mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 09:36:04 +07:00
d890fa2b05
In 3.0 we changed the way recovery_disabled was handle so that instead of testing against zero, we test an mddev-> value against a conf-> value. Two problems: 1/ one place in raid1 was missed and still sets to '1'. 2/ We didn't explicitly set the conf-> value at array creation time. It defaulted to '0' just like the mddev value does so they could appear equal and thus disable recovery. This did not affect normal 'md' as it calls bind_rdev_to_array which changes the mddev value. However the dmraid interface doesn't call this and so doesn't change ->recovery_disabled; so at array start all recovery is incorrectly disabled. So initialise the 'conf' value to one less that the mddev value, so the will only be the same when explicitly set that way. Reported-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
5743 lines
159 KiB
C
5743 lines
159 KiB
C
/*
|
|
* raid5.c : Multiple Devices driver for Linux
|
|
* Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
|
|
* Copyright (C) 1999, 2000 Ingo Molnar
|
|
* Copyright (C) 2002, 2003 H. Peter Anvin
|
|
*
|
|
* RAID-4/5/6 management functions.
|
|
* Thanks to Penguin Computing for making the RAID-6 development possible
|
|
* by donating a test server!
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* (for example /usr/src/linux/COPYING); if not, write to the Free
|
|
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/*
|
|
* BITMAP UNPLUGGING:
|
|
*
|
|
* The sequencing for updating the bitmap reliably is a little
|
|
* subtle (and I got it wrong the first time) so it deserves some
|
|
* explanation.
|
|
*
|
|
* We group bitmap updates into batches. Each batch has a number.
|
|
* We may write out several batches at once, but that isn't very important.
|
|
* conf->seq_write is the number of the last batch successfully written.
|
|
* conf->seq_flush is the number of the last batch that was closed to
|
|
* new additions.
|
|
* When we discover that we will need to write to any block in a stripe
|
|
* (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
|
|
* the number of the batch it will be in. This is seq_flush+1.
|
|
* When we are ready to do a write, if that batch hasn't been written yet,
|
|
* we plug the array and queue the stripe for later.
|
|
* When an unplug happens, we increment bm_flush, thus closing the current
|
|
* batch.
|
|
* When we notice that bm_flush > bm_write, we write out all pending updates
|
|
* to the bitmap, and advance bm_write to where bm_flush was.
|
|
* This may occasionally write a bit out twice, but is sure never to
|
|
* miss any bits.
|
|
*/
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/raid/pq.h>
|
|
#include <linux/async_tx.h>
|
|
#include <linux/async.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ratelimit.h>
|
|
#include "md.h"
|
|
#include "raid5.h"
|
|
#include "raid0.h"
|
|
#include "bitmap.h"
|
|
|
|
/*
|
|
* Stripe cache
|
|
*/
|
|
|
|
#define NR_STRIPES 256
|
|
#define STRIPE_SIZE PAGE_SIZE
|
|
#define STRIPE_SHIFT (PAGE_SHIFT - 9)
|
|
#define STRIPE_SECTORS (STRIPE_SIZE>>9)
|
|
#define IO_THRESHOLD 1
|
|
#define BYPASS_THRESHOLD 1
|
|
#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
|
|
#define HASH_MASK (NR_HASH - 1)
|
|
|
|
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
|
|
{
|
|
int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
|
|
return &conf->stripe_hashtbl[hash];
|
|
}
|
|
|
|
/* bio's attached to a stripe+device for I/O are linked together in bi_sector
|
|
* order without overlap. There may be several bio's per stripe+device, and
|
|
* a bio could span several devices.
|
|
* When walking this list for a particular stripe+device, we must never proceed
|
|
* beyond a bio that extends past this device, as the next bio might no longer
|
|
* be valid.
|
|
* This function is used to determine the 'next' bio in the list, given the sector
|
|
* of the current stripe+device
|
|
*/
|
|
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
|
|
{
|
|
int sectors = bio->bi_size >> 9;
|
|
if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
|
|
return bio->bi_next;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* We maintain a biased count of active stripes in the bottom 16 bits of
|
|
* bi_phys_segments, and a count of processed stripes in the upper 16 bits
|
|
*/
|
|
static inline int raid5_bi_phys_segments(struct bio *bio)
|
|
{
|
|
return bio->bi_phys_segments & 0xffff;
|
|
}
|
|
|
|
static inline int raid5_bi_hw_segments(struct bio *bio)
|
|
{
|
|
return (bio->bi_phys_segments >> 16) & 0xffff;
|
|
}
|
|
|
|
static inline int raid5_dec_bi_phys_segments(struct bio *bio)
|
|
{
|
|
--bio->bi_phys_segments;
|
|
return raid5_bi_phys_segments(bio);
|
|
}
|
|
|
|
static inline int raid5_dec_bi_hw_segments(struct bio *bio)
|
|
{
|
|
unsigned short val = raid5_bi_hw_segments(bio);
|
|
|
|
--val;
|
|
bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
|
|
return val;
|
|
}
|
|
|
|
static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
|
|
{
|
|
bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
|
|
}
|
|
|
|
/* Find first data disk in a raid6 stripe */
|
|
static inline int raid6_d0(struct stripe_head *sh)
|
|
{
|
|
if (sh->ddf_layout)
|
|
/* ddf always start from first device */
|
|
return 0;
|
|
/* md starts just after Q block */
|
|
if (sh->qd_idx == sh->disks - 1)
|
|
return 0;
|
|
else
|
|
return sh->qd_idx + 1;
|
|
}
|
|
static inline int raid6_next_disk(int disk, int raid_disks)
|
|
{
|
|
disk++;
|
|
return (disk < raid_disks) ? disk : 0;
|
|
}
|
|
|
|
/* When walking through the disks in a raid5, starting at raid6_d0,
|
|
* We need to map each disk to a 'slot', where the data disks are slot
|
|
* 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
|
|
* is raid_disks-1. This help does that mapping.
|
|
*/
|
|
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
|
|
int *count, int syndrome_disks)
|
|
{
|
|
int slot = *count;
|
|
|
|
if (sh->ddf_layout)
|
|
(*count)++;
|
|
if (idx == sh->pd_idx)
|
|
return syndrome_disks;
|
|
if (idx == sh->qd_idx)
|
|
return syndrome_disks + 1;
|
|
if (!sh->ddf_layout)
|
|
(*count)++;
|
|
return slot;
|
|
}
|
|
|
|
static void return_io(struct bio *return_bi)
|
|
{
|
|
struct bio *bi = return_bi;
|
|
while (bi) {
|
|
|
|
return_bi = bi->bi_next;
|
|
bi->bi_next = NULL;
|
|
bi->bi_size = 0;
|
|
bio_endio(bi, 0);
|
|
bi = return_bi;
|
|
}
|
|
}
|
|
|
|
static void print_raid5_conf (struct r5conf *conf);
|
|
|
|
static int stripe_operations_active(struct stripe_head *sh)
|
|
{
|
|
return sh->check_state || sh->reconstruct_state ||
|
|
test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
|
|
test_bit(STRIPE_COMPUTE_RUN, &sh->state);
|
|
}
|
|
|
|
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
|
|
{
|
|
if (atomic_dec_and_test(&sh->count)) {
|
|
BUG_ON(!list_empty(&sh->lru));
|
|
BUG_ON(atomic_read(&conf->active_stripes)==0);
|
|
if (test_bit(STRIPE_HANDLE, &sh->state)) {
|
|
if (test_bit(STRIPE_DELAYED, &sh->state))
|
|
list_add_tail(&sh->lru, &conf->delayed_list);
|
|
else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
|
|
sh->bm_seq - conf->seq_write > 0)
|
|
list_add_tail(&sh->lru, &conf->bitmap_list);
|
|
else {
|
|
clear_bit(STRIPE_BIT_DELAY, &sh->state);
|
|
list_add_tail(&sh->lru, &conf->handle_list);
|
|
}
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
} else {
|
|
BUG_ON(stripe_operations_active(sh));
|
|
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
|
|
atomic_dec(&conf->preread_active_stripes);
|
|
if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
}
|
|
atomic_dec(&conf->active_stripes);
|
|
if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
|
|
list_add_tail(&sh->lru, &conf->inactive_list);
|
|
wake_up(&conf->wait_for_stripe);
|
|
if (conf->retry_read_aligned)
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void release_stripe(struct stripe_head *sh)
|
|
{
|
|
struct r5conf *conf = sh->raid_conf;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
__release_stripe(conf, sh);
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
}
|
|
|
|
static inline void remove_hash(struct stripe_head *sh)
|
|
{
|
|
pr_debug("remove_hash(), stripe %llu\n",
|
|
(unsigned long long)sh->sector);
|
|
|
|
hlist_del_init(&sh->hash);
|
|
}
|
|
|
|
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
|
|
{
|
|
struct hlist_head *hp = stripe_hash(conf, sh->sector);
|
|
|
|
pr_debug("insert_hash(), stripe %llu\n",
|
|
(unsigned long long)sh->sector);
|
|
|
|
hlist_add_head(&sh->hash, hp);
|
|
}
|
|
|
|
|
|
/* find an idle stripe, make sure it is unhashed, and return it. */
|
|
static struct stripe_head *get_free_stripe(struct r5conf *conf)
|
|
{
|
|
struct stripe_head *sh = NULL;
|
|
struct list_head *first;
|
|
|
|
if (list_empty(&conf->inactive_list))
|
|
goto out;
|
|
first = conf->inactive_list.next;
|
|
sh = list_entry(first, struct stripe_head, lru);
|
|
list_del_init(first);
|
|
remove_hash(sh);
|
|
atomic_inc(&conf->active_stripes);
|
|
out:
|
|
return sh;
|
|
}
|
|
|
|
static void shrink_buffers(struct stripe_head *sh)
|
|
{
|
|
struct page *p;
|
|
int i;
|
|
int num = sh->raid_conf->pool_size;
|
|
|
|
for (i = 0; i < num ; i++) {
|
|
p = sh->dev[i].page;
|
|
if (!p)
|
|
continue;
|
|
sh->dev[i].page = NULL;
|
|
put_page(p);
|
|
}
|
|
}
|
|
|
|
static int grow_buffers(struct stripe_head *sh)
|
|
{
|
|
int i;
|
|
int num = sh->raid_conf->pool_size;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
struct page *page;
|
|
|
|
if (!(page = alloc_page(GFP_KERNEL))) {
|
|
return 1;
|
|
}
|
|
sh->dev[i].page = page;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
|
|
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
|
|
struct stripe_head *sh);
|
|
|
|
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
|
|
{
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int i;
|
|
|
|
BUG_ON(atomic_read(&sh->count) != 0);
|
|
BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
|
|
BUG_ON(stripe_operations_active(sh));
|
|
|
|
pr_debug("init_stripe called, stripe %llu\n",
|
|
(unsigned long long)sh->sector);
|
|
|
|
remove_hash(sh);
|
|
|
|
sh->generation = conf->generation - previous;
|
|
sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
|
|
sh->sector = sector;
|
|
stripe_set_idx(sector, conf, previous, sh);
|
|
sh->state = 0;
|
|
|
|
|
|
for (i = sh->disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
|
|
if (dev->toread || dev->read || dev->towrite || dev->written ||
|
|
test_bit(R5_LOCKED, &dev->flags)) {
|
|
printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
|
|
(unsigned long long)sh->sector, i, dev->toread,
|
|
dev->read, dev->towrite, dev->written,
|
|
test_bit(R5_LOCKED, &dev->flags));
|
|
WARN_ON(1);
|
|
}
|
|
dev->flags = 0;
|
|
raid5_build_block(sh, i, previous);
|
|
}
|
|
insert_hash(conf, sh);
|
|
}
|
|
|
|
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
|
|
short generation)
|
|
{
|
|
struct stripe_head *sh;
|
|
struct hlist_node *hn;
|
|
|
|
pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
|
|
hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
|
|
if (sh->sector == sector && sh->generation == generation)
|
|
return sh;
|
|
pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Need to check if array has failed when deciding whether to:
|
|
* - start an array
|
|
* - remove non-faulty devices
|
|
* - add a spare
|
|
* - allow a reshape
|
|
* This determination is simple when no reshape is happening.
