mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
5c8ed2021f
xfs_bmapi() currently handles both extent map reading and allocation. As a result, the code is littered with "if (wr)" branches to conditionally do allocation operations if required. This makes the code much harder to follow and causes significant indent issues with the code. Given that read mapping is much simpler than allocation, we can split out read mapping from xfs_bmapi() and reuse the logic that we have already factored out do do all the hard work of handling the extent map manipulations. The results in a much simpler function for the common extent read operations, and will allow the allocation code to be simplified in another commit. Once xfs_bmapi_read() is implemented, convert all the callers of xfs_bmapi() that are only reading extents to use the new function. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
1466 lines
35 KiB
C
1466 lines
35 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_rw.h"
|
|
#include "xfs_iomap.h"
|
|
#include "xfs_vnodeops.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_bmap.h"
|
|
#include <linux/gfp.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/writeback.h>
|
|
|
|
void
|
|
xfs_count_page_state(
|
|
struct page *page,
|
|
int *delalloc,
|
|
int *unwritten)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
|
|
*delalloc = *unwritten = 0;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (buffer_unwritten(bh))
|
|
(*unwritten) = 1;
|
|
else if (buffer_delay(bh))
|
|
(*delalloc) = 1;
|
|
} while ((bh = bh->b_this_page) != head);
|
|
}
|
|
|
|
STATIC struct block_device *
|
|
xfs_find_bdev_for_inode(
|
|
struct inode *inode)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
if (XFS_IS_REALTIME_INODE(ip))
|
|
return mp->m_rtdev_targp->bt_bdev;
|
|
else
|
|
return mp->m_ddev_targp->bt_bdev;
|
|
}
|
|
|
|
/*
|
|
* We're now finished for good with this ioend structure.
|
|
* Update the page state via the associated buffer_heads,
|
|
* release holds on the inode and bio, and finally free
|
|
* up memory. Do not use the ioend after this.
|
|
*/
|
|
STATIC void
|
|
xfs_destroy_ioend(
|
|
xfs_ioend_t *ioend)
|
|
{
|
|
struct buffer_head *bh, *next;
|
|
|
|
for (bh = ioend->io_buffer_head; bh; bh = next) {
|
|
next = bh->b_private;
|
|
bh->b_end_io(bh, !ioend->io_error);
|
|
}
|
|
|
|
if (ioend->io_iocb) {
|
|
if (ioend->io_isasync) {
|
|
aio_complete(ioend->io_iocb, ioend->io_error ?
|
|
ioend->io_error : ioend->io_result, 0);
|
|
}
|
|
inode_dio_done(ioend->io_inode);
|
|
}
|
|
|
|
mempool_free(ioend, xfs_ioend_pool);
|
|
}
|
|
|
|
/*
|
|
* If the end of the current ioend is beyond the current EOF,
|
|
* return the new EOF value, otherwise zero.
|
|
*/
|
|
STATIC xfs_fsize_t
|
|
xfs_ioend_new_eof(
|
|
xfs_ioend_t *ioend)
|
|
{
|
|
xfs_inode_t *ip = XFS_I(ioend->io_inode);
|
|
xfs_fsize_t isize;
|
|
xfs_fsize_t bsize;
|
|
|
|
bsize = ioend->io_offset + ioend->io_size;
|
|
isize = MAX(ip->i_size, ip->i_new_size);
|
|
isize = MIN(isize, bsize);
|
|
return isize > ip->i_d.di_size ? isize : 0;
|
|
}
|
|
|
|
/*
|
|
* Fast and loose check if this write could update the on-disk inode size.
|
|
*/
|
|
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
|
|
{
|
|
return ioend->io_offset + ioend->io_size >
|
|
XFS_I(ioend->io_inode)->i_d.di_size;
|
|
}
|
|
|
|
/*
|
|
* Update on-disk file size now that data has been written to disk. The
|
|
* current in-memory file size is i_size. If a write is beyond eof i_new_size
|
|
* will be the intended file size until i_size is updated. If this write does
|
|
* not extend all the way to the valid file size then restrict this update to
|
|
* the end of the write.
|
|
*
|
|
* This function does not block as blocking on the inode lock in IO completion
|
|
* can lead to IO completion order dependency deadlocks.. If it can't get the
|
|
* inode ilock it will return EAGAIN. Callers must handle this.
|
|
*/
|
|
STATIC int
|
|
xfs_setfilesize(
|
|
xfs_ioend_t *ioend)
|
|
{
|
|
xfs_inode_t *ip = XFS_I(ioend->io_inode);
|
|
xfs_fsize_t isize;
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
|
|
return EAGAIN;
|
|
|
|
isize = xfs_ioend_new_eof(ioend);
|
|
if (isize) {
|
|
trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
|
|
ip->i_d.di_size = isize;
|
|
xfs_mark_inode_dirty(ip);
|
|
}
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Schedule IO completion handling on the final put of an ioend.
|
|
*
|
|
* If there is no work to do we might as well call it a day and free the
|
|
* ioend right now.
|
|
*/
|
|
STATIC void
|
|
xfs_finish_ioend(
|
|
struct xfs_ioend *ioend)
|
|
{
|
|
if (atomic_dec_and_test(&ioend->io_remaining)) {
|
|
if (ioend->io_type == IO_UNWRITTEN)
|
|
queue_work(xfsconvertd_workqueue, &ioend->io_work);
|
|
else if (xfs_ioend_is_append(ioend))
|
|
queue_work(xfsdatad_workqueue, &ioend->io_work);
|
|
else
|
|
xfs_destroy_ioend(ioend);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* IO write completion.
