mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 02:36:49 +07:00
59128c20a6
Add programming sequence support for managing the Lucid PLLs. Signed-off-by: Taniya Das <tdas@codeaurora.org> Signed-off-by: Venkata Narendra Kumar Gutta <vnkgutta@codeaurora.org> Signed-off-by: Vinod Koul <vkoul@kernel.org> Link: https://lkml.kernel.org/r/20200224045003.3783838-4-vkoul@kernel.org Reviewed-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org> Tested-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org> Signed-off-by: Stephen Boyd <sboyd@kernel.org>
1566 lines
40 KiB
C
1566 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
||
/*
|
||
* Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved.
|
||
*/
|
||
|
||
#include <linux/kernel.h>
|
||
#include <linux/export.h>
|
||
#include <linux/clk-provider.h>
|
||
#include <linux/regmap.h>
|
||
#include <linux/delay.h>
|
||
|
||
#include "clk-alpha-pll.h"
|
||
#include "common.h"
|
||
|
||
#define PLL_MODE(p) ((p)->offset + 0x0)
|
||
# define PLL_OUTCTRL BIT(0)
|
||
# define PLL_BYPASSNL BIT(1)
|
||
# define PLL_RESET_N BIT(2)
|
||
# define PLL_OFFLINE_REQ BIT(7)
|
||
# define PLL_LOCK_COUNT_SHIFT 8
|
||
# define PLL_LOCK_COUNT_MASK 0x3f
|
||
# define PLL_BIAS_COUNT_SHIFT 14
|
||
# define PLL_BIAS_COUNT_MASK 0x3f
|
||
# define PLL_VOTE_FSM_ENA BIT(20)
|
||
# define PLL_FSM_ENA BIT(20)
|
||
# define PLL_VOTE_FSM_RESET BIT(21)
|
||
# define PLL_UPDATE BIT(22)
|
||
# define PLL_UPDATE_BYPASS BIT(23)
|
||
# define PLL_OFFLINE_ACK BIT(28)
|
||
# define ALPHA_PLL_ACK_LATCH BIT(29)
|
||
# define PLL_ACTIVE_FLAG BIT(30)
|
||
# define PLL_LOCK_DET BIT(31)
|
||
|
||
#define PLL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_L_VAL])
|
||
#define PLL_CAL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL])
|
||
#define PLL_ALPHA_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
|
||
#define PLL_ALPHA_VAL_U(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
|
||
|
||
#define PLL_USER_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
|
||
# define PLL_POST_DIV_SHIFT 8
|
||
# define PLL_POST_DIV_MASK(p) GENMASK((p)->width, 0)
|
||
# define PLL_ALPHA_EN BIT(24)
|
||
# define PLL_ALPHA_MODE BIT(25)
|
||
# define PLL_VCO_SHIFT 20
|
||
# define PLL_VCO_MASK 0x3
|
||
|
||
#define PLL_USER_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
|
||
#define PLL_USER_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1])
|
||
|
||
#define PLL_CONFIG_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
|
||
#define PLL_CONFIG_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
|
||
#define PLL_CONFIG_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1])
|
||
#define PLL_TEST_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
|
||
#define PLL_TEST_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
|
||
#define PLL_TEST_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U1])
|
||
#define PLL_STATUS(p) ((p)->offset + (p)->regs[PLL_OFF_STATUS])
|
||
#define PLL_OPMODE(p) ((p)->offset + (p)->regs[PLL_OFF_OPMODE])
|
||
#define PLL_FRAC(p) ((p)->offset + (p)->regs[PLL_OFF_FRAC])
|
||
#define PLL_CAL_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_CAL_VAL])
|
||
|
||
const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
|
||
[CLK_ALPHA_PLL_TYPE_DEFAULT] = {
|
||
[PLL_OFF_L_VAL] = 0x04,
|
||
[PLL_OFF_ALPHA_VAL] = 0x08,
|
||
[PLL_OFF_ALPHA_VAL_U] = 0x0c,
|
||
[PLL_OFF_USER_CTL] = 0x10,
|
||
[PLL_OFF_USER_CTL_U] = 0x14,
|
||
[PLL_OFF_CONFIG_CTL] = 0x18,
|
||
[PLL_OFF_TEST_CTL] = 0x1c,
|
||
[PLL_OFF_TEST_CTL_U] = 0x20,
|
||
[PLL_OFF_STATUS] = 0x24,
|
||
},
|
||
[CLK_ALPHA_PLL_TYPE_HUAYRA] = {
|
||
[PLL_OFF_L_VAL] = 0x04,
|
||
[PLL_OFF_ALPHA_VAL] = 0x08,
|
||
[PLL_OFF_USER_CTL] = 0x10,
|
||
[PLL_OFF_CONFIG_CTL] = 0x14,
|
||
[PLL_OFF_CONFIG_CTL_U] = 0x18,
|
||
[PLL_OFF_TEST_CTL] = 0x1c,
|
||
[PLL_OFF_TEST_CTL_U] = 0x20,
|
||
[PLL_OFF_STATUS] = 0x24,
|
||
},
|
||
[CLK_ALPHA_PLL_TYPE_BRAMMO] = {
|
||
[PLL_OFF_L_VAL] = 0x04,
|
||
[PLL_OFF_ALPHA_VAL] = 0x08,
|
||
[PLL_OFF_ALPHA_VAL_U] = 0x0c,
|
||
[PLL_OFF_USER_CTL] = 0x10,
|
||
[PLL_OFF_CONFIG_CTL] = 0x18,
|
||
[PLL_OFF_TEST_CTL] = 0x1c,
|
||
[PLL_OFF_STATUS] = 0x24,
|
||
},
|
||
[CLK_ALPHA_PLL_TYPE_FABIA] = {
|
||
[PLL_OFF_L_VAL] = 0x04,
|
||
[PLL_OFF_USER_CTL] = 0x0c,
|
||
[PLL_OFF_USER_CTL_U] = 0x10,
|
||
[PLL_OFF_CONFIG_CTL] = 0x14,
|
||
[PLL_OFF_CONFIG_CTL_U] = 0x18,
|
||
[PLL_OFF_TEST_CTL] = 0x1c,
|
||
[PLL_OFF_TEST_CTL_U] = 0x20,
|
||
[PLL_OFF_STATUS] = 0x24,
|
||
[PLL_OFF_OPMODE] = 0x2c,
|
||
[PLL_OFF_FRAC] = 0x38,
|
||
},
|
||
[CLK_ALPHA_PLL_TYPE_TRION] = {
|
||
[PLL_OFF_L_VAL] = 0x04,
|
||
[PLL_OFF_CAL_L_VAL] = 0x08,
|
||
[PLL_OFF_USER_CTL] = 0x0c,
|
||
[PLL_OFF_USER_CTL_U] = 0x10,
|
||
[PLL_OFF_USER_CTL_U1] = 0x14,
|
||
[PLL_OFF_CONFIG_CTL] = 0x18,
|
||
[PLL_OFF_CONFIG_CTL_U] = 0x1c,
|
||
[PLL_OFF_CONFIG_CTL_U1] = 0x20,
|
||
[PLL_OFF_TEST_CTL] = 0x24,
|
||
[PLL_OFF_TEST_CTL_U] = 0x28,
|
||
[PLL_OFF_STATUS] = 0x30,
|
||
[PLL_OFF_OPMODE] = 0x38,
|
||
[PLL_OFF_ALPHA_VAL] = 0x40,
|
||
[PLL_OFF_CAL_VAL] = 0x44,
|
||
},
|
||
[CLK_ALPHA_PLL_TYPE_LUCID] = {
|
||
[PLL_OFF_L_VAL] = 0x04,
|
||
[PLL_OFF_CAL_L_VAL] = 0x08,
|
||
[PLL_OFF_USER_CTL] = 0x0c,
|
||