|
|
* However if there is a reshape, we need to carefully check
|
|
* both the before and after sections.
|
|
* This is because some failed devices may only affect one
|
|
* of the two sections, and some non-in_sync devices may
|
|
* be insync in the section most affected by failed devices.
|
|
*/
|
|
static int has_failed(struct r5conf *conf)
|
|
{
|
|
int degraded;
|
|
int i;
|
|
if (conf->mddev->reshape_position == MaxSector)
|
|
return conf->mddev->degraded > conf->max_degraded;
|
|
|
|
rcu_read_lock();
|
|
degraded = 0;
|
|
for (i = 0; i < conf->previous_raid_disks; i++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
|
|
if (!rdev || test_bit(Faulty, &rdev->flags))
|
|
degraded++;
|
|
else if (test_bit(In_sync, &rdev->flags))
|
|
;
|
|
else
|
|
/* not in-sync or faulty.
|
|
* If the reshape increases the number of devices,
|
|
* this is being recovered by the reshape, so
|
|
* this 'previous' section is not in_sync.
|
|
* If the number of devices is being reduced however,
|
|
* the device can only be part of the array if
|
|
* we are reverting a reshape, so this section will
|
|
* be in-sync.
|
|
*/
|
|
if (conf->raid_disks >= conf->previous_raid_disks)
|
|
degraded++;
|
|
}
|
|
rcu_read_unlock();
|
|
if (degraded > conf->max_degraded)
|
|
return 1;
|
|
rcu_read_lock();
|
|
degraded = 0;
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
|
|
if (!rdev || test_bit(Faulty, &rdev->flags))
|
|
degraded++;
|
|
else if (test_bit(In_sync, &rdev->flags))
|
|
;
|
|
else
|
|
/* not in-sync or faulty.
|
|
* If reshape increases the number of devices, this
|
|
* section has already been recovered, else it
|
|
* almost certainly hasn't.
|
|
*/
|
|
if (conf->raid_disks <= conf->previous_raid_disks)
|
|
degraded++;
|
|
}
|
|
rcu_read_unlock();
|
|
if (degraded > conf->max_degraded)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static struct stripe_head *
|
|
get_active_stripe(struct r5conf *conf, sector_t sector,
|
|
int previous, int noblock, int noquiesce)
|
|
{
|
|
struct stripe_head *sh;
|
|
|
|
pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
|
|
|
|
spin_lock_irq(&conf->device_lock);
|
|
|
|
do {
|
|
wait_event_lock_irq(conf->wait_for_stripe,
|
|
conf->quiesce == 0 || noquiesce,
|
|
conf->device_lock, /* nothing */);
|
|
sh = __find_stripe(conf, sector, conf->generation - previous);
|
|
if (!sh) {
|
|
if (!conf->inactive_blocked)
|
|
sh = get_free_stripe(conf);
|
|
if (noblock && sh == NULL)
|
|
break;
|
|
if (!sh) {
|
|
conf->inactive_blocked = 1;
|
|
wait_event_lock_irq(conf->wait_for_stripe,
|
|
!list_empty(&conf->inactive_list) &&
|
|
(atomic_read(&conf->active_stripes)
|
|
< (conf->max_nr_stripes *3/4)
|
|
|| !conf->inactive_blocked),
|
|
conf->device_lock,
|
|
);
|
|
conf->inactive_blocked = 0;
|
|
} else
|
|
init_stripe(sh, sector, previous);
|
|
} else {
|
|
if (atomic_read(&sh->count)) {
|
|
BUG_ON(!list_empty(&sh->lru)
|
|
&& !test_bit(STRIPE_EXPANDING, &sh->state));
|
|
} else {
|
|
if (!test_bit(STRIPE_HANDLE, &sh->state))
|
|
atomic_inc(&conf->active_stripes);
|
|
if (list_empty(&sh->lru) &&
|
|
!test_bit(STRIPE_EXPANDING, &sh->state))
|
|
BUG();
|
|
list_del_init(&sh->lru);
|
|
}
|
|
}
|
|
} while (sh == NULL);
|
|
|
|
if (sh)
|
|
atomic_inc(&sh->count);
|
|
|
|
spin_unlock_irq(&conf->device_lock);
|
|
return sh;
|
|
}
|
|
|
|
static void
|
|
raid5_end_read_request(struct bio *bi, int error);
|
|
static void
|
|
raid5_end_write_request(struct bio *bi, int error);
|
|
|
|
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
|
|
{
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int i, disks = sh->disks;
|
|
|
|
might_sleep();
|
|
|
|
for (i = disks; i--; ) {
|
|
int rw;
|
|
struct bio *bi;
|
|
struct md_rdev *rdev;
|
|
if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
|
|
if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
|
|
rw = WRITE_FUA;
|
|
else
|
|
rw = WRITE;
|
|
} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
|
|
rw = READ;
|
|
else
|
|
continue;
|
|
|
|
bi = &sh->dev[i].req;
|
|
|
|
bi->bi_rw = rw;
|
|
if (rw & WRITE)
|
|
bi->bi_end_io = raid5_end_write_request;
|
|
else
|
|
bi->bi_end_io = raid5_end_read_request;
|
|
|
|
rcu_read_lock();
|
|
rdev = rcu_dereference(conf->disks[i].rdev);
|
|
if (rdev && test_bit(Faulty, &rdev->flags))
|
|
rdev = NULL;
|
|
if (rdev)
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
|
|
/* We have already checked bad blocks for reads. Now
|
|
* need to check for writes.
|
|
*/
|
|
while ((rw & WRITE) && rdev &&
|
|
test_bit(WriteErrorSeen, &rdev->flags)) {
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
|
|
&first_bad, &bad_sectors);
|
|
if (!bad)
|
|
break;
|
|
|
|
if (bad < 0) {
|
|
set_bit(BlockedBadBlocks, &rdev->flags);
|
|
if (!conf->mddev->external &&
|
|
conf->mddev->flags) {
|
|
/* It is very unlikely, but we might
|
|
* still need to write out the
|
|
* bad block log - better give it
|
|
* a chance*/
|
|
md_check_recovery(conf->mddev);
|
|
}
|
|
md_wait_for_blocked_rdev(rdev, conf->mddev);
|
|
} else {
|
|
/* Acknowledged bad block - skip the write */
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
rdev = NULL;
|
|
}
|
|
}
|
|
|
|
if (rdev) {
|
|
if (s->syncing || s->expanding || s->expanded)
|
|
md_sync_acct(rdev->bdev, STRIPE_SECTORS);
|
|
|
|
set_bit(STRIPE_IO_STARTED, &sh->state);
|
|
|
|
bi->bi_bdev = rdev->bdev;
|
|
pr_debug("%s: for %llu schedule op %ld on disc %d\n",
|
|
__func__, (unsigned long long)sh->sector,
|
|
bi->bi_rw, i);
|
|
atomic_inc(&sh->count);
|
|
bi->bi_sector = sh->sector + rdev->data_offset;
|
|
bi->bi_flags = 1 << BIO_UPTODATE;
|
|
bi->bi_vcnt = 1;
|
|
bi->bi_max_vecs = 1;
|
|
bi->bi_idx = 0;
|
|
bi->bi_io_vec = &sh->dev[i].vec;
|
|
bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
|
|
bi->bi_io_vec[0].bv_offset = 0;
|
|
bi->bi_size = STRIPE_SIZE;
|
|
bi->bi_next = NULL;
|
|
generic_make_request(bi);
|
|
} else {
|
|
if (rw & WRITE)
|
|
set_bit(STRIPE_DEGRADED, &sh->state);
|
|
pr_debug("skip op %ld on disc %d for sector %llu\n",
|
|
bi->bi_rw, i, (unsigned long long)sh->sector);
|
|
clear_bit(R5_LOCKED, &sh->dev[i].flags);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
async_copy_data(int frombio, struct bio *bio, struct page *page,
|
|
sector_t sector, struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct bio_vec *bvl;
|
|
struct page *bio_page;
|
|
int i;
|
|
int page_offset;
|
|
struct async_submit_ctl submit;
|
|
enum async_tx_flags flags = 0;
|
|
|
|
if (bio->bi_sector >= sector)
|
|
page_offset = (signed)(bio->bi_sector - sector) * 512;
|
|
else
|
|
page_offset = (signed)(sector - bio->bi_sector) * -512;
|
|
|
|
if (frombio)
|
|
flags |= ASYNC_TX_FENCE;
|
|
init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
|
|
|
|
bio_for_each_segment(bvl, bio, i) {
|
|
int len = bvl->bv_len;
|
|
int clen;
|
|
int b_offset = 0;
|
|
|
|
if (page_offset < 0) {
|
|
b_offset = -page_offset;
|
|
page_offset += b_offset;
|
|
len -= b_offset;
|
|
}
|
|
|
|
if (len > 0 && page_offset + len > STRIPE_SIZE)
|
|
clen = STRIPE_SIZE - page_offset;
|
|
else
|
|
clen = len;
|
|
|
|
if (clen > 0) {
|
|
b_offset += bvl->bv_offset;
|
|
bio_page = bvl->bv_page;
|
|
if (frombio)
|
|
tx = async_memcpy(page, bio_page, page_offset,
|
|
b_offset, clen, &submit);
|
|
else
|
|
tx = async_memcpy(bio_page, page, b_offset,
|
|
page_offset, clen, &submit);
|
|
}
|
|
/* chain the operations */
|
|
submit.depend_tx = tx;
|
|
|
|
if (clen < len) /* hit end of page */
|
|
break;
|
|
page_offset += len;
|
|
}
|
|
|
|
return tx;
|
|
}
|
|
|
|
static void ops_complete_biofill(void *stripe_head_ref)
|
|
{
|
|
struct stripe_head *sh = stripe_head_ref;
|
|
struct bio *return_bi = NULL;
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int i;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
|
|
/* clear completed biofills */
|
|
spin_lock_irq(&conf->device_lock);
|
|
for (i = sh->disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
|
|
/* acknowledge completion of a biofill operation */
|
|
/* and check if we need to reply to a read request,
|
|
* new R5_Wantfill requests are held off until
|
|
* !STRIPE_BIOFILL_RUN
|
|
*/
|
|
if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
|
|
struct bio *rbi, *rbi2;
|
|
|
|
BUG_ON(!dev->read);
|
|
rbi = dev->read;
|
|
dev->read = NULL;
|
|
while (rbi && rbi->bi_sector <
|
|
dev->sector + STRIPE_SECTORS) {
|
|
rbi2 = r5_next_bio(rbi, dev->sector);
|
|
if (!raid5_dec_bi_phys_segments(rbi)) {
|
|
rbi->bi_next = return_bi;
|
|
return_bi = rbi;
|
|
}
|
|
rbi = rbi2;
|
|
}
|
|
}
|
|
}
|
|
spin_unlock_irq(&conf->device_lock);
|
|
clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
|
|
|
|
return_io(return_bi);
|
|
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
release_stripe(sh);
|
|
}
|
|
|
|
static void ops_run_biofill(struct stripe_head *sh)
|
|
{
|
|
struct dma_async_tx_descriptor *tx = NULL;
|
|
struct r5conf *conf = sh->raid_conf;
|
|
struct async_submit_ctl submit;
|
|
int i;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
|
|
for (i = sh->disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if (test_bit(R5_Wantfill, &dev->flags)) {
|
|
struct bio *rbi;
|
|
spin_lock_irq(&conf->device_lock);
|
|
dev->read = rbi = dev->toread;
|
|
dev->toread = NULL;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
while (rbi && rbi->bi_sector <
|
|
dev->sector + STRIPE_SECTORS) {
|
|
tx = async_copy_data(0, rbi, dev->page,
|
|
dev->sector, tx);
|
|
rbi = r5_next_bio(rbi, dev->sector);
|
|
}
|
|
}
|
|
}
|
|
|