|
|
*/
|
|
STATIC void
|
|
xfs_end_io(
|
|
struct work_struct *work)
|
|
{
|
|
xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
|
|
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
|
int error = 0;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
error = -EIO;
|
|
goto done;
|
|
}
|
|
if (ioend->io_error)
|
|
goto done;
|
|
|
|
/*
|
|
* For unwritten extents we need to issue transactions to convert a
|
|
* range to normal written extens after the data I/O has finished.
|
|
*/
|
|
if (ioend->io_type == IO_UNWRITTEN) {
|
|
error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
|
|
ioend->io_size);
|
|
if (error) {
|
|
ioend->io_error = -error;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We might have to update the on-disk file size after extending
|
|
* writes.
|
|
*/
|
|
error = xfs_setfilesize(ioend);
|
|
ASSERT(!error || error == EAGAIN);
|
|
|
|
done:
|
|
/*
|
|
* If we didn't complete processing of the ioend, requeue it to the
|
|
* tail of the workqueue for another attempt later. Otherwise destroy
|
|
* it.
|
|
*/
|
|
if (error == EAGAIN) {
|
|
atomic_inc(&ioend->io_remaining);
|
|
xfs_finish_ioend(ioend);
|
|
/* ensure we don't spin on blocked ioends */
|
|
delay(1);
|
|
} else {
|
|
xfs_destroy_ioend(ioend);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Call IO completion handling in caller context on the final put of an ioend.
|
|
*/
|
|
STATIC void
|
|
xfs_finish_ioend_sync(
|
|
struct xfs_ioend *ioend)
|
|
{
|
|
if (atomic_dec_and_test(&ioend->io_remaining))
|
|
xfs_end_io(&ioend->io_work);
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialise an IO completion structure.
|
|
* We need to track unwritten extent write completion here initially.
|
|
* We'll need to extend this for updating the ondisk inode size later
|
|
* (vs. incore size).
|
|
*/
|
|
STATIC xfs_ioend_t *
|
|
xfs_alloc_ioend(
|
|
struct inode *inode,
|
|
unsigned int type)
|
|
{
|
|
xfs_ioend_t *ioend;
|
|
|
|
ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
|
|
|
|
/*
|
|
* Set the count to 1 initially, which will prevent an I/O
|
|
* completion callback from happening before we have started
|
|
* all the I/O from calling the completion routine too early.
|
|
*/
|
|
atomic_set(&ioend->io_remaining, 1);
|
|
ioend->io_isasync = 0;
|
|
ioend->io_error = 0;
|
|
ioend->io_list = NULL;
|
|
ioend->io_type = type;
|
|
ioend->io_inode = inode;
|
|
ioend->io_buffer_head = NULL;
|
|
ioend->io_buffer_tail = NULL;
|
|
ioend->io_offset = 0;
|
|
ioend->io_size = 0;
|
|
ioend->io_iocb = NULL;
|
|
ioend->io_result = 0;
|
|
|
|
INIT_WORK(&ioend->io_work, xfs_end_io);
|
|
return ioend;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_map_blocks(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
struct xfs_bmbt_irec *imap,
|
|
int type,
|
|
int nonblocking)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
ssize_t count = 1 << inode->i_blkbits;
|
|
xfs_fileoff_t offset_fsb, end_fsb;
|
|
int error = 0;
|
|
int bmapi_flags = XFS_BMAPI_ENTIRE;
|
|
int nimaps = 1;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -XFS_ERROR(EIO);
|
|
|
|
if (type == IO_UNWRITTEN)
|
|
bmapi_flags |= XFS_BMAPI_IGSTATE;
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
|
|
if (nonblocking)
|
|
return -XFS_ERROR(EAGAIN);
|
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
|
}
|
|
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
|
(ip->i_df.if_flags & XFS_IFEXTENTS));
|
|
ASSERT(offset <= mp->m_maxioffset);
|
|
|
|
if (offset + count > mp->m_maxioffset)
|
|
count = mp->m_maxioffset - offset;
|
|
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
|
|
imap, &nimaps, bmapi_flags);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
if (error)
|
|
return -XFS_ERROR(error);
|
|
|
|
if (type == IO_DELALLOC &&
|
|
(!nimaps || isnullstartblock(imap->br_startblock))) {
|
|
error = xfs_iomap_write_allocate(ip, offset, count, imap);
|
|
if (!error)
|
|
trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
|
|
return -XFS_ERROR(error);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (type == IO_UNWRITTEN) {
|
|
ASSERT(nimaps);
|
|
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
|
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
|
}
|
|
#endif
|
|
if (nimaps)
|
|
trace_xfs_map_blocks_found(ip, offset, count, type, imap);
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_imap_valid(
|
|
struct inode *inode,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
offset >>= inode->i_blkbits;
|
|
|
|
return offset >= imap->br_startoff &&
|
|
offset < imap->br_startoff + imap->br_blockcount;
|
|
}
|
|
|
|
/*
|
|
* BIO completion handler for buffered IO.