[PLL_OFF_USER_CTL_U] = 0x10,
|
||
[PLL_OFF_USER_CTL_U1] = 0x14,
|
||
[PLL_OFF_CONFIG_CTL] = 0x18,
|
||
[PLL_OFF_CONFIG_CTL_U] = 0x1c,
|
||
[PLL_OFF_CONFIG_CTL_U1] = 0x20,
|
||
[PLL_OFF_TEST_CTL] = 0x24,
|
||
[PLL_OFF_TEST_CTL_U] = 0x28,
|
||
[PLL_OFF_TEST_CTL_U1] = 0x2c,
|
||
[PLL_OFF_STATUS] = 0x30,
|
||
[PLL_OFF_OPMODE] = 0x38,
|
||
[PLL_OFF_ALPHA_VAL] = 0x40,
|
||
},
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
|
||
|
||
/*
|
||
* Even though 40 bits are present, use only 32 for ease of calculation.
|
||
*/
|
||
#define ALPHA_REG_BITWIDTH 40
|
||
#define ALPHA_REG_16BIT_WIDTH 16
|
||
#define ALPHA_BITWIDTH 32U
|
||
#define ALPHA_SHIFT(w) min(w, ALPHA_BITWIDTH)
|
||
|
||
#define PLL_HUAYRA_M_WIDTH 8
|
||
#define PLL_HUAYRA_M_SHIFT 8
|
||
#define PLL_HUAYRA_M_MASK 0xff
|
||
#define PLL_HUAYRA_N_SHIFT 0
|
||
#define PLL_HUAYRA_N_MASK 0xff
|
||
#define PLL_HUAYRA_ALPHA_WIDTH 16
|
||
|
||
#define PLL_STANDBY 0x0
|
||
#define PLL_RUN 0x1
|
||
#define PLL_OUT_MASK 0x7
|
||
#define PLL_RATE_MARGIN 500
|
||
|
||
/* LUCID PLL specific settings and offsets */
|
||
#define LUCID_PLL_CAL_VAL 0x44
|
||
#define LUCID_PCAL_DONE BIT(26)
|
||
|
||
#define pll_alpha_width(p) \
|
||
((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ? \
|
||
ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
|
||
|
||
#define pll_has_64bit_config(p) ((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
|
||
|
||
#define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
|
||
struct clk_alpha_pll, clkr)
|
||
|
||
#define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
|
||
struct clk_alpha_pll_postdiv, clkr)
|
||
|
||
static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
|
||
const char *action)
|
||
{
|
||
u32 val;
|
||
int count;
|
||
int ret;
|
||
const char *name = clk_hw_get_name(&pll->clkr.hw);
|
||
|
||
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
for (count = 100; count > 0; count--) {
|
||
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
if (inverse && !(val & mask))
|
||
return 0;
|
||
else if ((val & mask) == mask)
|
||
return 0;
|
||
|
||
udelay(1);
|
||
}
|
||
|
||
WARN(1, "%s failed to %s!\n", name, action);
|
||
return -ETIMEDOUT;
|
||
}
|
||
|
||
#define wait_for_pll_enable_active(pll) \
|
||
wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
|
||
|
||
#define wait_for_pll_enable_lock(pll) \
|
||
wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
|
||
|
||
#define wait_for_pll_disable(pll) \
|
||
wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
|
||
|
||
#define wait_for_pll_offline(pll) \
|
||
wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
|
||
|
||
#define wait_for_pll_update(pll) \
|
||
wait_for_pll(pll, PLL_UPDATE, 1, "update")
|
||
|
||
#define wait_for_pll_update_ack_set(pll) \
|
||
wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
|
||
|
||
#define wait_for_pll_update_ack_clear(pll) \
|
||
wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
|
||
|
||
void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
|
||
const struct alpha_pll_config *config)
|
||
{
|
||
u32 val, mask;
|
||
|
||
regmap_write(regmap, PLL_L_VAL(pll), config->l);
|
||
regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
|
||
regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
|
||
|
||
if (pll_has_64bit_config(pll))
|
||
regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
|
||
config->config_ctl_hi_val);
|
||
|
||
if (pll_alpha_width(pll) > 32)
|
||
regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
|
||
|
||
val = config->main_output_mask;
|
||
val |= config->aux_output_mask;
|
||
val |= config->aux2_output_mask;
|
||
val |= config->early_output_mask;
|
||
val |= config->pre_div_val;
|
||
val |= config->post_div_val;
|
||
val |= config->vco_val;
|
||
val |= config->alpha_en_mask;
|
||
val |= config->alpha_mode_mask;
|
||
|
||
mask = config->main_output_mask;
|
||
mask |= config->aux_output_mask;
|
||
mask |= config->aux2_output_mask;
|
||
mask |= config->early_output_mask;
|
||
mask |= config->pre_div_mask;
|
||
mask |= config->post_div_mask;
|
||
mask |= config->vco_mask;
|
||
|
||
regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
|
||
|
||
if (pll->flags & SUPPORTS_FSM_MODE)
|
||
qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
|
||
}
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_configure);
|
||
|
||
static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
|
||
{
|
||
int ret;
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 val;
|
||
|
||
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
val |= PLL_FSM_ENA;
|
||
|
||
if (pll->flags & SUPPORTS_OFFLINE_REQ)
|
||
val &= ~PLL_OFFLINE_REQ;
|
||
|
||
ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Make sure enable request goes through before waiting for update */
|
||
mb();
|
||
|
||
return wait_for_pll_enable_active(pll);
|
||
}
|
||
|
||
static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
|
||
{
|
||
int ret;
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 val;
|
||
|
||
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return;
|
||
|
||
if (pll->flags & SUPPORTS_OFFLINE_REQ) {
|
||
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
