in the journal header.
|
|
*
|
|
* When we invalidate a bucket, we have to write its new gen to disk and wait
|
|
* for that write to complete before we use it - otherwise after a crash we
|
|
* could have pointers that appeared to be good but pointed to data that had
|
|
* been overwritten.
|
|
*
|
|
* Since the gens and priorities are all stored contiguously on disk, we can
|
|
* batch this up: We fill up the free_inc list with freshly invalidated buckets,
|
|
* call prio_write(), and when prio_write() finishes we pull buckets off the
|
|
* free_inc list and optionally discard them.
|
|
*
|
|
* free_inc isn't the only freelist - if it was, we'd often to sleep while
|
|
* priorities and gens were being written before we could allocate. c->free is a
|
|
* smaller freelist, and buckets on that list are always ready to be used.
|
|
*
|
|
* If we've got discards enabled, that happens when a bucket moves from the
|
|
* free_inc list to the free list.
|
|
*
|
|
* There is another freelist, because sometimes we have buckets that we know
|
|
* have nothing pointing into them - these we can reuse without waiting for
|
|
* priorities to be rewritten. These come from freed btree nodes and buckets
|
|
* that garbage collection discovered no longer had valid keys pointing into
|
|
* them (because they were overwritten). That's the unused list - buckets on the
|
|
* unused list move to the free list, optionally being discarded in the process.
|
|
*
|
|
* It's also important to ensure that gens don't wrap around - with respect to
|
|
* either the oldest gen in the btree or the gen on disk. This is quite
|
|
* difficult to do in practice, but we explicitly guard against it anyways - if
|
|
* a bucket is in danger of wrapping around we simply skip invalidating it that
|
|
* time around, and we garbage collect or rewrite the priorities sooner than we
|
|
* would have otherwise.
|
|
*
|
|
* bch_bucket_alloc() allocates a single bucket from a specific cache.
|
|
*
|
|
* bch_bucket_alloc_set() allocates one or more buckets from different caches
|
|
* out of a cache set.
|
|
*
|
|
* free_some_buckets() drives all the processes described above. It's called
|
|
* from bch_bucket_alloc() and a few other places that need to make sure free
|
|
* buckets are ready.
|
|
*
|
|
* invalidate_buckets_(lru|fifo)() find buckets that are available to be
|
|
* invalidated, and then invalidate them and stick them on the free_inc list -
|
|
* in either lru or fifo order.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/random.h>
|
|
#include <trace/events/bcache.h>
|
|
|
|
/* Bucket heap / gen */
|
|
|
|
uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
|
|
{
|
|
uint8_t ret = ++b->gen;
|
|
|
|
ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
|
|
WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
|
|
|
|
if (CACHE_SYNC(&ca->set->sb)) {
|
|
ca->need_save_prio = max(ca->need_save_prio,
|
|
bucket_disk_gen(b));
|
|
WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch_rescale_priorities(struct cache_set *c, int sectors)
|
|
{
|
|
struct cache *ca;
|
|
struct bucket *b;
|
|
unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
|
|
unsigned i;
|
|
int r;
|
|
|
|
atomic_sub(sectors, &c->rescale);
|
|
|
|
do {
|
|
r = atomic_read(&c->rescale);
|
|
|
|
if (r >= 0)
|
|
return;
|
|
} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
|
|
|
|
mutex_lock(&c->bucket_lock);
|
|
|
|
c->min_prio = USHRT_MAX;
|
|
|
|
for_each_cache(ca, c, i)
|
|
for_each_bucket(b, ca)
|
|
if (b->prio &&
|
|
b->prio != BTREE_PRIO &&
|
|
!atomic_read(&b->pin)) {
|
|
b->prio--;
|
|
c->min_prio = min(c->min_prio, b->prio);
|
|
}
|
|
|
|
mutex_unlock(&c->bucket_lock);
|
|
}
|
|
|
|
/* Allocation */
|
|
|
|