|
|
*/
|
|
STATIC void
|
|
xfs_end_bio(
|
|
struct bio *bio,
|
|
int error)
|
|
{
|
|
xfs_ioend_t *ioend = bio->bi_private;
|
|
|
|
ASSERT(atomic_read(&bio->bi_cnt) >= 1);
|
|
ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
|
|
|
|
/* Toss bio and pass work off to an xfsdatad thread */
|
|
bio->bi_private = NULL;
|
|
bio->bi_end_io = NULL;
|
|
bio_put(bio);
|
|
|
|
xfs_finish_ioend(ioend);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_submit_ioend_bio(
|
|
struct writeback_control *wbc,
|
|
xfs_ioend_t *ioend,
|
|
struct bio *bio)
|
|
{
|
|
atomic_inc(&ioend->io_remaining);
|
|
bio->bi_private = ioend;
|
|
bio->bi_end_io = xfs_end_bio;
|
|
|
|
/*
|
|
* If the I/O is beyond EOF we mark the inode dirty immediately
|
|
* but don't update the inode size until I/O completion.
|
|
*/
|
|
if (xfs_ioend_new_eof(ioend))
|
|
xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
|
|
|
|
submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
|
|
}
|
|
|
|
STATIC struct bio *
|
|
xfs_alloc_ioend_bio(
|
|
struct buffer_head *bh)
|
|
{
|
|
int nvecs = bio_get_nr_vecs(bh->b_bdev);
|
|
struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
|
|
|
|
ASSERT(bio->bi_private == NULL);
|
|
bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
|
|
bio->bi_bdev = bh->b_bdev;
|
|
return bio;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_start_buffer_writeback(
|
|
struct buffer_head *bh)
|
|
{
|
|
ASSERT(buffer_mapped(bh));
|
|
ASSERT(buffer_locked(bh));
|
|
ASSERT(!buffer_delay(bh));
|
|
ASSERT(!buffer_unwritten(bh));
|
|
|
|
mark_buffer_async_write(bh);
|
|
set_buffer_uptodate(bh);
|
|
clear_buffer_dirty(bh);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_start_page_writeback(
|
|
struct page *page,
|
|
int clear_dirty,
|
|
int buffers)
|
|
{
|
|
ASSERT(PageLocked(page));
|
|
ASSERT(!PageWriteback(page));
|
|
if (clear_dirty)
|
|
clear_page_dirty_for_io(page);
|
|
set_page_writeback(page);
|
|
unlock_page(page);
|
|
/* If no buffers on the page are to be written, finish it here */
|
|
if (!buffers)
|
|
end_page_writeback(page);
|
|
}
|
|
|
|
static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
|
|
{
|
|
return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
|
|
}
|
|
|
|
/*
|
|
* Submit all of the bios for all of the ioends we have saved up, covering the
|
|
* initial writepage page and also any probed pages.
|
|
*
|
|
* Because we may have multiple ioends spanning a page, we need to start
|
|
* writeback on all the buffers before we submit them for I/O. If we mark the
|
|
* buffers as we got, then we can end up with a page that only has buffers
|
|
* marked async write and I/O complete on can occur before we mark the other
|
|
* buffers async write.
|
|
*
|
|
* The end result of this is that we trip a bug in end_page_writeback() because
|
|
* we call it twice for the one page as the code in end_buffer_async_write()
|
|
* assumes that all buffers on the page are started at the same time.
|
|
*
|
|
* The fix is two passes across the ioend list - one to start writeback on the
|
|
* buffer_heads, and then submit them for I/O on the second pass.
|
|
*/
|
|
STATIC void
|
|
xfs_submit_ioend(
|
|
struct writeback_control *wbc,
|
|
xfs_ioend_t *ioend)
|
|
{
|
|
xfs_ioend_t *head = ioend;
|
|
xfs_ioend_t *next;
|
|
struct buffer_head *bh;
|
|
struct bio *bio;
|
|
sector_t lastblock = 0;
|
|
|
|
/* Pass 1 - start writeback */
|
|
do {
|
|
next = ioend->io_list;
|
|
for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
|
|
xfs_start_buffer_writeback(bh);
|
|
} while ((ioend = next) != NULL);
|
|
|
|
/* Pass 2 - submit I/O */
|
|
ioend = head;
|
|
do {
|
|
next = ioend->io_list;
|
|
bio = NULL;
|
|
|
|
for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
|
|
|
|
if (!bio) {
|
|
retry:
|
|
bio = xfs_alloc_ioend_bio(bh);
|
|
} else if (bh->b_blocknr != lastblock + 1) {
|
|
xfs_submit_ioend_bio(wbc, ioend, bio);
|
|
goto retry;
|
|
}
|
|
|
|
if (bio_add_buffer(bio, bh) != bh->b_size) {
|
|
xfs_submit_ioend_bio(wbc, ioend, bio);
|
|
goto retry;
|
|
}
|
|
|
|
lastblock = bh->b_blocknr;
|
|
}
|
|
if (bio)
|
|
xfs_submit_ioend_bio(wbc, ioend, bio);
|
|
xfs_finish_ioend(ioend);
|
|
} while ((ioend = next) != NULL);
|
|
}
|
|
|
|
/*
|
|
* Cancel submission of all buffer_heads so far in this endio.
|
|
* Toss the endio too. Only ever called for the initial page
|
|
* in a writepage request, so only ever one page.
|
|
*/
|
|
STATIC void
|
|
xfs_cancel_ioend(
|
|
xfs_ioend_t *ioend)
|
|
{
|
|
xfs_ioend_t *next;
|
|
struct buffer_head *bh, *next_bh;
|
|
|
|
do {
|
|
next = ioend->io_list;
|
|
bh = ioend->io_buffer_head;
|
|
do {
|
|
next_bh = bh->b_private;
|
|
clear_buffer_async_write(bh);
|
|
unlock_buffer(bh);
|
|
} while ((bh = next_bh) != NULL);
|
|
|
|
mempool_free(ioend, xfs_ioend_pool);
|
|
} while ((ioend = next) != NULL);
|
|
}
|
|
|
|
/*
|
|
* Test to see if we've been building up a completion structure for
|
|
* earlier buffers -- if so, we try to append to this ioend if we
|
|
* can, otherwise we finish off any current ioend and start another.