|
||
PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
|
||
if (ret)
|
||
return;
|
||
|
||
ret = wait_for_pll_offline(pll);
|
||
if (ret)
|
||
return;
|
||
}
|
||
|
||
/* Disable hwfsm */
|
||
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
|
||
PLL_FSM_ENA, 0);
|
||
if (ret)
|
||
return;
|
||
|
||
wait_for_pll_disable(pll);
|
||
}
|
||
|
||
static int pll_is_enabled(struct clk_hw *hw, u32 mask)
|
||
{
|
||
int ret;
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 val;
|
||
|
||
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
return !!(val & mask);
|
||
}
|
||
|
||
static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
|
||
{
|
||
return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
|
||
}
|
||
|
||
static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
|
||
{
|
||
return pll_is_enabled(hw, PLL_LOCK_DET);
|
||
}
|
||
|
||
static int clk_alpha_pll_enable(struct clk_hw *hw)
|
||
{
|
||
int ret;
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 val, mask;
|
||
|
||
mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
|
||
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* If in FSM mode, just vote for it */
|
||
if (val & PLL_VOTE_FSM_ENA) {
|
||
ret = clk_enable_regmap(hw);
|
||
if (ret)
|
||
return ret;
|
||
return wait_for_pll_enable_active(pll);
|
||
}
|
||
|
||
/* Skip if already enabled */
|
||
if ((val & mask) == mask)
|
||
return 0;
|
||
|
||
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
|
||
PLL_BYPASSNL, PLL_BYPASSNL);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/*
|
||
* H/W requires a 5us delay between disabling the bypass and
|
||
* de-asserting the reset.
|
||
*/
|
||
mb();
|
||
udelay(5);
|
||
|
||
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
|
||
PLL_RESET_N, PLL_RESET_N);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = wait_for_pll_enable_lock(pll);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
|
||
PLL_OUTCTRL, PLL_OUTCTRL);
|
||
|
||
/* Ensure that the write above goes through before returning. */
|
||
mb();
|
||
return ret;
|
||
}
|
||
|
||
static void clk_alpha_pll_disable(struct clk_hw *hw)
|
||
{
|
||
int ret;
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 val, mask;
|
||
|
||
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return;
|
||
|
||
/* If in FSM mode, just unvote it */
|
||
if (val & PLL_VOTE_FSM_ENA) {
|
||
clk_disable_regmap(hw);
|
||
return;
|
||
}
|
||
|
||
mask = PLL_OUTCTRL;
|
||
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
|
||
|
||
/* Delay of 2 output clock ticks required until output is disabled */
|
||
mb();
|
||
udelay(1);
|
||
|
||
mask = PLL_RESET_N | PLL_BYPASSNL;
|
||
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
|
||
}
|
||
|
||
static unsigned long
|
||
alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
|
||
{
|
||
return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
|
||
}
|
||
|
||
static unsigned long
|
||
alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a,
|
||
u32 alpha_width)
|
||
{
|
||
u64 remainder;
|
||
u64 quotient;
|
||
|
||
quotient = rate;
|
||
remainder = do_div(quotient, prate);
|
||
*l = quotient;
|
||
|
||
if (!remainder) {
|
||
*a = 0;
|
||
return rate;
|
||
}
|
||
|
||
/* Upper ALPHA_BITWIDTH bits of Alpha */
|
||
quotient = remainder << ALPHA_SHIFT(alpha_width);
|
||
|
||
remainder = do_div(quotient, prate);
|
||
|
||
if (remainder)
|
||
quotient++;
|
||
|
||
*a = quotient;
|
||
return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
|
||
}
|
||
|
||
static const struct pll_vco *
|
||
alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
|
||
{
|
||
const struct pll_vco *v = pll->vco_table;
|
||
const struct pll_vco *end = v + pll->num_vco;
|
||
|
||
for (; v < end; v++)
|
||
if (rate >= v->min_freq && rate <= v->max_freq)
|
||
return v;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static unsigned long
|
||
clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
|
||
{
|
||
u32 l, low, high, ctl;
|
||
u64 a = 0, prate = parent_rate;
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 alpha_width = pll_alpha_width(pll);
|
||
|
||
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
|
||
|
||
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
|
||
if (ctl & PLL_ALPHA_EN) {
|
||
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
|
||
if (alpha_width > 32) {
|
||
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
|
||
&high);
|
||
a = (u64)high << 32 | low;
|
||
} else {
|
||
a = low & GENMASK(alpha_width - 1, 0);
|
||
}
|
||
|
||
if (alpha_width > ALPHA_BITWIDTH)
|
||
a >>= alpha_width - ALPHA_BITWIDTH;
|
||
}
|
||
|
||
return alpha_pll_calc_rate(prate, l, a, alpha_width);
|
||
}
|
||
|
||
|
||
static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
|
||
{
|
||
int ret;
|
||
u32 mode;
|
||
|
||
regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
|
||
|
||
/* Latch the input to the PLL */
|
||
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
|
||
PLL_UPDATE);
|
||
|
||
/* Wait for 2 reference cycle before checking ACK bit */
|
||
udelay(1);
|
||
|
||
/*
|
||
* PLL will latch the new L, Alpha and freq control word.
