mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 08:39:31 +07:00
457c899653
Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
282 lines
8.7 KiB
C
282 lines
8.7 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#include <linux/extable.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <xen/xen.h>
|
|
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/kdebug.h>
|
|
|
|
typedef bool (*ex_handler_t)(const struct exception_table_entry *,
|
|
struct pt_regs *, int, unsigned long,
|
|
unsigned long);
|
|
|
|
static inline unsigned long
|
|
ex_fixup_addr(const struct exception_table_entry *x)
|
|
{
|
|
return (unsigned long)&x->fixup + x->fixup;
|
|
}
|
|
static inline ex_handler_t
|
|
ex_fixup_handler(const struct exception_table_entry *x)
|
|
{
|
|
return (ex_handler_t)((unsigned long)&x->handler + x->handler);
|
|
}
|
|
|
|
__visible bool ex_handler_default(const struct exception_table_entry *fixup,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
regs->ip = ex_fixup_addr(fixup);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ex_handler_default);
|
|
|
|
__visible bool ex_handler_fault(const struct exception_table_entry *fixup,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
regs->ip = ex_fixup_addr(fixup);
|
|
regs->ax = trapnr;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ex_handler_fault);
|
|
|
|
/*
|
|
* Handler for UD0 exception following a failed test against the
|
|
* result of a refcount inc/dec/add/sub.
|
|
*/
|
|
__visible bool ex_handler_refcount(const struct exception_table_entry *fixup,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
/* First unconditionally saturate the refcount. */
|
|
*(int *)regs->cx = INT_MIN / 2;
|
|
|
|
/*
|
|
* Strictly speaking, this reports the fixup destination, not
|
|
* the fault location, and not the actually overflowing
|
|
* instruction, which is the instruction before the "js", but
|
|
* since that instruction could be a variety of lengths, just
|
|
* report the location after the overflow, which should be close
|
|
* enough for finding the overflow, as it's at least back in
|
|
* the function, having returned from .text.unlikely.
|
|
*/
|
|
regs->ip = ex_fixup_addr(fixup);
|
|
|
|
/*
|
|
* This function has been called because either a negative refcount
|
|
* value was seen by any of the refcount functions, or a zero
|
|
* refcount value was seen by refcount_dec().
|
|
*
|
|
* If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
|
|
* wrapped around) will be set. Additionally, seeing the refcount
|
|
* reach 0 will set ZF (Zero Flag: result was zero). In each of
|
|
* these cases we want a report, since it's a boundary condition.
|
|
* The SF case is not reported since it indicates post-boundary
|
|
* manipulations below zero or above INT_MAX. And if none of the
|
|
* flags are set, something has gone very wrong, so report it.
|
|
*/
|
|
if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) {
|
|
bool zero = regs->flags & X86_EFLAGS_ZF;
|
|
|
|
refcount_error_report(regs, zero ? "hit zero" : "overflow");
|
|
} else if ((regs->flags & X86_EFLAGS_SF) == 0) {
|
|
/* Report if none of OF, ZF, nor SF are set. */
|
|
refcount_error_report(regs, "unexpected saturation");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ex_handler_refcount);
|
|
|
|
/*
|
|
* Handler for when we fail to restore a task's FPU state. We should never get
|
|
* here because the FPU state of a task using the FPU (task->thread.fpu.state)
|
|
* should always be valid. However, past bugs have allowed userspace to set
|
|
* reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
|
|
* These caused XRSTOR to fail when switching to the task, leaking the FPU
|
|
* registers of the task previously executing on the CPU. Mitigate this class
|
|
* of vulnerability by restoring from the initial state (essentially, zeroing
|
|
* out all the FPU registers) if we can't restore from the task's FPU state.