|
|
* Return true if we've finished the given ioend.
|
|
*/
|
|
STATIC void
|
|
xfs_add_to_ioend(
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
xfs_off_t offset,
|
|
unsigned int type,
|
|
xfs_ioend_t **result,
|
|
int need_ioend)
|
|
{
|
|
xfs_ioend_t *ioend = *result;
|
|
|
|
if (!ioend || need_ioend || type != ioend->io_type) {
|
|
xfs_ioend_t *previous = *result;
|
|
|
|
ioend = xfs_alloc_ioend(inode, type);
|
|
ioend->io_offset = offset;
|
|
ioend->io_buffer_head = bh;
|
|
ioend->io_buffer_tail = bh;
|
|
if (previous)
|
|
previous->io_list = ioend;
|
|
*result = ioend;
|
|
} else {
|
|
ioend->io_buffer_tail->b_private = bh;
|
|
ioend->io_buffer_tail = bh;
|
|
}
|
|
|
|
bh->b_private = NULL;
|
|
ioend->io_size += bh->b_size;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_map_buffer(
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
sector_t bn;
|
|
struct xfs_mount *m = XFS_I(inode)->i_mount;
|
|
xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
|
|
xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
|
|
|
|
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
|
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
|
|
|
bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
|
|
((offset - iomap_offset) >> inode->i_blkbits);
|
|
|
|
ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
|
|
|
|
bh->b_blocknr = bn;
|
|
set_buffer_mapped(bh);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_map_at_offset(
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
|
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
|
|
|
xfs_map_buffer(inode, bh, imap, offset);
|
|
set_buffer_mapped(bh);
|
|
clear_buffer_delay(bh);
|
|
clear_buffer_unwritten(bh);
|
|
}
|
|
|
|
/*
|
|
* Test if a given page is suitable for writing as part of an unwritten
|
|
* or delayed allocate extent.
|
|
*/
|
|
STATIC int
|
|
xfs_is_delayed_page(
|
|
struct page *page,
|
|
unsigned int type)
|
|
{
|
|
if (PageWriteback(page))
|
|
return 0;
|
|
|
|
if (page->mapping && page_has_buffers(page)) {
|
|
struct buffer_head *bh, *head;
|
|
int acceptable = 0;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (buffer_unwritten(bh))
|
|
acceptable = (type == IO_UNWRITTEN);
|
|
else if (buffer_delay(bh))
|
|
acceptable = (type == IO_DELALLOC);
|
|
else if (buffer_dirty(bh) && buffer_mapped(bh))
|
|
acceptable = (type == IO_OVERWRITE);
|
|
else
|
|
break;
|
|
} while ((bh = bh->b_this_page) != head);
|
|
|
|
if (acceptable)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate & map buffers for page given the extent map. Write it out.
|
|
* except for the original page of a writepage, this is called on
|
|
* delalloc/unwritten pages only, for the original page it is possible
|
|
* that the page has no mapping at all.
|
|
*/
|
|
STATIC int
|
|
xfs_convert_page(
|
|
struct inode *inode,
|
|
struct page *page,
|
|
loff_t tindex,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_ioend_t **ioendp,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
xfs_off_t end_offset;
|
|
unsigned long p_offset;
|
|
unsigned int type;
|
|
int len, page_dirty;
|
|
int count = 0, done = 0, uptodate = 1;
|
|
xfs_off_t offset = page_offset(page);
|
|
|
|
if (page->index != tindex)
|
|
goto fail;
|
|
if (!trylock_page(page))
|
|
goto fail;
|
|
if (PageWriteback(page))
|
|
goto fail_unlock_page;
|
|
if (page->mapping != inode->i_mapping)
|
|
goto fail_unlock_page;
|
|
if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
|
|
goto fail_unlock_page;
|
|
|
|
/*
|
|
* page_dirty is initially a count of buffers on the page before
|
|
* EOF and is decremented as we move each into a cleanable state.
|
|
*
|
|
* Derivation:
|
|
*
|
|
* End offset is the highest offset that this page should represent.
|
|
* If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
|
|
* will evaluate non-zero and be less than PAGE_CACHE_SIZE and
|
|
* hence give us the correct page_dirty count. On any other page,
|
|
* it will be zero and in that case we need page_dirty to be the
|
|
* count of buffers on the page.