|
||
* PLL will respond by raising PLL_ACK_LATCH output when new programming
|
||
* has been latched in and PLL is being updated. When
|
||
* UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
|
||
* automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
|
||
*/
|
||
if (mode & PLL_UPDATE_BYPASS) {
|
||
ret = wait_for_pll_update_ack_set(pll);
|
||
if (ret)
|
||
return ret;
|
||
|
||
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
|
||
} else {
|
||
ret = wait_for_pll_update(pll);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
ret = wait_for_pll_update_ack_clear(pll);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Wait for PLL output to stabilize */
|
||
udelay(10);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
|
||
int (*is_enabled)(struct clk_hw *))
|
||
{
|
||
if (!is_enabled(&pll->clkr.hw) ||
|
||
!(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
|
||
return 0;
|
||
|
||
return __clk_alpha_pll_update_latch(pll);
|
||
}
|
||
|
||
static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long prate,
|
||
int (*is_enabled)(struct clk_hw *))
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
const struct pll_vco *vco;
|
||
u32 l, alpha_width = pll_alpha_width(pll);
|
||
u64 a;
|
||
|
||
rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
|
||
vco = alpha_pll_find_vco(pll, rate);
|
||
if (pll->vco_table && !vco) {
|
||
pr_err("%s: alpha pll not in a valid vco range\n",
|
||
clk_hw_get_name(hw));
|
||
return -EINVAL;
|
||
}
|
||
|
||
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
|
||
|
||
if (alpha_width > ALPHA_BITWIDTH)
|
||
a <<= alpha_width - ALPHA_BITWIDTH;
|
||
|
||
if (alpha_width > 32)
|
||
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
|
||
|
||
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
|
||
|
||
if (vco) {
|
||
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
|
||
PLL_VCO_MASK << PLL_VCO_SHIFT,
|
||
vco->val << PLL_VCO_SHIFT);
|
||
}
|
||
|
||
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
|
||
PLL_ALPHA_EN, PLL_ALPHA_EN);
|
||
|
||
return clk_alpha_pll_update_latch(pll, is_enabled);
|
||
}
|
||
|
||
static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long prate)
|
||
{
|
||
return __clk_alpha_pll_set_rate(hw, rate, prate,
|
||
clk_alpha_pll_is_enabled);
|
||
}
|
||
|
||
static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long prate)
|
||
{
|
||
return __clk_alpha_pll_set_rate(hw, rate, prate,
|
||
clk_alpha_pll_hwfsm_is_enabled);
|
||
}
|
||
|
||
static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long *prate)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 l, alpha_width = pll_alpha_width(pll);
|
||
u64 a;
|
||
unsigned long min_freq, max_freq;
|
||
|
||
rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
|
||
if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
|
||
return rate;
|
||
|
||
min_freq = pll->vco_table[0].min_freq;
|
||
max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
|
||
|
||
return clamp(rate, min_freq, max_freq);
|
||
}
|
||
|
||
static unsigned long
|
||
alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
|
||
{
|
||
/*
|
||
* a contains 16 bit alpha_val in two’s compliment number in the range
|
||
* of [-0.5, 0.5).
|
||
*/
|
||
if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
|
||
l -= 1;
|
||
|
||
return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH);
|
||
}
|
||
|
||
static unsigned long
|
||
alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
|
||
u32 *l, u32 *a)
|
||
{
|
||
u64 remainder;
|
||
u64 quotient;
|
||
|
||
quotient = rate;
|
||
remainder = do_div(quotient, prate);
|
||
*l = quotient;
|
||
|
||
if (!remainder) {
|
||
*a = 0;
|
||
return rate;
|
||
}
|
||
|
||
quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
|
||
remainder = do_div(quotient, prate);
|
||
|
||
if (remainder)
|
||
quotient++;
|
||
|
||
/*
|
||
* alpha_val should be in two’s compliment number in the range
|
||
* of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
|
||
* since alpha value will be subtracted in this case.
|
||
*/
|
||
if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
|
||
*l += 1;
|
||
|
||
*a = quotient;
|
||
return alpha_huayra_pll_calc_rate(prate, *l, *a);
|
||
}
|
||
|
||
static unsigned long
|
||
alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
|
||
{
|
||
u64 rate = parent_rate, tmp;
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 l, alpha = 0, ctl, alpha_m, alpha_n;
|
||
|
||
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
|
||
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
|
||
|
||
if (ctl & PLL_ALPHA_EN) {
|
||
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
|
||
/*
|
||
* Depending upon alpha_mode, it can be treated as M/N value or
|
||
* as a two’s compliment number. When alpha_mode=1,
|
||
* pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
|
||
*
|
||
* Fout=FIN*(L+(M/N))
|
||
*
|
||
* M is a signed number (-128 to 127) and N is unsigned
|
||
* (0 to 255). M/N has to be within +/-0.5.
|
||
*
|
||
* When alpha_mode=0, it is a two’s compliment number in the
|
||
* range [-0.5, 0.5).
|
||
*
|
||
* Fout=FIN*(L+(alpha_val)/2^16)
|
||
*
|
||
* where alpha_val is two’s compliment number.
|
||
*/
|
||
if (!(ctl & PLL_ALPHA_MODE))
|
||
return alpha_huayra_pll_calc_rate(rate, l, alpha);
|
||
|
||
alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
|
||
alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
|
||
|
||
rate *= l;
|
||
tmp = parent_rate;
|
||
if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
|
||
alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
|
||
tmp *= alpha_m;
|
||
do_div(tmp, alpha_n);
|
||
rate -= tmp;
|
||
} else {
|
||
tmp *= alpha_m;
|
||
do_div(tmp, alpha_n);
|
||
rate += tmp;
|
||
}
|
||
|
||
return rate;
|
||
}
|
||
|
||
return alpha_huayra_pll_calc_rate(rate, l, alpha);
|
||
}
|
||
|
||
static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long prate)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 l, a, ctl, cur_alpha = 0;
|
||
|
||
rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
|
||
|
||
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
|
||
|
||
if (ctl & PLL_ALPHA_EN)
|
||
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
|
||
|
||
/*
|
||
* Huayra PLL supports PLL dynamic programming. User can change L_VAL,
|
||
* without having to go through the power on sequence.