|
atomic_inc(&sh->count);
|
|
init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
|
|
async_trigger_callback(&submit);
|
|
}
|
|
|
|
static void mark_target_uptodate(struct stripe_head *sh, int target)
|
|
{
|
|
struct r5dev *tgt;
|
|
|
|
if (target < 0)
|
|
return;
|
|
|
|
tgt = &sh->dev[target];
|
|
set_bit(R5_UPTODATE, &tgt->flags);
|
|
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
|
|
clear_bit(R5_Wantcompute, &tgt->flags);
|
|
}
|
|
|
|
static void ops_complete_compute(void *stripe_head_ref)
|
|
{
|
|
struct stripe_head *sh = stripe_head_ref;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
|
|
/* mark the computed target(s) as uptodate */
|
|
mark_target_uptodate(sh, sh->ops.target);
|
|
mark_target_uptodate(sh, sh->ops.target2);
|
|
|
|
clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
|
|
if (sh->check_state == check_state_compute_run)
|
|
sh->check_state = check_state_compute_result;
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
release_stripe(sh);
|
|
}
|
|
|
|
/* return a pointer to the address conversion region of the scribble buffer */
|
|
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
|
|
struct raid5_percpu *percpu)
|
|
{
|
|
return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
|
|
{
|
|
int disks = sh->disks;
|
|
struct page **xor_srcs = percpu->scribble;
|
|
int target = sh->ops.target;
|
|
struct r5dev *tgt = &sh->dev[target];
|
|
struct page *xor_dest = tgt->page;
|
|
int count = 0;
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct async_submit_ctl submit;
|
|
int i;
|
|
|
|
pr_debug("%s: stripe %llu block: %d\n",
|
|
__func__, (unsigned long long)sh->sector, target);
|
|
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
|
|
|
|
for (i = disks; i--; )
|
|
if (i != target)
|
|
xor_srcs[count++] = sh->dev[i].page;
|
|
|
|
atomic_inc(&sh->count);
|
|
|
|
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
|
|
ops_complete_compute, sh, to_addr_conv(sh, percpu));
|
|
if (unlikely(count == 1))
|
|
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
|
|
else
|
|
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
|
|
|
|
return tx;
|
|
}
|
|
|
|
/* set_syndrome_sources - populate source buffers for gen_syndrome
|
|
* @srcs - (struct page *) array of size sh->disks
|
|
* @sh - stripe_head to parse
|
|
*
|
|
* Populates srcs in proper layout order for the stripe and returns the
|
|
* 'count' of sources to be used in a call to async_gen_syndrome. The P
|
|
* destination buffer is recorded in srcs[count] and the Q destination
|
|
* is recorded in srcs[count+1]].
|
|
*/
|
|
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
|
|
{
|
|
int disks = sh->disks;
|
|
int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
|
|
int d0_idx = raid6_d0(sh);
|
|
int count;
|
|
int i;
|
|
|
|
for (i = 0; i < disks; i++)
|
|
srcs[i] = NULL;
|
|
|
|
count = 0;
|
|
i = d0_idx;
|
|
do {
|
|
int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
|
|
|
|
srcs[slot] = sh->dev[i].page;
|
|
i = raid6_next_disk(i, disks);
|
|
} while (i != d0_idx);
|
|
|
|
return syndrome_disks;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
|
|
{
|
|
int disks = sh->disks;
|
|
struct page **blocks = percpu->scribble;
|
|
int target;
|
|
int qd_idx = sh->qd_idx;
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct async_submit_ctl submit;
|
|
struct r5dev *tgt;
|
|
struct page *dest;
|
|
int i;
|
|
int count;
|
|
|
|
if (sh->ops.target < 0)
|
|
target = sh->ops.target2;
|
|
else if (sh->ops.target2 < 0)
|
|
target = sh->ops.target;
|
|
else
|
|
/* we should only have one valid target */
|
|
BUG();
|
|
BUG_ON(target < 0);
|
|
pr_debug("%s: stripe %llu block: %d\n",
|
|
__func__, (unsigned long long)sh->sector, target);
|
|
|
|
tgt = &sh->dev[target];
|
|
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
|
|
dest = tgt->page;
|
|
|
|
atomic_inc(&sh->count);
|
|
|
|
if (target == qd_idx) {
|
|
count = set_syndrome_sources(blocks, sh);
|
|
blocks[count] = NULL; /* regenerating p is not necessary */
|
|
BUG_ON(blocks[count+1] != dest); /* q should already be set */
|
|
init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
|
|
ops_complete_compute, sh,
|
|
to_addr_conv(sh, percpu));
|
|
tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
|
|
} else {
|
|
/* Compute any data- or p-drive using XOR */
|
|
count = 0;
|
|
for (i = disks; i-- ; ) {
|
|
if (i == target || i == qd_idx)
|
|
continue;
|
|
blocks[count++] = sh->dev[i].page;
|
|
}
|
|
|
|
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
|
|
NULL, ops_complete_compute, sh,
|
|
to_addr_conv(sh, percpu));
|
|
tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
|
|
}
|
|
|
|
return tx;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
|
|
{
|
|
int i, count, disks = sh->disks;
|
|
int syndrome_disks = sh->ddf_layout ? disks : disks-2;
|
|
int d0_idx = raid6_d0(sh);
|
|
int faila = -1, failb = -1;
|
|
int target = sh->ops.target;
|
|
int target2 = sh->ops.target2;
|
|
struct r5dev *tgt = &sh->dev[target];
|
|
struct r5dev *tgt2 = &sh->dev[target2];
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct page **blocks = percpu->scribble;
|
|
struct async_submit_ctl submit;
|
|
|
|
pr_debug("%s: stripe %llu block1: %d block2: %d\n",
|
|
__func__, (unsigned long long)sh->sector, target, target2);
|
|
BUG_ON(target < 0 || target2 < 0);
|
|
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
|
|
BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
|
|
|
|
/* we need to open-code set_syndrome_sources to handle the
|
|
* slot number conversion for 'faila' and 'failb'
|
|
*/
|
|
for (i = 0; i < disks ; i++)
|
|
blocks[i] = NULL;
|
|
count = 0;
|
|
i = d0_idx;
|
|
do {
|
|
int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
|
|
|
|
blocks[slot] = sh->dev[i].page;
|
|
|
|
if (i == target)
|
|
faila = slot;
|
|
if (i == target2)
|
|
failb = slot;
|
|
i = raid6_next_disk(i, disks);
|
|
} while (i != d0_idx);
|
|
|
|
BUG_ON(faila == failb);
|
|
if (failb < faila)
|
|
swap(faila, failb);
|
|
pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
|
|
__func__, (unsigned long long)sh->sector, faila, failb);
|
|
|
|
atomic_inc(&sh->count);
|
|
|
|
if (failb == syndrome_disks+1) {
|
|
/* Q disk is one of the missing disks */
|
|
if (faila == syndrome_disks) {
|
|
/* Missing P+Q, just recompute */
|
|
init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
|
|
ops_complete_compute, sh,
|
|
to_addr_conv(sh, percpu));
|
|
return async_gen_syndrome(blocks, 0, syndrome_disks+2,
|
|
STRIPE_SIZE, &submit);
|
|
} else {
|
|
struct page *dest;
|
|
int data_target;
|
|
int qd_idx = sh->qd_idx;
|
|
|
|
/* Missing D+Q: recompute D from P, then recompute Q */
|
|
if (target == qd_idx)
|
|
data_target = target2;
|
|
else
|
|
data_target = target;
|
|
|
|
count = 0;
|
|
for (i = disks; i-- ; ) {
|
|
if (i == data_target || i == qd_idx)
|
|
continue;
|
|
blocks[count++] = sh->dev[i].page;
|
|
}
|
|
dest = sh->dev[data_target].page;
|
|
init_async_submit(&submit,
|
|
ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
|
|
NULL, NULL, NULL,
|
|
to_addr_conv(sh, percpu));
|
|
tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
|
|
&submit);
|
|
|
|
count = set_syndrome_sources(blocks, sh);
|
|
init_async_submit(&submit, ASYNC_TX_FENCE, tx,
|
|
ops_complete_compute, sh,
|
|
to_addr_conv(sh, percpu));
|
|
return async_gen_syndrome(blocks, 0, count+2,
|
|
STRIPE_SIZE, &submit);
|
|
}
|
|
} else {
|
|
init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
|
|
ops_complete_compute, sh,
|
|
to_addr_conv(sh, percpu));
|
|
if (failb == syndrome_disks) {
|
|
/* We're missing D+P. */
|
|
return async_raid6_datap_recov(syndrome_disks+2,
|
|
STRIPE_SIZE, faila,
|
|
blocks, &submit);
|
|
} else {
|
|
/* We're missing D+D. */
|
|
return async_raid6_2data_recov(syndrome_disks+2,
|
|
STRIPE_SIZE, faila, failb,
|
|
blocks, &submit);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void ops_complete_prexor(void *stripe_head_ref)
|
|
{
|
|
struct stripe_head *sh = stripe_head_ref;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
|
|
struct dma_async_tx_descriptor *tx)
|
|
{
|
|
int disks = sh->disks;
|
|
struct page **xor_srcs = percpu->scribble;
|
|
int count = 0, pd_idx = sh->pd_idx, i;
|
|
struct async_submit_ctl submit;
|
|
|
|
/* existing parity data subtracted */
|
|
struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
/* Only process blocks that are known to be uptodate */
|
|
if (test_bit(R5_Wantdrain, &dev->flags))
|
|
xor_srcs[count++] = dev->page;
|
|
}
|
|
|
|
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
|
|
ops_complete_prexor, sh, to_addr_conv(sh, percpu));
|
|
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
|
|
|
|
return tx;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
|
|
{
|
|
int disks = sh->disks;
|
|
int i;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
struct bio *chosen;
|
|
|
|
if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
|
|
struct bio *wbi;
|
|
|
|
spin_lock_irq(&sh->raid_conf->device_lock);
|
|
chosen = dev->towrite;
|
|
dev->towrite = NULL;
|
|
BUG_ON(dev->written);
|
|
wbi = dev->written = chosen;
|
|
spin_unlock_irq(&sh->raid_conf->device_lock);
|
|
|
|
while (wbi && wbi->bi_sector <
|
|
dev->sector + STRIPE_SECTORS) {
|
|
if (wbi->bi_rw & REQ_FUA)
|
|
set_bit(R5_WantFUA, &dev->flags);
|
|
tx = async_copy_data(1, wbi, dev->page,
|
|
dev->sector, tx);
|
|
wbi = r5_next_bio(wbi, dev->sector);
|
|
}
|
|
}
|
|
}
|
|
|
|
return tx;
|
|
}