static inline bool can_inc_bucket_gen(struct bucket *b)
|
|
{
|
|
return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
|
|
bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
|
|
}
|
|
|
|
bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
|
|
{
|
|
BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
|
|
|
|
if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
|
|
CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
|
|
return false;
|
|
|
|
b->prio = 0;
|
|
|
|
if (can_inc_bucket_gen(b) &&
|
|
fifo_push(&ca->unused, b - ca->buckets)) {
|
|
atomic_inc(&b->pin);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
|
|
{
|
|
return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
|
|
!atomic_read(&b->pin) &&
|
|
can_inc_bucket_gen(b);
|
|
}
|
|
|
|
static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
|
|
{
|
|
bch_inc_gen(ca, b);
|
|
b->prio = INITIAL_PRIO;
|
|
atomic_inc(&b->pin);
|
|
fifo_push(&ca->free_inc, b - ca->buckets);
|
|
}
|
|
|
|
#define bucket_prio(b) \
|
|
(((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
|
|
|
|
#define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
|
|
#define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
|
|
|
|
static void invalidate_buckets_lru(struct cache *ca)
|
|
{
|
|
struct bucket *b;
|
|
ssize_t i;
|
|
|
|
ca->heap.used = 0;
|
|
|
|
for_each_bucket(b, ca) {
|
|
/*
|
|
* If we fill up the unused list, if we then return before
|
|
* adding anything to the free_inc list we'll skip writing
|
|
* prios/gens and just go back to allocating from the unused
|
|
* list:
|
|
*/
|
|
if (fifo_full(&ca->unused))
|
|
return;
|
|
|
|
if (!can_invalidate_bucket(ca, b))
|
|
continue;
|
|
|
|
if (!GC_SECTORS_USED(b) &&
|
|
bch_bucket_add_unused(ca, b))
|
|
continue;
|
|
|
|
if (!heap_full(&ca->heap))
|
|
heap_add(&ca->heap, b, bucket_max_cmp);
|
|
else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
|
|
ca->heap.data[0] = b;
|
|
heap_sift(&ca->heap, 0, bucket_max_cmp);
|
|
}
|
|
}
|
|
|
|
for (i = ca->heap.used / 2 - 1; i >= 0; --i)
|
|
heap_sift(&ca->heap, i, bucket_min_cmp);
|
|
|
|
while (!fifo_full(&ca->free_inc)) {
|
|
if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
|
|
/*
|
|
* We don't want to be calling invalidate_buckets()
|
|
* multiple times when it can't do anything
|
|
*/
|
|
ca->invalidate_needs_gc = 1;
|
|
wake_up_gc(ca->set);
|
|
return;
|
|
}
|
|
|
|
invalidate_one_bucket(ca, b);
|
|
}
|
|
}
|
|
|
|
static void invalidate_buckets_fifo(struct cache *ca)
|
|
{
|
|
struct bucket *b;
|
|
size_t checked = 0;
|
|
|
|
while (!fifo_full(&ca->free_inc)) {
|
|
if (ca->fifo_last_bucket < ca->sb.first_bucket ||
|
|
ca->fifo_last_bucket >= ca->sb.nbuckets)
|
|
ca->fifo_last_bucket = ca->sb.first_bucket;
|
|
|
|
b = ca->buckets + ca->fifo_last_bucket++;
|
|
|
|
if (can_invalidate_bucket(ca, b))
|
|
invalidate_one_bucket(ca, b);
|
|
|
|
if (++checked >= ca->sb.nbuckets) {
|
|
ca->invalidate_needs_gc = 1;
|
|
wake_up_gc(ca->set);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void invalidate_buckets_random(struct cache *ca)
|
|
{
|
|
struct bucket *b;
|
|
size_t checked = 0;
|
|
|
|
while (!fifo_full(&ca->free_inc)) {
|
|
size_t n;
|
|
get_random_bytes(&n, sizeof(n));
|
|
|
|
n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
|
|
n += ca->sb.first_bucket;
|
|
|
|
b = ca->buckets + n;
|
|
|
|
if (can_invalidate_bucket(ca, b))
|
|
invalidate_one_bucket(ca, b);
|
|
|
|
if (++checked >= ca->sb.nbuckets / 2) {
|
|
ca->invalidate_needs_gc = 1;
|
|
wake_up_gc(ca->set);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void invalidate_buckets(struct cache *ca)
|
|
{
|
|
if (ca->invalidate_needs_gc)
|
|
return;
|
|
|
|
switch (CACHE_REPLACEMENT(&ca->sb)) {
|
|