|
||
*/
|
||
if (clk_alpha_pll_is_enabled(hw)) {
|
||
if (cur_alpha != a) {
|
||
pr_err("%s: clock needs to be gated\n",
|
||
clk_hw_get_name(hw));
|
||
return -EBUSY;
|
||
}
|
||
|
||
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
|
||
/* Ensure that the write above goes to detect L val change. */
|
||
mb();
|
||
return wait_for_pll_enable_lock(pll);
|
||
}
|
||
|
||
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
|
||
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
|
||
|
||
if (a == 0)
|
||
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
|
||
PLL_ALPHA_EN, 0x0);
|
||
else
|
||
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
|
||
PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long *prate)
|
||
{
|
||
u32 l, a;
|
||
|
||
return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
|
||
}
|
||
|
||
static int trion_pll_is_enabled(struct clk_alpha_pll *pll,
|
||
struct regmap *regmap)
|
||
{
|
||
u32 mode_regval, opmode_regval;
|
||
int ret;
|
||
|
||
ret = regmap_read(regmap, PLL_MODE(pll), &mode_regval);
|
||
ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_regval);
|
||
if (ret)
|
||
return 0;
|
||
|
||
return ((opmode_regval & PLL_RUN) && (mode_regval & PLL_OUTCTRL));
|
||
}
|
||
|
||
static int clk_trion_pll_is_enabled(struct clk_hw *hw)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
|
||
return trion_pll_is_enabled(pll, pll->clkr.regmap);
|
||
}
|
||
|
||
static int clk_trion_pll_enable(struct clk_hw *hw)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
struct regmap *regmap = pll->clkr.regmap;
|
||
u32 val;
|
||
int ret;
|
||
|
||
ret = regmap_read(regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* If in FSM mode, just vote for it */
|
||
if (val & PLL_VOTE_FSM_ENA) {
|
||
ret = clk_enable_regmap(hw);
|
||
if (ret)
|
||
return ret;
|
||
return wait_for_pll_enable_active(pll);
|
||
}
|
||
|
||
/* Set operation mode to RUN */
|
||
regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
|
||
|
||
ret = wait_for_pll_enable_lock(pll);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Enable the PLL outputs */
|
||
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
|
||
PLL_OUT_MASK, PLL_OUT_MASK);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Enable the global PLL outputs */
|
||
return regmap_update_bits(regmap, PLL_MODE(pll),
|
||
PLL_OUTCTRL, PLL_OUTCTRL);
|
||
}
|
||
|
||
static void clk_trion_pll_disable(struct clk_hw *hw)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
struct regmap *regmap = pll->clkr.regmap;
|
||
u32 val;
|
||
int ret;
|
||
|
||
ret = regmap_read(regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return;
|
||
|
||
/* If in FSM mode, just unvote it */
|
||
if (val & PLL_VOTE_FSM_ENA) {
|
||
clk_disable_regmap(hw);
|
||
return;
|
||
}
|
||
|
||
/* Disable the global PLL output */
|
||
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
|
||
if (ret)
|
||
return;
|
||
|
||
/* Disable the PLL outputs */
|
||
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
|
||
PLL_OUT_MASK, 0);
|
||
if (ret)
|
||
return;
|
||
|
||
/* Place the PLL mode in STANDBY */
|
||
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
|
||
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
|
||
}
|
||
|
||
static unsigned long
|
||
clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 l, frac, alpha_width = pll_alpha_width(pll);
|
||
|
||
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
|
||
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac);
|
||
|
||
return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
|
||
}
|
||
|
||
const struct clk_ops clk_alpha_pll_fixed_ops = {
|
||
.enable = clk_alpha_pll_enable,
|
||
.disable = clk_alpha_pll_disable,
|
||
.is_enabled = clk_alpha_pll_is_enabled,
|
||
.recalc_rate = clk_alpha_pll_recalc_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_ops);
|
||
|
||
const struct clk_ops clk_alpha_pll_ops = {
|
||
.enable = clk_alpha_pll_enable,
|
||
.disable = clk_alpha_pll_disable,
|
||
.is_enabled = clk_alpha_pll_is_enabled,
|
||
.recalc_rate = clk_alpha_pll_recalc_rate,
|
||
.round_rate = clk_alpha_pll_round_rate,
|
||
.set_rate = clk_alpha_pll_set_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
|
||
|
||
const struct clk_ops clk_alpha_pll_huayra_ops = {
|
||
.enable = clk_alpha_pll_enable,
|
||
.disable = clk_alpha_pll_disable,
|
||
.is_enabled = clk_alpha_pll_is_enabled,
|
||
.recalc_rate = alpha_pll_huayra_recalc_rate,
|
||
.round_rate = alpha_pll_huayra_round_rate,
|
||
.set_rate = alpha_pll_huayra_set_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
|
||
|
||
const struct clk_ops clk_alpha_pll_hwfsm_ops = {
|
||
.enable = clk_alpha_pll_hwfsm_enable,
|
||
.disable = clk_alpha_pll_hwfsm_disable,
|
||
.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
|
||
.recalc_rate = clk_alpha_pll_recalc_rate,
|
||
.round_rate = clk_alpha_pll_round_rate,
|
||
.set_rate = clk_alpha_pll_hwfsm_set_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
|
||
|
||
const struct clk_ops clk_trion_fixed_pll_ops = {
|
||
.enable = clk_trion_pll_enable,
|
||
.disable = clk_trion_pll_disable,
|
||
.is_enabled = clk_trion_pll_is_enabled,
|
||
.recalc_rate = clk_trion_pll_recalc_rate,
|
||
.round_rate = clk_alpha_pll_round_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_trion_fixed_pll_ops);
|
||
|
||
static unsigned long
|
||
clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
u32 ctl;
|
||
|
||
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
|
||
|
||
ctl >>= PLL_POST_DIV_SHIFT;
|
||
ctl &= PLL_POST_DIV_MASK(pll);
|
||
|
||
return parent_rate >> fls(ctl);
|
||
}
|
||
|
||
static const struct clk_div_table clk_alpha_div_table[] = {
|
||
{ 0x0, 1 },
|
||
{ 0x1, 2 },
|
||
{ 0x3, 4 },
|
||
{ 0x7, 8 },
|
||
{ 0xf, 16 },
|
||
{ }
|
||
};
|
||
|
||
static const struct clk_div_table clk_alpha_2bit_div_table[] = {
|
||
{ 0x0, 1 },
|
||
{ 0x1, 2 },