|
|
|
|
static void ops_complete_reconstruct(void *stripe_head_ref)
|
|
{
|
|
struct stripe_head *sh = stripe_head_ref;
|
|
int disks = sh->disks;
|
|
int pd_idx = sh->pd_idx;
|
|
int qd_idx = sh->qd_idx;
|
|
int i;
|
|
bool fua = false;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
|
|
for (i = disks; i--; )
|
|
fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
|
|
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
|
|
if (dev->written || i == pd_idx || i == qd_idx) {
|
|
set_bit(R5_UPTODATE, &dev->flags);
|
|
if (fua)
|
|
set_bit(R5_WantFUA, &dev->flags);
|
|
}
|
|
}
|
|
|
|
if (sh->reconstruct_state == reconstruct_state_drain_run)
|
|
sh->reconstruct_state = reconstruct_state_drain_result;
|
|
else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
|
|
sh->reconstruct_state = reconstruct_state_prexor_drain_result;
|
|
else {
|
|
BUG_ON(sh->reconstruct_state != reconstruct_state_run);
|
|
sh->reconstruct_state = reconstruct_state_result;
|
|
}
|
|
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
release_stripe(sh);
|
|
}
|
|
|
|
static void
|
|
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
|
|
struct dma_async_tx_descriptor *tx)
|
|
{
|
|
int disks = sh->disks;
|
|
struct page **xor_srcs = percpu->scribble;
|
|
struct async_submit_ctl submit;
|
|
int count = 0, pd_idx = sh->pd_idx, i;
|
|
struct page *xor_dest;
|
|
int prexor = 0;
|
|
unsigned long flags;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
|
|
/* check if prexor is active which means only process blocks
|
|
* that are part of a read-modify-write (written)
|
|
*/
|
|
if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
|
|
prexor = 1;
|
|
xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if (dev->written)
|
|
xor_srcs[count++] = dev->page;
|
|
}
|
|
} else {
|
|
xor_dest = sh->dev[pd_idx].page;
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if (i != pd_idx)
|
|
xor_srcs[count++] = dev->page;
|
|
}
|
|
}
|
|
|
|
/* 1/ if we prexor'd then the dest is reused as a source
|
|
* 2/ if we did not prexor then we are redoing the parity
|
|
* set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
|
|
* for the synchronous xor case
|
|
*/
|
|
flags = ASYNC_TX_ACK |
|
|
(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
|
|
|
|
atomic_inc(&sh->count);
|
|
|
|
init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
|
|
to_addr_conv(sh, percpu));
|
|
if (unlikely(count == 1))
|
|
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
|
|
else
|
|
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
|
|
}
|
|
|
|
static void
|
|
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
|
|
struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct async_submit_ctl submit;
|
|
struct page **blocks = percpu->scribble;
|
|
int count;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
|
|
|
|
count = set_syndrome_sources(blocks, sh);
|
|
|
|
atomic_inc(&sh->count);
|
|
|
|
init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
|
|
sh, to_addr_conv(sh, percpu));
|
|
async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
|
|
}
|
|
|
|
static void ops_complete_check(void *stripe_head_ref)
|
|
{
|
|
struct stripe_head *sh = stripe_head_ref;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
|
|
sh->check_state = check_state_check_result;
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
release_stripe(sh);
|
|
}
|
|
|
|
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
|
|
{
|
|
int disks = sh->disks;
|
|
int pd_idx = sh->pd_idx;
|
|
int qd_idx = sh->qd_idx;
|
|
struct page *xor_dest;
|
|
struct page **xor_srcs = percpu->scribble;
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct async_submit_ctl submit;
|
|
int count;
|
|
int i;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__,
|
|
(unsigned long long)sh->sector);
|
|
|
|
count = 0;
|
|
xor_dest = sh->dev[pd_idx].page;
|
|
xor_srcs[count++] = xor_dest;
|
|
for (i = disks; i--; ) {
|
|
if (i == pd_idx || i == qd_idx)
|
|
continue;
|
|
xor_srcs[count++] = sh->dev[i].page;
|
|
}
|
|
|
|
init_async_submit(&submit, 0, NULL, NULL, NULL,
|
|
to_addr_conv(sh, percpu));
|
|
tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
|
|
&sh->ops.zero_sum_result, &submit);
|
|
|
|
atomic_inc(&sh->count);
|
|
init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
|
|
tx = async_trigger_callback(&submit);
|
|
}
|
|
|
|
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
|
|
{
|
|
struct page **srcs = percpu->scribble;
|
|
struct async_submit_ctl submit;
|
|
int count;
|
|
|
|
pr_debug("%s: stripe %llu checkp: %d\n", __func__,
|
|
(unsigned long long)sh->sector, checkp);
|
|
|
|
count = set_syndrome_sources(srcs, sh);
|
|
if (!checkp)
|
|
srcs[count] = NULL;
|
|
|
|
atomic_inc(&sh->count);
|
|
init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
|
|
sh, to_addr_conv(sh, percpu));
|
|
async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
|
|
&sh->ops.zero_sum_result, percpu->spare_page, &submit);
|
|
}
|
|
|
|
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
|
|
{
|
|
int overlap_clear = 0, i, disks = sh->disks;
|
|
struct dma_async_tx_descriptor *tx = NULL;
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int level = conf->level;
|
|
struct raid5_percpu *percpu;
|
|
unsigned long cpu;
|
|
|
|
cpu = get_cpu();
|
|
percpu = per_cpu_ptr(conf->percpu, cpu);
|
|
if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
|
|
ops_run_biofill(sh);
|
|
overlap_clear++;
|
|
}
|
|
|
|
if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
|
|
if (level < 6)
|
|
tx = ops_run_compute5(sh, percpu);
|
|
else {
|
|
if (sh->ops.target2 < 0 || sh->ops.target < 0)
|
|
tx = ops_run_compute6_1(sh, percpu);
|
|
else
|
|
tx = ops_run_compute6_2(sh, percpu);
|
|
}
|
|
/* terminate the chain if reconstruct is not set to be run */
|
|
if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
|
|
async_tx_ack(tx);
|
|
}
|
|
|
|
if (test_bit(STRIPE_OP_PREXOR, &ops_request))
|
|
tx = ops_run_prexor(sh, percpu, tx);
|
|
|
|
if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
|
|
tx = ops_run_biodrain(sh, tx);
|
|
overlap_clear++;
|
|
}
|
|
|
|
if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
|
|
if (level < 6)
|
|
ops_run_reconstruct5(sh, percpu, tx);
|
|
else
|
|
ops_run_reconstruct6(sh, percpu, tx);
|
|
}
|
|
|
|
if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
|
|
if (sh->check_state == check_state_run)
|
|
ops_run_check_p(sh, percpu);
|
|
else if (sh->check_state == check_state_run_q)
|
|
ops_run_check_pq(sh, percpu, 0);
|
|
else if (sh->check_state == check_state_run_pq)
|
|
ops_run_check_pq(sh, percpu, 1);
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
if (overlap_clear)
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if (test_and_clear_bit(R5_Overlap, &dev->flags))
|
|
wake_up(&sh->raid_conf->wait_for_overlap);
|
|
}
|
|
put_cpu();
|
|
}
|
|
|
|
#ifdef CONFIG_MULTICORE_RAID456
|
|
static void async_run_ops(void *param, async_cookie_t cookie)
|
|
{
|
|
struct stripe_head *sh = param;
|
|
unsigned long ops_request = sh->ops.request;
|
|
|
|
clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
|
|
wake_up(&sh->ops.wait_for_ops);
|
|
|
|
__raid_run_ops(sh, ops_request);
|
|
release_stripe(sh);
|
|
}
|
|
|
|
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
|
|
{
|
|
/* since handle_stripe can be called outside of raid5d context
|
|
* we need to ensure sh->ops.request is de-staged before another
|
|
* request arrives
|
|
*/
|
|
wait_event(sh->ops.wait_for_ops,
|
|
!test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
|
|
sh->ops.request = ops_request;
|
|
|
|
atomic_inc(&sh->count);
|
|
async_schedule(async_run_ops, sh);
|
|
}
|
|
#else
|
|
#define raid_run_ops __raid_run_ops
|
|
#endif
|
|
|
|
static int grow_one_stripe(struct r5conf *conf)
|
|
{
|
|
struct stripe_head *sh;
|
|
sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
|
|
if (!sh)
|
|
return 0;
|
|
|
|
sh->raid_conf = conf;
|
|
#ifdef CONFIG_MULTICORE_RAID456
|
|
init_waitqueue_head(&sh->ops.wait_for_ops);
|
|
#endif
|
|
|
|
if (grow_buffers(sh)) {
|
|
shrink_buffers(sh);
|
|
kmem_cache_free(conf->slab_cache, sh);
|
|
return 0;
|
|
}
|
|
/* we just created an active stripe so... */
|
|
atomic_set(&sh->count, 1);
|
|
atomic_inc(&conf->active_stripes);
|
|
INIT_LIST_HEAD(&sh->lru);
|
|
release_stripe(sh);
|
|
return 1;
|
|
}
|
|
|
|
static int grow_stripes(struct r5conf *conf, int num)
|
|
{
|
|
struct kmem_cache *sc;
|
|
int devs = max(conf->raid_disks, conf->previous_raid_disks);
|
|
|
|
if (conf->mddev->gendisk)
|
|
sprintf(conf->cache_name[0],
|
|
"raid%d-%s", conf->level, mdname(conf->mddev));
|
|
else
|
|
sprintf(conf->cache_name[0],
|
|
"raid%d-%p", conf->level, conf->mddev);
|
|
sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
|
|
|
|
conf->active_name = 0;
|
|
sc = kmem_cache_create(conf->cache_name[conf->active_name],
|
|
sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
|
|
0, 0, NULL);
|
|
if (!sc)
|
|
return 1;
|
|
conf->slab_cache = sc;
|
|
conf->pool_size = devs;
|
|
while (num--)
|
|
if (!grow_one_stripe(conf))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* scribble_len - return the required size of the scribble region
|
|
* @num - total number of disks in the array
|
|
*
|
|
* The size must be enough to contain:
|
|
* 1/ a struct page pointer for each device in the array +2
|
|
* 2/ room to convert each entry in (1) to its corresponding dma
|
|
* (dma_map_page()) or page (page_address()) address.