|
|
*/
|
|
__visible bool ex_handler_fprestore(const struct exception_table_entry *fixup,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
regs->ip = ex_fixup_addr(fixup);
|
|
|
|
WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
|
|
(void *)instruction_pointer(regs));
|
|
|
|
__copy_kernel_to_fpregs(&init_fpstate, -1);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ex_handler_fprestore);
|
|
|
|
__visible bool ex_handler_uaccess(const struct exception_table_entry *fixup,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
|
|
regs->ip = ex_fixup_addr(fixup);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ex_handler_uaccess);
|
|
|
|
__visible bool ex_handler_ext(const struct exception_table_entry *fixup,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
/* Special hack for uaccess_err */
|
|
current->thread.uaccess_err = 1;
|
|
regs->ip = ex_fixup_addr(fixup);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ex_handler_ext);
|
|
|
|
__visible bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
|
|
(unsigned int)regs->cx, regs->ip, (void *)regs->ip))
|
|
show_stack_regs(regs);
|
|
|
|
/* Pretend that the read succeeded and returned 0. */
|
|
regs->ip = ex_fixup_addr(fixup);
|
|
regs->ax = 0;
|
|
regs->dx = 0;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ex_handler_rdmsr_unsafe);
|
|
|
|
__visible bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
|
|
(unsigned int)regs->cx, (unsigned int)regs->dx,
|
|
(unsigned int)regs->ax, regs->ip, (void *)regs->ip))
|
|
show_stack_regs(regs);
|
|
|
|
/* Pretend that the write succeeded. */
|
|
regs->ip = ex_fixup_addr(fixup);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ex_handler_wrmsr_unsafe);
|
|
|
|
__visible bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
if (static_cpu_has(X86_BUG_NULL_SEG))
|
|
asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
|
|
asm volatile ("mov %0, %%fs" : : "rm" (0));
|
|
return ex_handler_default(fixup, regs, trapnr, error_code, fault_addr);
|
|
}
|
|
EXPORT_SYMBOL(ex_handler_clear_fs);
|
|
|
|
__visible bool ex_has_fault_handler(unsigned long ip)
|
|
{
|
|
const struct exception_table_entry *e;
|
|
ex_handler_t handler;
|
|
|
|
e = search_exception_tables(ip);
|
|
if (!e)
|
|
return false;
|
|
handler = ex_fixup_handler(e);
|
|
|
|
return handler == ex_handler_fault;
|
|
}
|
|
|
|
int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
|
|
unsigned long fault_addr)
|
|
{
|
|
const struct exception_table_entry *e;
|
|
ex_handler_t handler;
|
|
|
|
#ifdef CONFIG_PNPBIOS
|
|
if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
|
|
extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
|
|
extern u32 pnp_bios_is_utter_crap;
|
|
pnp_bios_is_utter_crap = 1;
|
|
printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
|
|
__asm__ volatile(
|
|
"movl %0, %%esp\n\t"
|
|
"jmp *%1\n\t"
|
|
: : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
|
|
panic("do_trap: can't hit this");
|
|
}
|
|
#endif
|
|
|
|
e = search_exception_tables(regs->ip);
|
|
if (!e)
|
|
return 0;
|
|
|
|
handler = ex_fixup_handler(e);
|
|
return handler(e, regs, trapnr, error_code, fault_addr);
|
|
}
|
|
|
|
extern unsigned int early_recursion_flag;
|
|
|
|
/* Restricted version used during very early boot */
|
|
void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
|
|
{
|
|
/* Ignore early NMIs. */
|
|
if (trapnr == X86_TRAP_NMI)
|
|
return;
|
|
|
|
if (early_recursion_flag > 2)
|
|
goto halt_loop;
|
|
|
|
/*
|
|
* Old CPUs leave the high bits of CS on the stack
|
|
* undefined. I'm not sure which CPUs do this, but at least
|
|
* the 486 DX works this way.
|
|
* Xen pv domains are not using the default __KERNEL_CS.
|
|
*/
|
|
if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
|
|
goto fail;
|
|
|
|
/*
|
|
* The full exception fixup machinery is available as soon as
|
|
* the early IDT is loaded. This means that it is the
|
|
* responsibility of extable users to either function correctly
|
|
* when handlers are invoked early or to simply avoid causing
|
|
* exceptions before they're ready to handle them.
|
|
*
|
|
* This is better than filtering which handlers can be used,
|
|
* because refusing to call a handler here is guaranteed to
|
|
* result in a hard-to-debug panic.
|
|
*
|
|
* Keep in mind that not all vectors actually get here. Early
|
|
* page faults, for example, are special.
|
|
*/
|
|
if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
|
|
return;
|
|
|
|
if (fixup_bug(regs, trapnr))
|
|
return;
|
|
|
|
fail:
|
|
early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
|
|
(unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
|
|
regs->orig_ax, read_cr2());
|
|
|
|
show_regs(regs);
|
|
|
|
halt_loop:
|
|
while (true)
|
|
halt();
|
|
}
|