|
||
{ 0x3, 4 },
|
||
{ }
|
||
};
|
||
|
||
static long
|
||
clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long *prate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
const struct clk_div_table *table;
|
||
|
||
if (pll->width == 2)
|
||
table = clk_alpha_2bit_div_table;
|
||
else
|
||
table = clk_alpha_div_table;
|
||
|
||
return divider_round_rate(hw, rate, prate, table,
|
||
pll->width, CLK_DIVIDER_POWER_OF_TWO);
|
||
}
|
||
|
||
static long
|
||
clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long *prate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
u32 ctl, div;
|
||
|
||
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
|
||
|
||
ctl >>= PLL_POST_DIV_SHIFT;
|
||
ctl &= BIT(pll->width) - 1;
|
||
div = 1 << fls(ctl);
|
||
|
||
if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
|
||
*prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate);
|
||
|
||
return DIV_ROUND_UP_ULL((u64)*prate, div);
|
||
}
|
||
|
||
static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long parent_rate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
int div;
|
||
|
||
/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
|
||
div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1;
|
||
|
||
return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
|
||
PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
|
||
div << PLL_POST_DIV_SHIFT);
|
||
}
|
||
|
||
const struct clk_ops clk_alpha_pll_postdiv_ops = {
|
||
.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
|
||
.round_rate = clk_alpha_pll_postdiv_round_rate,
|
||
.set_rate = clk_alpha_pll_postdiv_set_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
|
||
|
||
const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
|
||
.round_rate = clk_alpha_pll_postdiv_round_ro_rate,
|
||
.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
|
||
|
||
void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
|
||
const struct alpha_pll_config *config)
|
||
{
|
||
u32 val, mask;
|
||
|
||
if (config->l)
|
||
regmap_write(regmap, PLL_L_VAL(pll), config->l);
|
||
|
||
if (config->alpha)
|
||
regmap_write(regmap, PLL_FRAC(pll), config->alpha);
|
||
|
||
if (config->config_ctl_val)
|
||
regmap_write(regmap, PLL_CONFIG_CTL(pll),
|
||
config->config_ctl_val);
|
||
|
||
if (config->config_ctl_hi_val)
|
||
regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
|
||
config->config_ctl_hi_val);
|
||
|
||
if (config->user_ctl_val)
|
||
regmap_write(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
|
||
|
||
if (config->user_ctl_hi_val)
|
||
regmap_write(regmap, PLL_USER_CTL_U(pll),
|
||
config->user_ctl_hi_val);
|
||
|
||
if (config->test_ctl_val)
|
||
regmap_write(regmap, PLL_TEST_CTL(pll),
|
||
config->test_ctl_val);
|
||
|
||
if (config->test_ctl_hi_val)
|
||
regmap_write(regmap, PLL_TEST_CTL_U(pll),
|
||
config->test_ctl_hi_val);
|
||
|
||
if (config->post_div_mask) {
|
||
mask = config->post_div_mask;
|
||
val = config->post_div_val;
|
||
regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
|
||
}
|
||
|
||
regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
|
||
PLL_UPDATE_BYPASS);
|
||
|
||
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
|
||
}
|
||
EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
|
||
|
||
static int alpha_pll_fabia_enable(struct clk_hw *hw)
|
||
{
|
||
int ret;
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 val, opmode_val;
|
||
struct regmap *regmap = pll->clkr.regmap;
|
||
|
||
ret = regmap_read(regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* If in FSM mode, just vote for it */
|
||
if (val & PLL_VOTE_FSM_ENA) {
|
||
ret = clk_enable_regmap(hw);
|
||
if (ret)
|
||
return ret;
|
||
return wait_for_pll_enable_active(pll);
|
||
}
|
||
|
||
ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Skip If PLL is already running */
|
||
if ((opmode_val & PLL_RUN) && (val & PLL_OUTCTRL))
|
||
return 0;
|
||
|
||
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
|
||
PLL_RESET_N);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = wait_for_pll_enable_lock(pll);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
|
||
PLL_OUT_MASK, PLL_OUT_MASK);
|
||
if (ret)
|
||
return ret;
|
||
|
||
return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
|
||
PLL_OUTCTRL);
|
||
}
|
||
|
||
static void alpha_pll_fabia_disable(struct clk_hw *hw)
|
||
{
|
||
int ret;
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 val;
|
||
struct regmap *regmap = pll->clkr.regmap;
|
||
|
||
ret = regmap_read(regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return;
|
||
|
||
/* If in FSM mode, just unvote it */
|
||
if (val & PLL_FSM_ENA) {
|
||
clk_disable_regmap(hw);
|
||
return;
|
||
}
|
||
|
||
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
|
||
if (ret)
|
||
return;
|
||
|
||
/* Disable main outputs */
|
||
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
|
||
if (ret)
|
||
return;
|
||
|
||
/* Place the PLL in STANDBY */
|
||
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
|
||
}
|
||
|
||
static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
|
||
unsigned long parent_rate)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 l, frac, alpha_width = pll_alpha_width(pll);
|
||
|
||
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
|
||
regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
|
||
|
||
return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
|
||
}
|
||
|
||
static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long prate)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 l, alpha_width = pll_alpha_width(pll);
|
||
u64 a;
|
||
unsigned long rrate, max = rate + PLL_RATE_MARGIN;
|
||
|
||
rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
|
||
|
||
/*
|
||
* Due to limited number of bits for fractional rate programming, the
|
||
* rounded up rate could be marginally higher than the requested rate.