case CACHE_REPLACEMENT_LRU:
|
|
invalidate_buckets_lru(ca);
|
|
break;
|
|
case CACHE_REPLACEMENT_FIFO:
|
|
invalidate_buckets_fifo(ca);
|
|
break;
|
|
case CACHE_REPLACEMENT_RANDOM:
|
|
invalidate_buckets_random(ca);
|
|
break;
|
|
}
|
|
|
|
trace_bcache_alloc_invalidate(ca);
|
|
}
|
|
|
|
#define allocator_wait(ca, cond) \
|
|
do { \
|
|
while (1) { \
|
|
set_current_state(TASK_INTERRUPTIBLE); \
|
|
if (cond) \
|
|
break; \
|
|
\
|
|
mutex_unlock(&(ca)->set->bucket_lock); \
|
|
if (kthread_should_stop()) \
|
|
return 0; \
|
|
\
|
|
try_to_freeze(); \
|
|
schedule(); \
|
|
mutex_lock(&(ca)->set->bucket_lock); \
|
|
} \
|
|
__set_current_state(TASK_RUNNING); \
|
|
} while (0)
|
|
|
|
static int bch_allocator_thread(void *arg)
|
|
{
|
|
struct cache *ca = arg;
|
|
|
|
mutex_lock(&ca->set->bucket_lock);
|
|
|
|
while (1) {
|
|
/*
|
|
* First, we pull buckets off of the unused and free_inc lists,
|
|
* possibly issue discards to them, then we add the bucket to
|
|
* the free list:
|
|
*/
|
|
while (1) {
|
|
long bucket;
|
|
|
|
if ((!atomic_read(&ca->set->prio_blocked) ||
|
|
!CACHE_SYNC(&ca->set->sb)) &&
|
|
!fifo_empty(&ca->unused))
|
|
fifo_pop(&ca->unused, bucket);
|
|
else if (!fifo_empty(&ca->free_inc))
|
|
fifo_pop(&ca->free_inc, bucket);
|
|
else
|
|
break;
|
|
|
|
if (ca->discard) {
|
|
mutex_unlock(&ca->set->bucket_lock);
|
|
blkdev_issue_discard(ca->bdev,
|
|
bucket_to_sector(ca->set, bucket),
|
|
ca->sb.block_size, GFP_KERNEL, 0);
|
|
mutex_lock(&ca->set->bucket_lock);
|
|
}
|
|
|
|
allocator_wait(ca, !fifo_full(&ca->free));
|
|
|
|
fifo_push(&ca->free, bucket);
|
|
wake_up(&ca->set->bucket_wait);
|
|
}
|
|
|
|
/*
|
|
* We've run out of free buckets, we need to find some buckets
|
|
* we can invalidate. First, invalidate them in memory and add
|
|
* them to the free_inc list:
|
|
*/
|
|
|
|
allocator_wait(ca, ca->set->gc_mark_valid &&
|
|
(ca->need_save_prio > 64 ||
|
|
!ca->invalidate_needs_gc));
|
|
invalidate_buckets(ca);
|
|
|
|
/*
|
|
* Now, we write their new gens to disk so we can start writing
|
|
* new stuff to them:
|
|
*/
|
|
allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
|
|
if (CACHE_SYNC(&ca->set->sb) &&
|
|
(!fifo_empty(&ca->free_inc) ||
|
|
ca->need_save_prio > 64))
|
|
bch_prio_write(ca);
|
|
}
|
|
}
|
|
|
|
long bch_bucket_alloc(struct cache *ca, unsigned watermark, bool wait)
|
|
{
|
|
DEFINE_WAIT(w);
|
|
struct bucket *b;
|
|
long r;
|
|
|
|
/* fastpath */
|
|
if (fifo_used(&ca->free) > ca->watermark[watermark]) {
|
|
fifo_pop(&ca->free, r);
|
|
goto out;
|
|
}
|
|
|
|
if (!wait)
|
|
return -1;
|
|
|
|
while (1) {
|
|
if (fifo_used(&ca->free) > ca->watermark[watermark]) {
|
|
fifo_pop(&ca->free, r);
|
|
break;
|
|
}
|
|
|
|
prepare_to_wait(&ca->set->bucket_wait, &w,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
mutex_unlock(&ca->set->bucket_lock);
|
|
schedule();
|
|
mutex_lock(&ca->set->bucket_lock);
|
|
}
|
|
|
|
finish_wait(&ca->set->bucket_wait, &w);
|
|
out:
|
|
wake_up_process(ca->alloc_thread);
|
|
|
|
if (expensive_debug_checks(ca->set)) {
|
|
size_t iter;
|
|
long i;
|
|
|
|
for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
|
|
BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
|
|
|
|
fifo_for_each(i, &ca->free, iter)
|
|
BUG_ON(i == r);
|
|
fifo_for_each(i, &ca->free_inc, iter)
|
|
BUG_ON(i == r);
|
|
fifo_for_each(i, &ca->unused, iter)
|
|
BUG_ON(i == r);
|
|
}
|
|
|
|
b = ca->buckets + r;
|
|
|
|
BUG_ON(atomic_read(&b->pin) != 1);
|
|
|
|
SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
|
|
|
|
if (watermark <= WATERMARK_METADATA) {
|
|
SET_GC_MARK(b, GC_MARK_METADATA);
|
|
SET_GC_MOVE(b, 0);
|
|
b->prio = BTREE_PRIO;
|
|
} else {
|
|
SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