|
|
*
|
|
* Note: the +2 is for the destination buffers of the ddf/raid6 case where we
|
|
* calculate over all devices (not just the data blocks), using zeros in place
|
|
* of the P and Q blocks.
|
|
*/
|
|
static size_t scribble_len(int num)
|
|
{
|
|
size_t len;
|
|
|
|
len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
|
|
|
|
return len;
|
|
}
|
|
|
|
static int resize_stripes(struct r5conf *conf, int newsize)
|
|
{
|
|
/* Make all the stripes able to hold 'newsize' devices.
|
|
* New slots in each stripe get 'page' set to a new page.
|
|
*
|
|
* This happens in stages:
|
|
* 1/ create a new kmem_cache and allocate the required number of
|
|
* stripe_heads.
|
|
* 2/ gather all the old stripe_heads and tranfer the pages across
|
|
* to the new stripe_heads. This will have the side effect of
|
|
* freezing the array as once all stripe_heads have been collected,
|
|
* no IO will be possible. Old stripe heads are freed once their
|
|
* pages have been transferred over, and the old kmem_cache is
|
|
* freed when all stripes are done.
|
|
* 3/ reallocate conf->disks to be suitable bigger. If this fails,
|
|
* we simple return a failre status - no need to clean anything up.
|
|
* 4/ allocate new pages for the new slots in the new stripe_heads.
|
|
* If this fails, we don't bother trying the shrink the
|
|
* stripe_heads down again, we just leave them as they are.
|
|
* As each stripe_head is processed the new one is released into
|
|
* active service.
|
|
*
|
|
* Once step2 is started, we cannot afford to wait for a write,
|
|
* so we use GFP_NOIO allocations.
|
|
*/
|
|
struct stripe_head *osh, *nsh;
|
|
LIST_HEAD(newstripes);
|
|
struct disk_info *ndisks;
|
|
unsigned long cpu;
|
|
int err;
|
|
struct kmem_cache *sc;
|
|
int i;
|
|
|
|
if (newsize <= conf->pool_size)
|
|
return 0; /* never bother to shrink */
|
|
|
|
err = md_allow_write(conf->mddev);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Step 1 */
|
|
sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
|
|
sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
|
|
0, 0, NULL);
|
|
if (!sc)
|
|
return -ENOMEM;
|
|
|
|
for (i = conf->max_nr_stripes; i; i--) {
|
|
nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
|
|
if (!nsh)
|
|
break;
|
|
|
|
nsh->raid_conf = conf;
|
|
#ifdef CONFIG_MULTICORE_RAID456
|
|
init_waitqueue_head(&nsh->ops.wait_for_ops);
|
|
#endif
|
|
|
|
list_add(&nsh->lru, &newstripes);
|
|
}
|
|
if (i) {
|
|
/* didn't get enough, give up */
|
|
while (!list_empty(&newstripes)) {
|
|
nsh = list_entry(newstripes.next, struct stripe_head, lru);
|
|
list_del(&nsh->lru);
|
|
kmem_cache_free(sc, nsh);
|
|
}
|
|
kmem_cache_destroy(sc);
|
|
return -ENOMEM;
|
|
}
|
|
/* Step 2 - Must use GFP_NOIO now.
|
|
* OK, we have enough stripes, start collecting inactive
|
|
* stripes and copying them over
|
|
*/
|
|
list_for_each_entry(nsh, &newstripes, lru) {
|
|
spin_lock_irq(&conf->device_lock);
|
|
wait_event_lock_irq(conf->wait_for_stripe,
|
|
!list_empty(&conf->inactive_list),
|
|
conf->device_lock,
|
|
);
|
|
osh = get_free_stripe(conf);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
atomic_set(&nsh->count, 1);
|
|
for(i=0; i<conf->pool_size; i++)
|
|
nsh->dev[i].page = osh->dev[i].page;
|
|
for( ; i<newsize; i++)
|
|
nsh->dev[i].page = NULL;
|
|
kmem_cache_free(conf->slab_cache, osh);
|
|
}
|
|
kmem_cache_destroy(conf->slab_cache);
|
|
|
|
/* Step 3.
|
|
* At this point, we are holding all the stripes so the array
|
|
* is completely stalled, so now is a good time to resize
|
|
* conf->disks and the scribble region
|
|
*/
|
|
ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
|
|
if (ndisks) {
|
|
for (i=0; i<conf->raid_disks; i++)
|
|
ndisks[i] = conf->disks[i];
|
|
kfree(conf->disks);
|
|
conf->disks = ndisks;
|
|
} else
|
|
err = -ENOMEM;
|
|
|
|
get_online_cpus();
|
|
conf->scribble_len = scribble_len(newsize);
|
|
for_each_present_cpu(cpu) {
|
|
struct raid5_percpu *percpu;
|
|
void *scribble;
|
|
|
|
percpu = per_cpu_ptr(conf->percpu, cpu);
|
|
scribble = kmalloc(conf->scribble_len, GFP_NOIO);
|
|
|
|
if (scribble) {
|
|
kfree(percpu->scribble);
|
|
percpu->scribble = scribble;
|
|
} else {
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
}
|
|
put_online_cpus();
|
|
|
|
/* Step 4, return new stripes to service */
|
|
while(!list_empty(&newstripes)) {
|
|
nsh = list_entry(newstripes.next, struct stripe_head, lru);
|
|
list_del_init(&nsh->lru);
|
|
|
|
for (i=conf->raid_disks; i < newsize; i++)
|
|
if (nsh->dev[i].page == NULL) {
|
|
struct page *p = alloc_page(GFP_NOIO);
|
|
nsh->dev[i].page = p;
|
|
if (!p)
|
|
err = -ENOMEM;
|
|
}
|
|
release_stripe(nsh);
|
|
}
|
|
/* critical section pass, GFP_NOIO no longer needed */
|
|
|
|
conf->slab_cache = sc;
|
|
conf->active_name = 1-conf->active_name;
|
|
conf->pool_size = newsize;
|
|
return err;
|
|
}
|
|
|
|
static int drop_one_stripe(struct r5conf *conf)
|
|
{
|
|
struct stripe_head *sh;
|
|
|
|
spin_lock_irq(&conf->device_lock);
|
|
sh = get_free_stripe(conf);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
if (!sh)
|
|
return 0;
|
|
BUG_ON(atomic_read(&sh->count));
|
|
shrink_buffers(sh);
|
|
kmem_cache_free(conf->slab_cache, sh);
|
|
atomic_dec(&conf->active_stripes);
|
|
return 1;
|
|
}
|
|
|
|
static void shrink_stripes(struct r5conf *conf)
|
|
{
|
|
while (drop_one_stripe(conf))
|
|
;
|
|
|
|
if (conf->slab_cache)
|
|
kmem_cache_destroy(conf->slab_cache);
|
|
conf->slab_cache = NULL;
|
|
}
|
|
|
|
static void raid5_end_read_request(struct bio * bi, int error)
|
|
{
|
|
struct stripe_head *sh = bi->bi_private;
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int disks = sh->disks, i;
|
|
int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
|
|
char b[BDEVNAME_SIZE];
|
|
struct md_rdev *rdev;
|
|
|
|
|
|
for (i=0 ; i<disks; i++)
|
|
if (bi == &sh->dev[i].req)
|
|
break;
|
|
|
|
pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
|
|
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
|
|
uptodate);
|
|
if (i == disks) {
|
|
BUG();
|
|
return;
|
|
}
|
|
|
|
if (uptodate) {
|
|
set_bit(R5_UPTODATE, &sh->dev[i].flags);
|
|
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
|
|
rdev = conf->disks[i].rdev;
|
|
printk_ratelimited(
|
|
KERN_INFO
|
|
"md/raid:%s: read error corrected"
|
|
" (%lu sectors at %llu on %s)\n",
|
|
mdname(conf->mddev), STRIPE_SECTORS,
|
|
(unsigned long long)(sh->sector
|
|
+ rdev->data_offset),
|
|
bdevname(rdev->bdev, b));
|
|
atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
|
|
clear_bit(R5_ReadError, &sh->dev[i].flags);
|
|
clear_bit(R5_ReWrite, &sh->dev[i].flags);
|
|
}
|
|
if (atomic_read(&conf->disks[i].rdev->read_errors))
|
|
atomic_set(&conf->disks[i].rdev->read_errors, 0);
|
|
} else {
|
|
const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
|
|
int retry = 0;
|
|
rdev = conf->disks[i].rdev;
|
|
|
|
clear_bit(R5_UPTODATE, &sh->dev[i].flags);
|
|
atomic_inc(&rdev->read_errors);
|
|
if (conf->mddev->degraded >= conf->max_degraded)
|
|
printk_ratelimited(
|
|
KERN_WARNING
|
|
"md/raid:%s: read error not correctable "
|
|
"(sector %llu on %s).\n",
|
|
mdname(conf->mddev),
|
|
(unsigned long long)(sh->sector
|
|
+ rdev->data_offset),
|
|
bdn);
|
|
else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
|
|
/* Oh, no!!! */
|
|
printk_ratelimited(
|
|
KERN_WARNING
|
|
"md/raid:%s: read error NOT corrected!! "
|
|
"(sector %llu on %s).\n",
|
|
mdname(conf->mddev),
|
|
(unsigned long long)(sh->sector
|
|
+ rdev->data_offset),
|
|
bdn);
|
|
else if (atomic_read(&rdev->read_errors)
|
|
> conf->max_nr_stripes)
|
|
printk(KERN_WARNING
|
|
"md/raid:%s: Too many read errors, failing device %s.\n",
|
|
mdname(conf->mddev), bdn);
|
|
else
|
|
retry = 1;
|
|
if (retry)
|
|
set_bit(R5_ReadError, &sh->dev[i].flags);
|
|
else {
|
|
clear_bit(R5_ReadError, &sh->dev[i].flags);
|
|
clear_bit(R5_ReWrite, &sh->dev[i].flags);
|
|
md_error(conf->mddev, rdev);
|
|
}
|
|
}
|
|
rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
|
|
clear_bit(R5_LOCKED, &sh->dev[i].flags);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
release_stripe(sh);
|
|
}
|
|
|
|
static void raid5_end_write_request(struct bio *bi, int error)
|
|
{
|
|
struct stripe_head *sh = bi->bi_private;
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int disks = sh->disks, i;
|
|
int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
|
|
for (i=0 ; i<disks; i++)
|
|
if (bi == &sh->dev[i].req)
|
|
break;
|
|
|
|
pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
|
|
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
|
|
uptodate);
|
|
if (i == disks) {
|
|
BUG();
|
|
return;
|
|
}
|
|
|
|
if (!uptodate) {
|
|
set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
|
|
set_bit(R5_WriteError, &sh->dev[i].flags);
|
|
} else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
|
|
&first_bad, &bad_sectors))
|
|
set_bit(R5_MadeGood, &sh->dev[i].flags);
|
|
|
|
rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
|
|
|
|
clear_bit(R5_LOCKED, &sh->dev[i].flags);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
release_stripe(sh);
|
|
}
|
|
|
|
|
|
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
|
|
|
|
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
|
|
{
|
|
struct r5dev *dev = &sh->dev[i];
|
|
|
|
bio_init(&dev->req);
|
|
dev->req.bi_io_vec = &dev->vec;
|
|
dev->req.bi_vcnt++;
|
|
dev->req.bi_max_vecs++;
|
|
dev->vec.bv_page = dev->page;
|
|
dev->vec.bv_len = STRIPE_SIZE;
|
|
dev->vec.bv_offset = 0;
|
|
|
|
dev->req.bi_sector = sh->sector;
|
|
dev->req.bi_private = sh;
|
|
|
|
dev->flags = 0;
|
|
dev->sector = compute_blocknr(sh, i, previous);
|
|
}
|
|
|
|
static void error(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
char b[BDEVNAME_SIZE];
|
|
struct r5conf *conf = mddev->private;
|
|
pr_debug("raid456: error called\n");
|
|
|
|
if (test_and_clear_bit(In_sync, &rdev->flags)) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
mddev->degraded++;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
/*
|
|
* if recovery was running, make sure it aborts.