|
||
*/
|
||
if (rrate > (rate + PLL_RATE_MARGIN) || rrate < rate) {
|
||
pr_err("%s: Rounded rate %lu not within range [%lu, %lu)\n",
|
||
clk_hw_get_name(hw), rrate, rate, max);
|
||
return -EINVAL;
|
||
}
|
||
|
||
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
|
||
regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
|
||
|
||
return __clk_alpha_pll_update_latch(pll);
|
||
}
|
||
|
||
static int alpha_pll_fabia_prepare(struct clk_hw *hw)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
const struct pll_vco *vco;
|
||
struct clk_hw *parent_hw;
|
||
unsigned long cal_freq, rrate;
|
||
u32 cal_l, val, alpha_width = pll_alpha_width(pll);
|
||
const char *name = clk_hw_get_name(hw);
|
||
u64 a;
|
||
int ret;
|
||
|
||
/* Check if calibration needs to be done i.e. PLL is in reset */
|
||
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Return early if calibration is not needed. */
|
||
if (val & PLL_RESET_N)
|
||
return 0;
|
||
|
||
vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
|
||
if (!vco) {
|
||
pr_err("%s: alpha pll not in a valid vco range\n", name);
|
||
return -EINVAL;
|
||
}
|
||
|
||
cal_freq = DIV_ROUND_CLOSEST((pll->vco_table[0].min_freq +
|
||
pll->vco_table[0].max_freq) * 54, 100);
|
||
|
||
parent_hw = clk_hw_get_parent(hw);
|
||
if (!parent_hw)
|
||
return -EINVAL;
|
||
|
||
rrate = alpha_pll_round_rate(cal_freq, clk_hw_get_rate(parent_hw),
|
||
&cal_l, &a, alpha_width);
|
||
/*
|
||
* Due to a limited number of bits for fractional rate programming, the
|
||
* rounded up rate could be marginally higher than the requested rate.
|
||
*/
|
||
if (rrate > (cal_freq + PLL_RATE_MARGIN) || rrate < cal_freq)
|
||
return -EINVAL;
|
||
|
||
/* Setup PLL for calibration frequency */
|
||
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), cal_l);
|
||
|
||
/* Bringup the PLL at calibration frequency */
|
||
ret = clk_alpha_pll_enable(hw);
|
||
if (ret) {
|
||
pr_err("%s: alpha pll calibration failed\n", name);
|
||
return ret;
|
||
}
|
||
|
||
clk_alpha_pll_disable(hw);
|
||
|
||
return 0;
|
||
}
|
||
|
||
const struct clk_ops clk_alpha_pll_fabia_ops = {
|
||
.prepare = alpha_pll_fabia_prepare,
|
||
.enable = alpha_pll_fabia_enable,
|
||
.disable = alpha_pll_fabia_disable,
|
||
.is_enabled = clk_alpha_pll_is_enabled,
|
||
.set_rate = alpha_pll_fabia_set_rate,
|
||
.recalc_rate = alpha_pll_fabia_recalc_rate,
|
||
.round_rate = clk_alpha_pll_round_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
|
||
|
||
const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
|
||
.enable = alpha_pll_fabia_enable,
|
||
.disable = alpha_pll_fabia_disable,
|
||
.is_enabled = clk_alpha_pll_is_enabled,
|
||
.recalc_rate = alpha_pll_fabia_recalc_rate,
|
||
.round_rate = clk_alpha_pll_round_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
|
||
|
||
static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
|
||
unsigned long parent_rate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
u32 i, div = 1, val;
|
||
int ret;
|
||
|
||
ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
val >>= pll->post_div_shift;
|
||
val &= BIT(pll->width) - 1;
|
||
|
||
for (i = 0; i < pll->num_post_div; i++) {
|
||
if (pll->post_div_table[i].val == val) {
|
||
div = pll->post_div_table[i].div;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return (parent_rate / div);
|
||
}
|
||
|
||
static unsigned long
|
||
clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
struct regmap *regmap = pll->clkr.regmap;
|
||
u32 i, div = 1, val;
|
||
|
||
regmap_read(regmap, PLL_USER_CTL(pll), &val);
|
||
|
||
val >>= pll->post_div_shift;
|
||
val &= PLL_POST_DIV_MASK(pll);
|
||
|
||
for (i = 0; i < pll->num_post_div; i++) {
|
||
if (pll->post_div_table[i].val == val) {
|
||
div = pll->post_div_table[i].div;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return (parent_rate / div);
|
||
}
|
||
|
||
static long
|
||
clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long *prate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
|
||
return divider_round_rate(hw, rate, prate, pll->post_div_table,
|
||
pll->width, CLK_DIVIDER_ROUND_CLOSEST);
|
||
};
|
||
|
||
static int
|
||
clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long parent_rate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
struct regmap *regmap = pll->clkr.regmap;
|
||
int i, val = 0, div;
|
||
|
||
div = DIV_ROUND_UP_ULL(parent_rate, rate);
|
||
for (i = 0; i < pll->num_post_div; i++) {
|
||
if (pll->post_div_table[i].div == div) {
|
||
val = pll->post_div_table[i].val;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return regmap_update_bits(regmap, PLL_USER_CTL(pll),
|
||
PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
|
||
val << PLL_POST_DIV_SHIFT);
|
||
}
|
||
|
||
const struct clk_ops clk_trion_pll_postdiv_ops = {
|
||
.recalc_rate = clk_trion_pll_postdiv_recalc_rate,
|
||
.round_rate = clk_trion_pll_postdiv_round_rate,
|
||
.set_rate = clk_trion_pll_postdiv_set_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_trion_pll_postdiv_ops);
|
||
|
||
static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
|
||
unsigned long rate, unsigned long *prate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
|
||
return divider_round_rate(hw, rate, prate, pll->post_div_table,
|
||
pll->width, CLK_DIVIDER_ROUND_CLOSEST);
|
||
}
|
||
|
||
static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
|
||
unsigned long rate, unsigned long parent_rate)
|
||
{
|
||
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
|
||
int i, val = 0, div, ret;
|
||
|
||
/*
|
||
* If the PLL is in FSM mode, then treat set_rate callback as a
|
||
* no-operation.