|
|
SET_GC_MOVE(b, 0);
|
|
b->prio = INITIAL_PRIO;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
void bch_bucket_free(struct cache_set *c, struct bkey *k)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++) {
|
|
struct bucket *b = PTR_BUCKET(c, k, i);
|
|
|
|
SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
|
|
SET_GC_SECTORS_USED(b, 0);
|
|
bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
|
|
}
|
|
}
|
|
|
|
int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
|
|
struct bkey *k, int n, bool wait)
|
|
{
|
|
int i;
|
|
|
|
lockdep_assert_held(&c->bucket_lock);
|
|
BUG_ON(!n || n > c->caches_loaded || n > 8);
|
|
|
|
bkey_init(k);
|
|
|
|
/* sort by free space/prio of oldest data in caches */
|
|
|
|
for (i = 0; i < n; i++) {
|
|
struct cache *ca = c->cache_by_alloc[i];
|
|
long b = bch_bucket_alloc(ca, watermark, wait);
|
|
|
|
if (b == -1)
|
|
goto err;
|
|
|
|
k->ptr[i] = PTR(ca->buckets[b].gen,
|
|
bucket_to_sector(c, b),
|
|
ca->sb.nr_this_dev);
|
|
|
|
SET_KEY_PTRS(k, i + 1);
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
bch_bucket_free(c, k);
|
|
bkey_put(c, k);
|
|
return -1;
|
|
}
|
|
|
|
int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
|
|
struct bkey *k, int n, bool wait)
|
|
{
|
|
int ret;
|
|
mutex_lock(&c->bucket_lock);
|
|
ret = __bch_bucket_alloc_set(c, watermark, k, n, wait);
|
|
mutex_unlock(&c->bucket_lock);
|
|
return ret;
|
|
}
|
|
|
|
/* Sector allocator */
|
|
|
|
struct open_bucket {
|
|
struct list_head list;
|
|
unsigned last_write_point;
|
|
unsigned sectors_free;
|
|
BKEY_PADDED(key);
|
|
};
|
|
|
|
/*
|
|
* We keep multiple buckets open for writes, and try to segregate different
|
|
* write streams for better cache utilization: first we look for a bucket where
|
|
* the last write to it was sequential with the current write, and failing that
|
|
* we look for a bucket that was last used by the same task.
|
|
*
|
|
* The ideas is if you've got multiple tasks pulling data into the cache at the
|
|
* same time, you'll get better cache utilization if you try to segregate their
|
|
* data and preserve locality.
|
|
*
|
|
* For example, say you've starting Firefox at the same time you're copying a
|
|
* bunch of files. Firefox will likely end up being fairly hot and stay in the
|
|
* cache awhile, but the data you copied might not be; if you wrote all that
|
|
* data to the same buckets it'd get invalidated at the same time.
|
|
*
|
|
* Both of those tasks will be doing fairly random IO so we can't rely on
|
|
* detecting sequential IO to segregate their data, but going off of the task
|
|
* should be a sane heuristic.
|
|
*/
|
|
static struct open_bucket *pick_data_bucket(struct cache_set *c,
|
|
const struct bkey *search,
|
|
unsigned write_point,
|
|
struct bkey *alloc)
|
|
{
|
|
struct open_bucket *ret, *ret_task = NULL;
|
|
|
|
list_for_each_entry_reverse(ret, &c->data_buckets, list)
|
|
if (!bkey_cmp(&ret->key, search))
|
|
goto found;
|
|
else if (ret->last_write_point == write_point)
|
|
ret_task = ret;
|
|
|
|
ret = ret_task ?: list_first_entry(&c->data_buckets,
|
|
struct open_bucket, list);
|
|
found:
|
|
if (!ret->sectors_free && KEY_PTRS(alloc)) {
|
|
ret->sectors_free = c->sb.bucket_size;
|
|
bkey_copy(&ret->key, alloc);
|
|
bkey_init(alloc);
|
|
}
|
|
|
|
if (!ret->sectors_free)
|
|
ret = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Allocates some space in the cache to write to, and k to point to the newly
|
|
* allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
|
|
* end of the newly allocated space).
|
|
*
|
|
* May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
|
|
* sectors were actually allocated.
|
|
*
|
|
* If s->writeback is true, will not fail.