|
|
*/
|
|
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
|
|
}
|
|
set_bit(Blocked, &rdev->flags);
|
|
set_bit(Faulty, &rdev->flags);
|
|
set_bit(MD_CHANGE_DEVS, &mddev->flags);
|
|
printk(KERN_ALERT
|
|
"md/raid:%s: Disk failure on %s, disabling device.\n"
|
|
"md/raid:%s: Operation continuing on %d devices.\n",
|
|
mdname(mddev),
|
|
bdevname(rdev->bdev, b),
|
|
mdname(mddev),
|
|
conf->raid_disks - mddev->degraded);
|
|
}
|
|
|
|
/*
|
|
* Input: a 'big' sector number,
|
|
* Output: index of the data and parity disk, and the sector # in them.
|
|
*/
|
|
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
|
|
int previous, int *dd_idx,
|
|
struct stripe_head *sh)
|
|
{
|
|
sector_t stripe, stripe2;
|
|
sector_t chunk_number;
|
|
unsigned int chunk_offset;
|
|
int pd_idx, qd_idx;
|
|
int ddf_layout = 0;
|
|
sector_t new_sector;
|
|
int algorithm = previous ? conf->prev_algo
|
|
: conf->algorithm;
|
|
int sectors_per_chunk = previous ? conf->prev_chunk_sectors
|
|
: conf->chunk_sectors;
|
|
int raid_disks = previous ? conf->previous_raid_disks
|
|
: conf->raid_disks;
|
|
int data_disks = raid_disks - conf->max_degraded;
|
|
|
|
/* First compute the information on this sector */
|
|
|
|
/*
|
|
* Compute the chunk number and the sector offset inside the chunk
|
|
*/
|
|
chunk_offset = sector_div(r_sector, sectors_per_chunk);
|
|
chunk_number = r_sector;
|
|
|
|
/*
|
|
* Compute the stripe number
|
|
*/
|
|
stripe = chunk_number;
|
|
*dd_idx = sector_div(stripe, data_disks);
|
|
stripe2 = stripe;
|
|
/*
|
|
* Select the parity disk based on the user selected algorithm.
|
|
*/
|
|
pd_idx = qd_idx = -1;
|
|
switch(conf->level) {
|
|
case 4:
|
|
pd_idx = data_disks;
|
|
break;
|
|
case 5:
|
|
switch (algorithm) {
|
|
case ALGORITHM_LEFT_ASYMMETRIC:
|
|
pd_idx = data_disks - sector_div(stripe2, raid_disks);
|
|
if (*dd_idx >= pd_idx)
|
|
(*dd_idx)++;
|
|
break;
|
|
case ALGORITHM_RIGHT_ASYMMETRIC:
|
|
pd_idx = sector_div(stripe2, raid_disks);
|
|
if (*dd_idx >= pd_idx)
|
|
(*dd_idx)++;
|
|
break;
|
|
case ALGORITHM_LEFT_SYMMETRIC:
|
|
pd_idx = data_disks - sector_div(stripe2, raid_disks);
|
|
*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
|
|
break;
|
|
case ALGORITHM_RIGHT_SYMMETRIC:
|
|
pd_idx = sector_div(stripe2, raid_disks);
|
|
*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
|
|
break;
|
|
case ALGORITHM_PARITY_0:
|
|
pd_idx = 0;
|
|
(*dd_idx)++;
|
|
break;
|
|
case ALGORITHM_PARITY_N:
|
|
pd_idx = data_disks;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
break;
|
|
case 6:
|
|
|
|
switch (algorithm) {
|
|
case ALGORITHM_LEFT_ASYMMETRIC:
|
|
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
|
|
qd_idx = pd_idx + 1;
|
|
if (pd_idx == raid_disks-1) {
|
|
(*dd_idx)++; /* Q D D D P */
|
|
qd_idx = 0;
|
|
} else if (*dd_idx >= pd_idx)
|
|
(*dd_idx) += 2; /* D D P Q D */
|
|
break;
|
|
case ALGORITHM_RIGHT_ASYMMETRIC:
|
|
pd_idx = sector_div(stripe2, raid_disks);
|
|
qd_idx = pd_idx + 1;
|
|
if (pd_idx == raid_disks-1) {
|
|
(*dd_idx)++; /* Q D D D P */
|
|
qd_idx = 0;
|
|
} else if (*dd_idx >= pd_idx)
|
|
(*dd_idx) += 2; /* D D P Q D */
|
|
break;
|
|
case ALGORITHM_LEFT_SYMMETRIC:
|
|
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
|
|
qd_idx = (pd_idx + 1) % raid_disks;
|
|
*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
|
|
break;
|
|
case ALGORITHM_RIGHT_SYMMETRIC:
|
|
pd_idx = sector_div(stripe2, raid_disks);
|
|
qd_idx = (pd_idx + 1) % raid_disks;
|
|
*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
|
|
break;
|
|
|
|
case ALGORITHM_PARITY_0:
|
|
pd_idx = 0;
|
|
qd_idx = 1;
|
|
(*dd_idx) += 2;
|
|
break;
|
|
case ALGORITHM_PARITY_N:
|
|
pd_idx = data_disks;
|
|
qd_idx = data_disks + 1;
|
|
break;
|
|
|
|
case ALGORITHM_ROTATING_ZERO_RESTART:
|
|
/* Exactly the same as RIGHT_ASYMMETRIC, but or
|
|
* of blocks for computing Q is different.
|
|
*/
|
|
pd_idx = sector_div(stripe2, raid_disks);
|
|
qd_idx = pd_idx + 1;
|
|
if (pd_idx == raid_disks-1) {
|
|
(*dd_idx)++; /* Q D D D P */
|
|
qd_idx = 0;
|
|
} else if (*dd_idx >= pd_idx)
|
|
(*dd_idx) += 2; /* D D P Q D */
|
|
ddf_layout = 1;
|
|
break;
|
|
|
|
case ALGORITHM_ROTATING_N_RESTART:
|
|
/* Same a left_asymmetric, by first stripe is
|
|
* D D D P Q rather than
|
|
* Q D D D P
|
|
*/
|
|
stripe2 += 1;
|
|
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
|
|
qd_idx = pd_idx + 1;
|
|
if (pd_idx == raid_disks-1) {
|
|
(*dd_idx)++; /* Q D D D P */
|
|
qd_idx = 0;
|
|
} else if (*dd_idx >= pd_idx)
|
|
(*dd_idx) += 2; /* D D P Q D */
|
|
ddf_layout = 1;
|
|
break;
|
|
|
|
case ALGORITHM_ROTATING_N_CONTINUE:
|
|
/* Same as left_symmetric but Q is before P */
|
|
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
|
|
qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
|
|
*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
|
|
ddf_layout = 1;
|
|
break;
|
|
|
|
case ALGORITHM_LEFT_ASYMMETRIC_6:
|
|
/* RAID5 left_asymmetric, with Q on last device */
|
|
pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
|
|
if (*dd_idx >= pd_idx)
|
|
(*dd_idx)++;
|
|
qd_idx = raid_disks - 1;
|
|
break;
|
|
|
|
case ALGORITHM_RIGHT_ASYMMETRIC_6:
|
|
pd_idx = sector_div(stripe2, raid_disks-1);
|
|
if (*dd_idx >= pd_idx)
|
|
(*dd_idx)++;
|
|
qd_idx = raid_disks - 1;
|
|
break;
|
|
|
|
case ALGORITHM_LEFT_SYMMETRIC_6:
|
|
pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
|
|
*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
|
|
qd_idx = raid_disks - 1;
|
|
break;
|
|
|
|
case ALGORITHM_RIGHT_SYMMETRIC_6:
|
|
pd_idx = sector_div(stripe2, raid_disks-1);
|
|
*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
|
|
qd_idx = raid_disks - 1;
|
|
break;
|
|
|
|
case ALGORITHM_PARITY_0_6:
|
|
pd_idx = 0;
|
|
(*dd_idx)++;
|
|
qd_idx = raid_disks - 1;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (sh) {
|
|
sh->pd_idx = pd_idx;
|
|
sh->qd_idx = qd_idx;
|
|
sh->ddf_layout = ddf_layout;
|
|
}
|
|
/*
|
|
* Finally, compute the new sector number
|
|
*/
|
|
new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
|
|
return new_sector;
|
|
}
|
|
|
|
|
|
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
|
|
{
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int raid_disks = sh->disks;
|
|
int data_disks = raid_disks - conf->max_degraded;
|
|
sector_t new_sector = sh->sector, check;
|
|
int sectors_per_chunk = previous ? conf->prev_chunk_sectors
|
|
: conf->chunk_sectors;
|
|
int algorithm = previous ? conf->prev_algo
|
|
: conf->algorithm;
|
|
sector_t stripe;
|
|
int chunk_offset;
|
|
sector_t chunk_number;
|
|
int dummy1, dd_idx = i;
|
|
sector_t r_sector;
|
|
struct stripe_head sh2;
|
|
|
|
|
|
chunk_offset = sector_div(new_sector, sectors_per_chunk);
|
|
stripe = new_sector;
|
|
|
|
if (i == sh->pd_idx)
|
|
return 0;
|
|
switch(conf->level) {
|
|
case 4: break;
|
|
case 5:
|
|
switch (algorithm) {
|
|
case ALGORITHM_LEFT_ASYMMETRIC:
|
|
case ALGORITHM_RIGHT_ASYMMETRIC:
|
|
if (i > sh->pd_idx)
|
|
i--;
|
|
break;
|
|
case ALGORITHM_LEFT_SYMMETRIC:
|
|
case ALGORITHM_RIGHT_SYMMETRIC:
|
|
if (i < sh->pd_idx)
|
|
i += raid_disks;
|
|
i -= (sh->pd_idx + 1);
|
|
break;
|
|
case ALGORITHM_PARITY_0:
|
|
i -= 1;
|
|
break;
|
|
case ALGORITHM_PARITY_N:
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
break;
|
|
case 6:
|
|
if (i == sh->qd_idx)
|
|
return 0; /* It is the Q disk */
|
|
switch (algorithm) {
|
|
case ALGORITHM_LEFT_ASYMMETRIC:
|
|
case ALGORITHM_RIGHT_ASYMMETRIC:
|
|
case ALGORITHM_ROTATING_ZERO_RESTART:
|
|
case ALGORITHM_ROTATING_N_RESTART:
|
|
if (sh->pd_idx == raid_disks-1)
|
|
i--; /* Q D D D P */
|
|
else if (i > sh->pd_idx)
|
|
i -= 2; /* D D P Q D */
|
|
break;
|
|
case ALGORITHM_LEFT_SYMMETRIC:
|
|
case ALGORITHM_RIGHT_SYMMETRIC:
|
|
if (sh->pd_idx == raid_disks-1)
|
|
i--; /* Q D D D P */
|
|
else {
|
|
/* D D P Q D */
|
|
if (i < sh->pd_idx)
|
|
i += raid_disks;
|
|
i -= (sh->pd_idx + 2);
|
|
}
|
|
break;
|
|
case ALGORITHM_PARITY_0:
|
|
i -= 2;
|
|
break;
|
|
case ALGORITHM_PARITY_N:
|
|
break;
|
|
case ALGORITHM_ROTATING_N_CONTINUE:
|
|