|
|
*/
|
|
end_offset = min_t(unsigned long long,
|
|
(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
|
|
i_size_read(inode));
|
|
|
|
len = 1 << inode->i_blkbits;
|
|
p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
|
|
PAGE_CACHE_SIZE);
|
|
p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
|
|
page_dirty = p_offset / len;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (offset >= end_offset)
|
|
break;
|
|
if (!buffer_uptodate(bh))
|
|
uptodate = 0;
|
|
if (!(PageUptodate(page) || buffer_uptodate(bh))) {
|
|
done = 1;
|
|
continue;
|
|
}
|
|
|
|
if (buffer_unwritten(bh) || buffer_delay(bh) ||
|
|
buffer_mapped(bh)) {
|
|
if (buffer_unwritten(bh))
|
|
type = IO_UNWRITTEN;
|
|
else if (buffer_delay(bh))
|
|
type = IO_DELALLOC;
|
|
else
|
|
type = IO_OVERWRITE;
|
|
|
|
if (!xfs_imap_valid(inode, imap, offset)) {
|
|
done = 1;
|
|
continue;
|
|
}
|
|
|
|
lock_buffer(bh);
|
|
if (type != IO_OVERWRITE)
|
|
xfs_map_at_offset(inode, bh, imap, offset);
|
|
xfs_add_to_ioend(inode, bh, offset, type,
|
|
ioendp, done);
|
|
|
|
page_dirty--;
|
|
count++;
|
|
} else {
|
|
done = 1;
|
|
}
|
|
} while (offset += len, (bh = bh->b_this_page) != head);
|
|
|
|
if (uptodate && bh == head)
|
|
SetPageUptodate(page);
|
|
|
|
if (count) {
|
|
if (--wbc->nr_to_write <= 0 &&
|
|
wbc->sync_mode == WB_SYNC_NONE)
|
|
done = 1;
|
|
}
|
|
xfs_start_page_writeback(page, !page_dirty, count);
|
|
|
|
return done;
|
|
fail_unlock_page:
|
|
unlock_page(page);
|
|
fail:
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Convert & write out a cluster of pages in the same extent as defined
|
|
* by mp and following the start page.
|
|
*/
|
|
STATIC void
|
|
xfs_cluster_write(
|
|
struct inode *inode,
|
|
pgoff_t tindex,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_ioend_t **ioendp,
|
|
struct writeback_control *wbc,
|
|
pgoff_t tlast)
|
|
{
|
|
struct pagevec pvec;
|
|
int done = 0, i;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
while (!done && tindex <= tlast) {
|
|
unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
|
|
|
|
if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
|
|
break;
|
|
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
done = xfs_convert_page(inode, pvec.pages[i], tindex++,
|
|
imap, ioendp, wbc);
|
|
if (done)
|
|
break;
|
|
}
|
|
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_vm_invalidatepage(
|
|
struct page *page,
|
|
unsigned long offset)
|
|
{
|
|
trace_xfs_invalidatepage(page->mapping->host, page, offset);
|
|
block_invalidatepage(page, offset);
|
|
}
|
|
|
|
/*
|
|
* If the page has delalloc buffers on it, we need to punch them out before we
|
|
* invalidate the page. If we don't, we leave a stale delalloc mapping on the
|
|
* inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
|
|
* is done on that same region - the delalloc extent is returned when none is
|
|
* supposed to be there.
|
|
*
|
|
* We prevent this by truncating away the delalloc regions on the page before
|
|
* invalidating it. Because they are delalloc, we can do this without needing a
|
|
* transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
|
|
* truncation without a transaction as there is no space left for block
|
|
* reservation (typically why we see a ENOSPC in writeback).
|
|
*
|
|
* This is not a performance critical path, so for now just do the punching a
|
|
* buffer head at a time.
|
|
*/
|
|
STATIC void
|
|
xfs_aops_discard_page(
|
|
struct page *page)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct buffer_head *bh, *head;
|
|
loff_t offset = page_offset(page);
|
|
|
|
if (!xfs_is_delayed_page(page, IO_DELALLOC))
|
|
goto out_invalidate;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
|
goto out_invalidate;
|
|
|
|
xfs_alert(ip->i_mount,
|
|
"page discard on page %p, inode 0x%llx, offset %llu.",
|
|
page, ip->i_ino, offset);
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
int error;
|
|
xfs_fileoff_t start_fsb;
|
|
|
|
if (!buffer_delay(bh))
|
|
goto next_buffer;
|
|
|
|
start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
|
|
error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
|
|
if (error) {
|
|
/* something screwed, just bail */
|
|
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
xfs_alert(ip->i_mount,
|
|
"page discard unable to remove delalloc mapping.");
|
|
}
|
|
break;
|
|
}
|
|
next_buffer:
|
|
offset += 1 << inode->i_blkbits;
|
|
|
|
} while ((bh = bh->b_this_page) != head);
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
out_invalidate:
|
|
xfs_vm_invalidatepage(page, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Write out a dirty page.
|
|
*
|
|
* For delalloc space on the page we need to allocate space and flush it.
|
|
* For unwritten space on the page we need to start the conversion to
|
|
* regular allocated space.
|
|
* For any other dirty buffer heads on the page we should flush them.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_writepage(
|
|
struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct buffer_head *bh, *head;
|
|
struct xfs_bmbt_irec imap;
|
|
xfs_ioend_t *ioend = NULL, *iohead = NULL;
|
|
loff_t offset;
|
|
unsigned int type;
|
|
__uint64_t end_offset;
|
|
pgoff_t end_index, last_index;
|
|
ssize_t len;
|
|
int err, imap_valid = 0, uptodate = 1;
|
|
int count = 0;
|
|
int nonblocking = 0;
|
|
|
|
trace_xfs_writepage(inode, page, 0);
|
|
|
|
ASSERT(page_has_buffers(page));
|
|
|
|
/*
|
|
* Refuse to write the page out if we are called from reclaim context.
|
|
*
|
|
* This avoids stack overflows when called from deeply used stacks in
|
|
* random callers for direct reclaim or memcg reclaim. We explicitly
|
|
* allow reclaim from kswapd as the stack usage there is relatively low.
|
|
*
|
|
* This should really be done by the core VM, but until that happens
|
|
* filesystems like XFS, btrfs and ext4 have to take care of this
|
|
* by themselves.