|
|
*/
|
|
bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
|
|
unsigned write_point, unsigned write_prio, bool wait)
|
|
{
|
|
struct open_bucket *b;
|
|
BKEY_PADDED(key) alloc;
|
|
unsigned i;
|
|
|
|
/*
|
|
* We might have to allocate a new bucket, which we can't do with a
|
|
* spinlock held. So if we have to allocate, we drop the lock, allocate
|
|
* and then retry. KEY_PTRS() indicates whether alloc points to
|
|
* allocated bucket(s).
|
|
*/
|
|
|
|
bkey_init(&alloc.key);
|
|
spin_lock(&c->data_bucket_lock);
|
|
|
|
while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
|
|
unsigned watermark = write_prio
|
|
? WATERMARK_MOVINGGC
|
|
: WATERMARK_NONE;
|
|
|
|
spin_unlock(&c->data_bucket_lock);
|
|
|
|
if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
|
|
return false;
|
|
|
|
spin_lock(&c->data_bucket_lock);
|
|
}
|
|
|
|
/*
|
|
* If we had to allocate, we might race and not need to allocate the
|
|
* second time we call find_data_bucket(). If we allocated a bucket but
|
|
* didn't use it, drop the refcount bch_bucket_alloc_set() took:
|
|
*/
|
|
if (KEY_PTRS(&alloc.key))
|
|
bkey_put(c, &alloc.key);
|
|
|
|
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
|
EBUG_ON(ptr_stale(c, &b->key, i));
|
|
|
|
/* Set up the pointer to the space we're allocating: */
|
|
|
|
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
|
k->ptr[i] = b->key.ptr[i];
|
|
|
|
sectors = min(sectors, b->sectors_free);
|
|
|
|
SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
|
|
SET_KEY_SIZE(k, sectors);
|
|
SET_KEY_PTRS(k, KEY_PTRS(&b->key));
|
|
|
|
/*
|
|
* Move b to the end of the lru, and keep track of what this bucket was
|
|
* last used for:
|
|
*/
|
|
list_move_tail(&b->list, &c->data_buckets);
|
|
bkey_copy_key(&b->key, k);
|
|
b->last_write_point = write_point;
|
|
|
|
b->sectors_free -= sectors;
|
|
|
|
for (i = 0; i < KEY_PTRS(&b->key); i++) {
|
|
SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
|
|
|
|
atomic_long_add(sectors,
|
|
&PTR_CACHE(c, &b->key, i)->sectors_written);
|
|
}
|
|
|
|
if (b->sectors_free < c->sb.block_size)
|
|
b->sectors_free = 0;
|
|
|
|
/*
|
|
* k takes refcounts on the buckets it points to until it's inserted
|
|
* into the btree, but if we're done with this bucket we just transfer
|
|
* get_data_bucket()'s refcount.
|
|
*/
|
|
if (b->sectors_free)
|
|
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
|
atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
|
|
|
|
spin_unlock(&c->data_bucket_lock);
|
|
return true;
|
|
}
|
|
|
|
/* Init */
|
|
|
|
void bch_open_buckets_free(struct cache_set *c)
|
|
{
|
|
struct open_bucket *b;
|
|
|
|
while (!list_empty(&c->data_buckets)) {
|
|
b = list_first_entry(&c->data_buckets,
|
|
struct open_bucket, list);
|
|
list_del(&b->list);
|
|
kfree(b);
|
|
}
|
|
}
|
|
|
|
int bch_open_buckets_alloc(struct cache_set *c)
|
|
{
|
|
int i;
|
|
|
|
spin_lock_init(&c->data_bucket_lock);
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
|
|
if (!b)
|
|
return -ENOMEM;
|
|
|
|
list_add(&b->list, &c->data_buckets);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bch_cache_allocator_start(struct cache *ca)
|
|
{
|
|
struct task_struct *k = kthread_run(bch_allocator_thread,
|
|
ca, "bcache_allocator");
|
|
if (IS_ERR(k))
|
|
return PTR_ERR(k);
|
|
|
|
ca->alloc_thread = k;
|
|
return 0;
|
|
}
|
|
|
|
int bch_cache_allocator_init(struct cache *ca)
|
|
{
|
|
/*
|
|
* Reserve:
|
|
* Prio/gen writes first
|
|
* Then 8 for btree allocations
|
|
* Then half for the moving garbage collector
|
|
*/
|
|
|
|
ca->watermark[WATERMARK_PRIO] = 0;
|
|
|
|
ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
|
|
|
|
ca->watermark[WATERMARK_MOVINGGC] = 8 +
|
|
ca->watermark[WATERMARK_METADATA];
|
|
|
|
ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
|
|
ca->watermark[WATERMARK_MOVINGGC];
|
|
|
|
return 0;
|
|
}
|