/* Like left_symmetric, but P is before Q */
|
|
if (sh->pd_idx == 0)
|
|
i--; /* P D D D Q */
|
|
else {
|
|
/* D D Q P D */
|
|
if (i < sh->pd_idx)
|
|
i += raid_disks;
|
|
i -= (sh->pd_idx + 1);
|
|
}
|
|
break;
|
|
case ALGORITHM_LEFT_ASYMMETRIC_6:
|
|
case ALGORITHM_RIGHT_ASYMMETRIC_6:
|
|
if (i > sh->pd_idx)
|
|
i--;
|
|
break;
|
|
case ALGORITHM_LEFT_SYMMETRIC_6:
|
|
case ALGORITHM_RIGHT_SYMMETRIC_6:
|
|
if (i < sh->pd_idx)
|
|
i += data_disks + 1;
|
|
i -= (sh->pd_idx + 1);
|
|
break;
|
|
case ALGORITHM_PARITY_0_6:
|
|
i -= 1;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
break;
|
|
}
|
|
|
|
chunk_number = stripe * data_disks + i;
|
|
r_sector = chunk_number * sectors_per_chunk + chunk_offset;
|
|
|
|
check = raid5_compute_sector(conf, r_sector,
|
|
previous, &dummy1, &sh2);
|
|
if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
|
|
|| sh2.qd_idx != sh->qd_idx) {
|
|
printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
|
|
mdname(conf->mddev));
|
|
return 0;
|
|
}
|
|
return r_sector;
|
|
}
|
|
|
|
|
|
static void
|
|
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
|
|
int rcw, int expand)
|
|
{
|
|
int i, pd_idx = sh->pd_idx, disks = sh->disks;
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int level = conf->level;
|
|
|
|
if (rcw) {
|
|
/* if we are not expanding this is a proper write request, and
|
|
* there will be bios with new data to be drained into the
|
|
* stripe cache
|
|
*/
|
|
if (!expand) {
|
|
sh->reconstruct_state = reconstruct_state_drain_run;
|
|
set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
|
|
} else
|
|
sh->reconstruct_state = reconstruct_state_run;
|
|
|
|
set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
|
|
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
|
|
if (dev->towrite) {
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
set_bit(R5_Wantdrain, &dev->flags);
|
|
if (!expand)
|
|
clear_bit(R5_UPTODATE, &dev->flags);
|
|
s->locked++;
|
|
}
|
|
}
|
|
if (s->locked + conf->max_degraded == disks)
|
|
if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
|
|
atomic_inc(&conf->pending_full_writes);
|
|
} else {
|
|
BUG_ON(level == 6);
|
|
BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
|
|
test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
|
|
|
|
sh->reconstruct_state = reconstruct_state_prexor_drain_run;
|
|
set_bit(STRIPE_OP_PREXOR, &s->ops_request);
|
|
set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
|
|
set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
|
|
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if (i == pd_idx)
|
|
continue;
|
|
|
|
if (dev->towrite &&
|
|
(test_bit(R5_UPTODATE, &dev->flags) ||
|
|
test_bit(R5_Wantcompute, &dev->flags))) {
|
|
set_bit(R5_Wantdrain, &dev->flags);
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
clear_bit(R5_UPTODATE, &dev->flags);
|
|
s->locked++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* keep the parity disk(s) locked while asynchronous operations
|
|
* are in flight
|
|
*/
|
|
set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
|
|
clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
|
|
s->locked++;
|
|
|
|
if (level == 6) {
|
|
int qd_idx = sh->qd_idx;
|
|
struct r5dev *dev = &sh->dev[qd_idx];
|
|
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
clear_bit(R5_UPTODATE, &dev->flags);
|
|
s->locked++;
|
|
}
|
|
|
|
pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
|
|
__func__, (unsigned long long)sh->sector,
|
|
s->locked, s->ops_request);
|
|
}
|
|
|
|
/*
|
|
* Each stripe/dev can have one or more bion attached.
|
|
* toread/towrite point to the first in a chain.
|
|
* The bi_next chain must be in order.
|
|
*/
|
|
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
|
|
{
|
|
struct bio **bip;
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int firstwrite=0;
|
|
|
|
pr_debug("adding bi b#%llu to stripe s#%llu\n",
|
|
(unsigned long long)bi->bi_sector,
|
|
(unsigned long long)sh->sector);
|
|
|
|
|
|
spin_lock_irq(&conf->device_lock);
|
|
if (forwrite) {
|
|
bip = &sh->dev[dd_idx].towrite;
|
|
if (*bip == NULL && sh->dev[dd_idx].written == NULL)
|
|
firstwrite = 1;
|
|
} else
|
|
bip = &sh->dev[dd_idx].toread;
|
|
while (*bip && (*bip)->bi_sector < bi->bi_sector) {
|
|
if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
|
|
goto overlap;
|
|
bip = & (*bip)->bi_next;
|
|
}
|
|
if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
|
|
goto overlap;
|
|
|
|
BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
|
|
if (*bip)
|
|
bi->bi_next = *bip;
|
|
*bip = bi;
|
|
bi->bi_phys_segments++;
|
|
|
|
if (forwrite) {
|
|
/* check if page is covered */
|
|
sector_t sector = sh->dev[dd_idx].sector;
|
|
for (bi=sh->dev[dd_idx].towrite;
|
|
sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
|
|
bi && bi->bi_sector <= sector;
|
|
bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
|
|
if (bi->bi_sector + (bi->bi_size>>9) >= sector)
|
|
sector = bi->bi_sector + (bi->bi_size>>9);
|
|
}
|
|
if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
|
|
set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
|
|
}
|
|
spin_unlock_irq(&conf->device_lock);
|
|
|
|
pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
|
|
(unsigned long long)(*bip)->bi_sector,
|
|
(unsigned long long)sh->sector, dd_idx);
|
|
|
|
if (conf->mddev->bitmap && firstwrite) {
|
|
bitmap_startwrite(conf->mddev->bitmap, sh->sector,
|
|
STRIPE_SECTORS, 0);
|
|
sh->bm_seq = conf->seq_flush+1;
|
|
set_bit(STRIPE_BIT_DELAY, &sh->state);
|
|
}
|
|
return 1;
|
|
|
|
overlap:
|
|
set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void end_reshape(struct r5conf *conf);
|
|
|
|
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
|
|
struct stripe_head *sh)
|
|
{
|
|
int sectors_per_chunk =
|
|
previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
|
|
int dd_idx;
|
|
int chunk_offset = sector_div(stripe, sectors_per_chunk);
|
|
int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
|
|
|
|
raid5_compute_sector(conf,
|
|
stripe * (disks - conf->max_degraded)
|
|
*sectors_per_chunk + chunk_offset,
|
|
previous,
|
|
&dd_idx, sh);
|
|
}
|
|
|
|
static void
|
|
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
|
|
struct stripe_head_state *s, int disks,
|
|
struct bio **return_bi)
|
|
{
|
|
int i;
|
|
for (i = disks; i--; ) {
|
|
struct bio *bi;
|
|
int bitmap_end = 0;
|
|
|
|
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
|
|
struct md_rdev *rdev;
|
|
rcu_read_lock();
|
|
rdev = rcu_dereference(conf->disks[i].rdev);
|
|
if (rdev && test_bit(In_sync, &rdev->flags))
|
|
atomic_inc(&rdev->nr_pending);
|
|
else
|
|
rdev = NULL;
|
|
rcu_read_unlock();
|
|
if (rdev) {
|
|
if (!rdev_set_badblocks(
|
|
rdev,
|
|
sh->sector,
|
|
STRIPE_SECTORS, 0))
|
|
md_error(conf->mddev, rdev);
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
}
|
|
}
|
|
spin_lock_irq(&conf->device_lock);
|
|
/* fail all writes first */
|
|
bi = sh->dev[i].towrite;
|
|
sh->dev[i].towrite = NULL;
|
|
if (bi) {
|
|
s->to_write--;
|
|
bitmap_end = 1;
|
|
}
|
|
|
|
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
|
|
wake_up(&conf->wait_for_overlap);
|
|
|
|
while (bi && bi->bi_sector <
|
|
sh->dev[i].sector + STRIPE_SECTORS) {
|
|
struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
|
|
clear_bit(BIO_UPTODATE, &bi->bi_flags);
|
|
if (!raid5_dec_bi_phys_segments(bi)) {
|
|
md_write_end(conf->mddev);
|
|
bi->bi_next = *return_bi;
|
|
*return_bi = bi;
|
|
}
|
|
bi = nextbi;
|
|
}
|
|
/* and fail all 'written' */
|
|
bi = sh->dev[i].written;
|
|
sh->dev[i].written = NULL;
|
|
if (bi) bitmap_end = 1;
|
|
while (bi && bi->bi_sector <
|
|
sh->dev[i].sector + STRIPE_SECTORS) {
|
|
struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
|
|
clear_bit(BIO_UPTODATE, &bi->bi_flags);
|
|
if (!raid5_dec_bi_phys_segments(bi)) {
|
|
md_write_end(conf->mddev);
|
|
bi->bi_next = *return_bi;
|
|
*return_bi = bi;
|
|
}
|
|
bi = bi2;
|
|
}
|
|
|
|
/* fail any reads if this device is non-operational and
|
|
* the data has not reached the cache yet.