|
|
*/
|
|
if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
|
|
goto redirty;
|
|
|
|
/*
|
|
* Given that we do not allow direct reclaim to call us, we should
|
|
* never be called while in a filesystem transaction.
|
|
*/
|
|
if (WARN_ON(current->flags & PF_FSTRANS))
|
|
goto redirty;
|
|
|
|
/* Is this page beyond the end of the file? */
|
|
offset = i_size_read(inode);
|
|
end_index = offset >> PAGE_CACHE_SHIFT;
|
|
last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
|
|
if (page->index >= end_index) {
|
|
if ((page->index >= end_index + 1) ||
|
|
!(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
end_offset = min_t(unsigned long long,
|
|
(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
|
|
offset);
|
|
len = 1 << inode->i_blkbits;
|
|
|
|
bh = head = page_buffers(page);
|
|
offset = page_offset(page);
|
|
type = IO_OVERWRITE;
|
|
|
|
if (wbc->sync_mode == WB_SYNC_NONE)
|
|
nonblocking = 1;
|
|
|
|
do {
|
|
int new_ioend = 0;
|
|
|
|
if (offset >= end_offset)
|
|
break;
|
|
if (!buffer_uptodate(bh))
|
|
uptodate = 0;
|
|
|
|
/*
|
|
* set_page_dirty dirties all buffers in a page, independent
|
|
* of their state. The dirty state however is entirely
|
|
* meaningless for holes (!mapped && uptodate), so skip
|
|
* buffers covering holes here.
|
|
*/
|
|
if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
|
|
imap_valid = 0;
|
|
continue;
|
|
}
|
|
|
|
if (buffer_unwritten(bh)) {
|
|
if (type != IO_UNWRITTEN) {
|
|
type = IO_UNWRITTEN;
|
|
imap_valid = 0;
|
|
}
|
|
} else if (buffer_delay(bh)) {
|
|
if (type != IO_DELALLOC) {
|
|
type = IO_DELALLOC;
|
|
imap_valid = 0;
|
|
}
|
|
} else if (buffer_uptodate(bh)) {
|
|
if (type != IO_OVERWRITE) {
|
|
type = IO_OVERWRITE;
|
|
imap_valid = 0;
|
|
}
|
|
} else {
|
|
if (PageUptodate(page)) {
|
|
ASSERT(buffer_mapped(bh));
|
|
imap_valid = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (imap_valid)
|
|
imap_valid = xfs_imap_valid(inode, &imap, offset);
|
|
if (!imap_valid) {
|
|
/*
|
|
* If we didn't have a valid mapping then we need to
|
|
* put the new mapping into a separate ioend structure.
|
|
* This ensures non-contiguous extents always have
|
|
* separate ioends, which is particularly important
|
|
* for unwritten extent conversion at I/O completion
|
|
* time.
|
|
*/
|
|
new_ioend = 1;
|
|
err = xfs_map_blocks(inode, offset, &imap, type,
|
|
nonblocking);
|
|
if (err)
|
|
goto error;
|
|
imap_valid = xfs_imap_valid(inode, &imap, offset);
|
|
}
|
|
if (imap_valid) {
|
|
lock_buffer(bh);
|
|
if (type != IO_OVERWRITE)
|
|
xfs_map_at_offset(inode, bh, &imap, offset);
|
|
xfs_add_to_ioend(inode, bh, offset, type, &ioend,
|
|
new_ioend);
|
|
count++;
|
|
}
|
|
|
|
if (!iohead)
|
|
iohead = ioend;
|
|
|
|
} while (offset += len, ((bh = bh->b_this_page) != head));
|
|
|
|
if (uptodate && bh == head)
|
|
SetPageUptodate(page);
|
|
|
|
xfs_start_page_writeback(page, 1, count);
|
|
|
|
if (ioend && imap_valid) {
|
|
xfs_off_t end_index;
|
|
|
|
end_index = imap.br_startoff + imap.br_blockcount;
|
|
|
|
/* to bytes */
|
|
end_index <<= inode->i_blkbits;
|
|
|
|
/* to pages */
|
|
end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
/* check against file size */
|
|
if (end_index > last_index)
|
|
end_index = last_index;
|
|
|
|
xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
|
|
wbc, end_index);
|
|
}
|
|
|
|
if (iohead)
|
|
xfs_submit_ioend(wbc, iohead);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (iohead)
|
|
xfs_cancel_ioend(iohead);
|
|
|
|
if (err == -EAGAIN)
|
|
goto redirty;
|
|
|
|
xfs_aops_discard_page(page);
|
|
ClearPageUptodate(page);
|
|
unlock_page(page);
|
|
return err;
|
|
|
|
redirty:
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_writepages(
|
|
struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
|
|
return generic_writepages(mapping, wbc);
|
|
}
|
|
|
|
/*
|
|
* Called to move a page into cleanable state - and from there
|
|
* to be released. The page should already be clean. We always
|
|
* have buffer heads in this call.