|
||
*/
|
||
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (val & PLL_VOTE_FSM_ENA)
|
||
return 0;
|
||
|
||
div = DIV_ROUND_UP_ULL(parent_rate, rate);
|
||
for (i = 0; i < pll->num_post_div; i++) {
|
||
if (pll->post_div_table[i].div == div) {
|
||
val = pll->post_div_table[i].val;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
|
||
(BIT(pll->width) - 1) << pll->post_div_shift,
|
||
val << pll->post_div_shift);
|
||
}
|
||
|
||
const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
|
||
.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
|
||
.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
|
||
.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
|
||
|
||
/**
|
||
* clk_lucid_pll_configure - configure the lucid pll
|
||
*
|
||
* @pll: clk alpha pll
|
||
* @regmap: register map
|
||
* @config: configuration to apply for pll
|
||
*/
|
||
void clk_lucid_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
|
||
const struct alpha_pll_config *config)
|
||
{
|
||
if (config->l)
|
||
regmap_write(regmap, PLL_L_VAL(pll), config->l);
|
||
|
||
regmap_write(regmap, PLL_CAL_L_VAL(pll), LUCID_PLL_CAL_VAL);
|
||
|
||
if (config->alpha)
|
||
regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
|
||
|
||
if (config->config_ctl_val)
|
||
regmap_write(regmap, PLL_CONFIG_CTL(pll),
|
||
config->config_ctl_val);
|
||
|
||
if (config->config_ctl_hi_val)
|
||
regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
|
||
config->config_ctl_hi_val);
|
||
|
||
if (config->config_ctl_hi1_val)
|
||
regmap_write(regmap, PLL_CONFIG_CTL_U1(pll),
|
||
config->config_ctl_hi1_val);
|
||
|
||
if (config->user_ctl_val)
|
||
regmap_write(regmap, PLL_USER_CTL(pll),
|
||
config->user_ctl_val);
|
||
|
||
if (config->user_ctl_hi_val)
|
||
regmap_write(regmap, PLL_USER_CTL_U(pll),
|
||
config->user_ctl_hi_val);
|
||
|
||
if (config->user_ctl_hi1_val)
|
||
regmap_write(regmap, PLL_USER_CTL_U1(pll),
|
||
config->user_ctl_hi1_val);
|
||
|
||
if (config->test_ctl_val)
|
||
regmap_write(regmap, PLL_TEST_CTL(pll),
|
||
config->test_ctl_val);
|
||
|
||
if (config->test_ctl_hi_val)
|
||
regmap_write(regmap, PLL_TEST_CTL_U(pll),
|
||
config->test_ctl_hi_val);
|
||
|
||
if (config->test_ctl_hi1_val)
|
||
regmap_write(regmap, PLL_TEST_CTL_U1(pll),
|
||
config->test_ctl_hi1_val);
|
||
|
||
regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
|
||
PLL_UPDATE_BYPASS);
|
||
|
||
/* Disable PLL output */
|
||
regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
|
||
|
||
/* Set operation mode to OFF */
|
||
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
|
||
|
||
/* Place the PLL in STANDBY mode */
|
||
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
|
||
}
|
||
EXPORT_SYMBOL_GPL(clk_lucid_pll_configure);
|
||
|
||
/*
|
||
* The Lucid PLL requires a power-on self-calibration which happens when the
|
||
* PLL comes out of reset. Calibrate in case it is not completed.
|
||
*/
|
||
static int alpha_pll_lucid_prepare(struct clk_hw *hw)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
u32 regval;
|
||
int ret;
|
||
|
||
/* Return early if calibration is not needed. */
|
||
regmap_read(pll->clkr.regmap, PLL_STATUS(pll), ®val);
|
||
if (regval & LUCID_PCAL_DONE)
|
||
return 0;
|
||
|
||
/* On/off to calibrate */
|
||
ret = clk_trion_pll_enable(hw);
|
||
if (!ret)
|
||
clk_trion_pll_disable(hw);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int alpha_pll_lucid_set_rate(struct clk_hw *hw, unsigned long rate,
|
||
unsigned long prate)
|
||
{
|
||
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
|
||
unsigned long rrate;
|
||
u32 regval, l, alpha_width = pll_alpha_width(pll);
|
||
u64 a;
|
||
int ret;
|
||
|
||
rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
|
||
|
||
/*
|
||
* Due to a limited number of bits for fractional rate programming, the
|
||
* rounded up rate could be marginally higher than the requested rate.
|
||
*/
|
||
if (rrate > (rate + PLL_RATE_MARGIN) || rrate < rate) {
|
||
pr_err("Call set rate on the PLL with rounded rates!\n");
|
||
return -EINVAL;
|
||
}
|
||
|
||
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
|
||
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
|
||
|
||
/* Latch the PLL input */
|
||
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
|
||
PLL_UPDATE, PLL_UPDATE);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Wait for 2 reference cycles before checking the ACK bit. */
|
||
udelay(1);
|
||
regmap_read(pll->clkr.regmap, PLL_MODE(pll), ®val);
|
||
if (!(regval & ALPHA_PLL_ACK_LATCH)) {
|
||
pr_err("Lucid PLL latch failed. Output may be unstable!\n");
|
||
return -EINVAL;
|
||
}
|
||
|
||
/* Return the latch input to 0 */
|
||
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
|
||
PLL_UPDATE, 0);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (clk_hw_is_enabled(hw)) {
|
||
ret = wait_for_pll_enable_lock(pll);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
/* Wait for PLL output to stabilize */
|
||
udelay(100);
|
||
return 0;
|
||
}
|
||
|
||
const struct clk_ops clk_alpha_pll_lucid_ops = {
|
||
.prepare = alpha_pll_lucid_prepare,
|
||
.enable = clk_trion_pll_enable,
|
||
.disable = clk_trion_pll_disable,
|
||
.is_enabled = clk_trion_pll_is_enabled,
|
||
.recalc_rate = clk_trion_pll_recalc_rate,
|
||
.round_rate = clk_alpha_pll_round_rate,
|
||
.set_rate = alpha_pll_lucid_set_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_ops);
|
||
|
||
const struct clk_ops clk_alpha_pll_fixed_lucid_ops = {
|
||
.enable = clk_trion_pll_enable,
|
||
.disable = clk_trion_pll_disable,
|
||
.is_enabled = clk_trion_pll_is_enabled,
|
||
.recalc_rate = clk_trion_pll_recalc_rate,
|
||
.round_rate = clk_alpha_pll_round_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_lucid_ops);
|
||
|
||
const struct clk_ops clk_alpha_pll_postdiv_lucid_ops = {
|
||
.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
|
||
.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
|
||
.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
|
||
};
|
||
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_ops);
|