|
|
*
|
|
* Returns 1 if the page is ok to release, 0 otherwise.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_releasepage(
|
|
struct page *page,
|
|
gfp_t gfp_mask)
|
|
{
|
|
int delalloc, unwritten;
|
|
|
|
trace_xfs_releasepage(page->mapping->host, page, 0);
|
|
|
|
xfs_count_page_state(page, &delalloc, &unwritten);
|
|
|
|
if (WARN_ON(delalloc))
|
|
return 0;
|
|
if (WARN_ON(unwritten))
|
|
return 0;
|
|
|
|
return try_to_free_buffers(page);
|
|
}
|
|
|
|
STATIC int
|
|
__xfs_get_blocks(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create,
|
|
int direct)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb, end_fsb;
|
|
int error = 0;
|
|
int lockmode = 0;
|
|
struct xfs_bmbt_irec imap;
|
|
int nimaps = 1;
|
|
xfs_off_t offset;
|
|
ssize_t size;
|
|
int new = 0;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -XFS_ERROR(EIO);
|
|
|
|
offset = (xfs_off_t)iblock << inode->i_blkbits;
|
|
ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
|
|
size = bh_result->b_size;
|
|
|
|
if (!create && direct && offset >= i_size_read(inode))
|
|
return 0;
|
|
|
|
if (create) {
|
|
lockmode = XFS_ILOCK_EXCL;
|
|
xfs_ilock(ip, lockmode);
|
|
} else {
|
|
lockmode = xfs_ilock_map_shared(ip);
|
|
}
|
|
|
|
ASSERT(offset <= mp->m_maxioffset);
|
|
if (offset + size > mp->m_maxioffset)
|
|
size = mp->m_maxioffset - offset;
|
|
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
|
|
&imap, &nimaps, XFS_BMAPI_ENTIRE);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
if (create &&
|
|
(!nimaps ||
|
|
(imap.br_startblock == HOLESTARTBLOCK ||
|
|
imap.br_startblock == DELAYSTARTBLOCK))) {
|
|
if (direct) {
|
|
error = xfs_iomap_write_direct(ip, offset, size,
|
|
&imap, nimaps);
|
|
} else {
|
|
error = xfs_iomap_write_delay(ip, offset, size, &imap);
|
|
}
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
|
|
} else if (nimaps) {
|
|
trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
|
|
} else {
|
|
trace_xfs_get_blocks_notfound(ip, offset, size);
|
|
goto out_unlock;
|
|
}
|
|
xfs_iunlock(ip, lockmode);
|
|
|
|
if (imap.br_startblock != HOLESTARTBLOCK &&
|
|
imap.br_startblock != DELAYSTARTBLOCK) {
|
|
/*
|
|
* For unwritten extents do not report a disk address on
|
|
* the read case (treat as if we're reading into a hole).
|
|
*/
|
|
if (create || !ISUNWRITTEN(&imap))
|
|
xfs_map_buffer(inode, bh_result, &imap, offset);
|
|
if (create && ISUNWRITTEN(&imap)) {
|
|
if (direct)
|
|
bh_result->b_private = inode;
|
|
set_buffer_unwritten(bh_result);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a realtime file, data may be on a different device.
|
|
* to that pointed to from the buffer_head b_bdev currently.
|
|
*/
|
|
bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
|
|
|
|
/*
|
|
* If we previously allocated a block out beyond eof and we are now
|
|
* coming back to use it then we will need to flag it as new even if it
|
|
* has a disk address.
|
|
*
|
|
* With sub-block writes into unwritten extents we also need to mark
|
|
* the buffer as new so that the unwritten parts of the buffer gets
|
|
* correctly zeroed.
|
|
*/
|
|
if (create &&
|
|
((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
|
|
(offset >= i_size_read(inode)) ||
|
|
(new || ISUNWRITTEN(&imap))))
|
|
set_buffer_new(bh_result);
|
|
|
|
if (imap.br_startblock == DELAYSTARTBLOCK) {
|
|
BUG_ON(direct);
|
|
if (create) {
|
|
set_buffer_uptodate(bh_result);
|
|
set_buffer_mapped(bh_result);
|
|
set_buffer_delay(bh_result);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is O_DIRECT or the mpage code calling tell them how large
|
|
* the mapping is, so that we can avoid repeated get_blocks calls.
|
|
*/
|
|
if (direct || size > (1 << inode->i_blkbits)) {
|
|
xfs_off_t mapping_size;
|
|
|
|
mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
|
|
mapping_size <<= inode->i_blkbits;
|
|
|
|
ASSERT(mapping_size > 0);
|
|
if (mapping_size > size)
|
|
mapping_size = size;
|
|
if (mapping_size > LONG_MAX)
|
|
mapping_size = LONG_MAX;
|
|
|
|
bh_result->b_size = mapping_size;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_unlock:
|
|
xfs_iunlock(ip, lockmode);
|
|
return -error;
|
|
}
|
|
|
|
int
|
|
xfs_get_blocks(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create)
|
|
{
|
|
return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_get_blocks_direct(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create)
|
|
{
|
|
return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
|
|
}
|
|
|
|
/*
|
|
* Complete a direct I/O write request.
|
|
*
|
|
* If the private argument is non-NULL __xfs_get_blocks signals us that we
|
|
* need to issue a transaction to convert the range from unwritten to written
|
|
* extents. In case this is regular synchronous I/O we just call xfs_end_io
|
|
* to do this and we are done. But in case this was a successful AIO
|
|
* request this handler is called from interrupt context, from which we
|
|
* can't start transactions. In that case offload the I/O completion to
|
|
* the workqueues we also use for buffered I/O completion.
|
|
*/
|
|
STATIC void
|
|
xfs_end_io_direct_write(
|
|
struct kiocb *iocb,
|
|
loff_t offset,
|
|
ssize_t size,
|
|
void *private,
|
|
int ret,
|
|
bool is_async)
|
|
{
|
|
struct xfs_ioend *ioend = iocb->private;
|
|
|
|
/*
|
|
* blockdev_direct_IO can return an error even after the I/O
|
|
* completion handler was called. Thus we need to protect
|
|
* against double-freeing.
|
|
*/
|
|
iocb->private = NULL;
|
|
|
|
ioend->io_offset = offset;
|
|
ioend->io_size = size;
|
|
ioend->io_iocb = iocb;
|
|
ioend->io_result = ret;
|
|
if (private && size > 0)
|
|
ioend->io_type = IO_UNWRITTEN;
|
|
|
|
if (is_async) {
|
|
ioend->io_isasync = 1;
|
|
xfs_finish_ioend(ioend);
|
|
} else {
|
|
xfs_finish_ioend_sync(ioend);
|
|
}
|
|
}
|
|
|
|
STATIC ssize_t
|
|
xfs_vm_direct_IO(
|
|
int rw,
|
|
struct kiocb *iocb,
|
|
const struct iovec *iov,
|
|
loff_t offset,
|
|
unsigned long nr_segs)
|
|
{
|
|
struct inode *inode = iocb->ki_filp->f_mapping->host;
|
|
struct block_device *bdev = xfs_find_bdev_for_inode(inode);
|
|
ssize_t ret;
|
|
|
|
if (rw & WRITE) {
|
|
iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
|
|
|
|
ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
|
|
offset, nr_segs,
|
|
xfs_get_blocks_direct,
|
|
xfs_end_io_direct_write, NULL, 0);
|
|
if (ret != -EIOCBQUEUED && iocb->private)
|
|
xfs_destroy_ioend(iocb->private);
|
|
} else {
|
|
ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
|
|
offset, nr_segs,
|
|
xfs_get_blocks_direct,
|
|
NULL, NULL, 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_vm_write_failed(
|
|
struct address_space *mapping,
|
|
loff_t to)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
if (to > inode->i_size) {
|
|
/*
|
|
* punch out the delalloc blocks we have already allocated. We
|
|
* don't call xfs_setattr() to do this as we may be in the
|
|
* middle of a multi-iovec write and so the vfs inode->i_size
|
|
* will not match the xfs ip->i_size and so it will zero too
|
|
* much. Hence we jus truncate the page cache to zero what is
|
|
* necessary and punch the delalloc blocks directly.
|
|
*/
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
xfs_fileoff_t start_fsb;
|
|
xfs_fileoff_t end_fsb;
|
|
int error;
|
|
|
|
truncate_pagecache(inode, to, inode->i_size);
|
|
|
|
/*
|
|
* Check if there are any blocks that are outside of i_size
|
|
* that need to be trimmed back.
|
|
*/
|
|
start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
|
|
end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
|
|
if (end_fsb <= start_fsb)
|
|
return;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
|
|
end_fsb - start_fsb);
|
|
if (error) {
|
|
/* something screwed, just bail */
|
|
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
xfs_alert(ip->i_mount,
|
|
"xfs_vm_write_failed: unable to clean up ino %lld",
|
|
ip->i_ino);
|
|
}
|
|
}
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
}
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_write_begin(
|
|
struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos,
|
|
unsigned len,
|
|
unsigned flags,
|
|
struct page **pagep,
|
|
void **fsdata)
|
|
{
|
|
int ret;
|
|
|
|
ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
|
|
pagep, xfs_get_blocks);
|
|
if (unlikely(ret))
|
|
xfs_vm_write_failed(mapping, pos + len);
|
|
return ret;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_write_end(
|
|
struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos,
|
|
unsigned len,
|
|
unsigned copied,
|
|
struct page *page,
|
|
void *fsdata)
|
|
{
|
|
int ret;
|
|
|
|
ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
|
|
if (unlikely(ret < len))
|
|
xfs_vm_write_failed(mapping, pos + len);
|
|
return ret;
|
|
}
|
|
|
|
STATIC sector_t
|
|
xfs_vm_bmap(
|
|
struct address_space *mapping,
|
|
sector_t block)
|
|
{
|
|
struct inode *inode = (struct inode *)mapping->host;
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
|
|
trace_xfs_vm_bmap(XFS_I(inode));
|
|
xfs_ilock(ip, XFS_IOLOCK_SHARED);
|
|
xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
|
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
|
return generic_block_bmap(mapping, block, xfs_get_blocks);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_readpage(
|
|
struct file *unused,
|
|
struct page *page)
|
|
{
|
|
return mpage_readpage(page, xfs_get_blocks);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_readpages(
|
|
struct file *unused,
|
|
struct address_space *mapping,
|
|
struct list_head *pages,
|
|
unsigned nr_pages)
|
|
{
|
|
return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
|
|
}
|
|
|
|
const struct address_space_operations xfs_address_space_operations = {
|
|
.readpage = xfs_vm_readpage,
|
|
.readpages = xfs_vm_readpages,
|
|
.writepage = xfs_vm_writepage,
|
|
.writepages = xfs_vm_writepages,
|
|
.releasepage = xfs_vm_releasepage,
|
|
.invalidatepage = xfs_vm_invalidatepage,
|
|
.write_begin = xfs_vm_write_begin,
|
|
.write_end = xfs_vm_write_end,
|
|
.bmap = xfs_vm_bmap,
|
|
.direct_IO = xfs_vm_direct_IO,
|
|
.migratepage = buffer_migrate_page,
|
|
.is_partially_uptodate = block_is_partially_uptodate,
|
|
.error_remove_page = generic_error_remove_page,
|
|
};
|