|
|
*/
|
|
if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
|
|
(!test_bit(R5_Insync, &sh->dev[i].flags) ||
|
|
test_bit(R5_ReadError, &sh->dev[i].flags))) {
|
|
bi = sh->dev[i].toread;
|
|
sh->dev[i].toread = NULL;
|
|
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
|
|
wake_up(&conf->wait_for_overlap);
|
|
if (bi) s->to_read--;
|
|
while (bi && bi->bi_sector <
|
|
sh->dev[i].sector + STRIPE_SECTORS) {
|
|
struct bio *nextbi =
|
|
r5_next_bio(bi, sh->dev[i].sector);
|
|
clear_bit(BIO_UPTODATE, &bi->bi_flags);
|
|
if (!raid5_dec_bi_phys_segments(bi)) {
|
|
bi->bi_next = *return_bi;
|
|
*return_bi = bi;
|
|
}
|
|
bi = nextbi;
|
|
}
|
|
}
|
|
spin_unlock_irq(&conf->device_lock);
|
|
if (bitmap_end)
|
|
bitmap_endwrite(conf->mddev->bitmap, sh->sector,
|
|
STRIPE_SECTORS, 0, 0);
|
|
/* If we were in the middle of a write the parity block might
|
|
* still be locked - so just clear all R5_LOCKED flags
|
|
*/
|
|
clear_bit(R5_LOCKED, &sh->dev[i].flags);
|
|
}
|
|
|
|
if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
|
|
if (atomic_dec_and_test(&conf->pending_full_writes))
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
}
|
|
|
|
static void
|
|
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
|
|
struct stripe_head_state *s)
|
|
{
|
|
int abort = 0;
|
|
int i;
|
|
|
|
md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
|
|
clear_bit(STRIPE_SYNCING, &sh->state);
|
|
s->syncing = 0;
|
|
/* There is nothing more to do for sync/check/repair.
|
|
* For recover we need to record a bad block on all
|
|
* non-sync devices, or abort the recovery
|
|
*/
|
|
if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
|
|
return;
|
|
/* During recovery devices cannot be removed, so locking and
|
|
* refcounting of rdevs is not needed
|
|
*/
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
struct md_rdev *rdev = conf->disks[i].rdev;
|
|
if (!rdev
|
|
|| test_bit(Faulty, &rdev->flags)
|
|
|| test_bit(In_sync, &rdev->flags))
|
|
continue;
|
|
if (!rdev_set_badblocks(rdev, sh->sector,
|
|
STRIPE_SECTORS, 0))
|
|
abort = 1;
|
|
}
|
|
if (abort) {
|
|
conf->recovery_disabled = conf->mddev->recovery_disabled;
|
|
set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
|
|
}
|
|
}
|
|
|
|
/* fetch_block - checks the given member device to see if its data needs
|
|
* to be read or computed to satisfy a request.
|
|
*
|
|
* Returns 1 when no more member devices need to be checked, otherwise returns
|
|
* 0 to tell the loop in handle_stripe_fill to continue
|
|
*/
|
|
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
|
|
int disk_idx, int disks)
|
|
{
|
|
struct r5dev *dev = &sh->dev[disk_idx];
|
|
struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
|
|
&sh->dev[s->failed_num[1]] };
|
|
|
|
/* is the data in this block needed, and can we get it? */
|
|
if (!test_bit(R5_LOCKED, &dev->flags) &&
|
|
!test_bit(R5_UPTODATE, &dev->flags) &&
|
|
(dev->toread ||
|
|
(dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
|
|
s->syncing || s->expanding ||
|
|
(s->failed >= 1 && fdev[0]->toread) ||
|
|
(s->failed >= 2 && fdev[1]->toread) ||
|
|
(sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
|
|
!test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
|
|
(sh->raid_conf->level == 6 && s->failed && s->to_write))) {
|
|
/* we would like to get this block, possibly by computing it,
|
|
* otherwise read it if the backing disk is insync
|
|
*/
|
|
BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
|
|
BUG_ON(test_bit(R5_Wantread, &dev->flags));
|
|
if ((s->uptodate == disks - 1) &&
|
|
(s->failed && (disk_idx == s->failed_num[0] ||
|
|
disk_idx == s->failed_num[1]))) {
|
|
/* have disk failed, and we're requested to fetch it;
|
|
* do compute it
|
|
*/
|
|
pr_debug("Computing stripe %llu block %d\n",
|
|
(unsigned long long)sh->sector, disk_idx);
|
|
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
|
|
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
|
|
set_bit(R5_Wantcompute, &dev->flags);
|
|
sh->ops.target = disk_idx;
|
|
sh->ops.target2 = -1; /* no 2nd target */
|
|
s->req_compute = 1;
|
|
/* Careful: from this point on 'uptodate' is in the eye
|
|
* of raid_run_ops which services 'compute' operations
|
|
* before writes. R5_Wantcompute flags a block that will
|
|
* be R5_UPTODATE by the time it is needed for a
|
|
* subsequent operation.
|
|
*/
|
|
s->uptodate++;
|
|
return 1;
|
|
} else if (s->uptodate == disks-2 && s->failed >= 2) {
|
|
/* Computing 2-failure is *very* expensive; only
|
|
* do it if failed >= 2
|
|
*/
|
|
int other;
|
|
for (other = disks; other--; ) {
|
|
if (other == disk_idx)
|
|
continue;
|
|
if (!test_bit(R5_UPTODATE,
|
|
&sh->dev[other].flags))
|
|
break;
|
|
}
|
|
BUG_ON(other < 0);
|
|
pr_debug("Computing stripe %llu blocks %d,%d\n",
|
|
(unsigned long long)sh->sector,
|
|
disk_idx, other);
|
|
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
|
|
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
|
|
set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
|
|
set_bit(R5_Wantcompute, &sh->dev[other].flags);
|
|
sh->ops.target = disk_idx;
|
|
sh->ops.target2 = other;
|
|
s->uptodate += 2;
|
|
s->req_compute = 1;
|
|
return 1;
|
|
} else if (test_bit(R5_Insync, &dev->flags)) {
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
set_bit(R5_Wantread, &dev->flags);
|
|
s->locked++;
|
|
pr_debug("Reading block %d (sync=%d)\n",
|
|
disk_idx, s->syncing);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* handle_stripe_fill - read or compute data to satisfy pending requests.
|
|
*/
|
|
static void handle_stripe_fill(struct stripe_head *sh,
|
|
struct stripe_head_state *s,
|
|
int disks)
|
|
{
|
|
int i;
|
|
|
|
/* look for blocks to read/compute, skip this if a compute
|
|
* is already in flight, or if the stripe contents are in the
|
|
* midst of changing due to a write
|
|
*/
|
|
if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
|
|
!sh->reconstruct_state)
|
|
for (i = disks; i--; )
|
|
if (fetch_block(sh, s, i, disks))
|
|
break;
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
}
|
|
|
|
|
|
/* handle_stripe_clean_event
|
|
* any written block on an uptodate or failed drive can be returned.
|
|
* Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
|
|
* never LOCKED, so we don't need to test 'failed' directly.
|
|
*/
|
|
static void handle_stripe_clean_event(struct r5conf *conf,
|
|
struct stripe_head *sh, int disks, struct bio **return_bi)
|
|
{
|
|
int i;
|
|
struct r5dev *dev;
|
|
|
|
for (i = disks; i--; )
|
|
if (sh->dev[i].written) {
|
|
dev = &sh->dev[i];
|
|
if (!test_bit(R5_LOCKED, &dev->flags) &&
|
|
test_bit(R5_UPTODATE, &dev->flags)) {
|
|
/* We can return any write requests */
|
|
struct bio *wbi, *wbi2;
|
|
int bitmap_end = 0;
|
|
pr_debug("Return write for disc %d\n", i);
|
|
spin_lock_irq(&conf->device_lock);
|
|
wbi = dev->written;
|
|
dev->written = NULL;
|
|
while (wbi && wbi->bi_sector <
|
|
dev->sector + STRIPE_SECTORS) {
|
|
wbi2 = r5_next_bio(wbi, dev->sector);
|
|
if (!raid5_dec_bi_phys_segments(wbi)) {
|
|
md_write_end(conf->mddev);
|
|
wbi->bi_next = *return_bi;
|
|
*return_bi = wbi;
|
|
}
|
|
wbi = wbi2;
|
|
}
|
|
if (dev->towrite == NULL)
|
|
bitmap_end = 1;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
if (bitmap_end)
|
|
bitmap_endwrite(conf->mddev->bitmap,
|
|
sh->sector,
|
|
STRIPE_SECTORS,
|
|
!test_bit(STRIPE_DEGRADED, &sh->state),
|
|
0);
|
|
}
|
|
}
|
|
|
|
if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
|
|
if (atomic_dec_and_test(&conf->pending_full_writes))
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
}
|
|
|
|
static void handle_stripe_dirtying(struct r5conf *conf,
|
|
struct stripe_head *sh,
|
|
struct stripe_head_state *s,
|
|
int disks)
|
|
{
|
|
int rmw = 0, rcw = 0, i;
|
|
if (conf->max_degraded == 2) {
|
|
/* RAID6 requires 'rcw' in current implementation
|
|
* Calculate the real rcw later - for now fake it
|
|
* look like rcw is cheaper
|
|
*/
|
|
rcw = 1; rmw = 2;
|
|
} else for (i = disks; i--; ) {
|
|
/* would I have to read this buffer for read_modify_write */
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if ((dev->towrite || i == sh->pd_idx) &&
|
|
!test_bit(R5_LOCKED, &dev->flags) &&
|
|
!(test_bit(R5_UPTODATE, &dev->flags) ||
|
|
test_bit(R5_Wantcompute, &dev->flags))) {
|
|
if (test_bit(R5_Insync, &dev->flags))
|
|
rmw++;
|
|
else
|
|
rmw += 2*disks; /* cannot read it */
|
|
}
|
|
/* Would I have to read this buffer for reconstruct_write */
|
|
if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
|
|
!test_bit(R5_LOCKED, &dev->flags) &&
|
|
!(test_bit(R5_UPTODATE, &dev->flags) ||
|
|
test_bit(R5_Wantcompute, &dev->flags))) {
|
|
if (test_bit(R5_Insync, &dev->flags)) rcw++;
|
|
else
|
|
rcw += 2*disks;
|
|
}
|
|
}
|
|
pr_debug("for sector %llu, rmw=%d rcw=%d\n",
|
|
(unsigned long long)sh->sector, rmw, rcw);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
if (rmw < rcw && rmw > 0)
|
|
/* prefer read-modify-write, but need to get some data */
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if ((dev->towrite || i == sh->pd_idx) &&
|
|
!test_bit(R5_LOCKED, &dev->flags) &&
|
|
!(test_bit(R5_UPTODATE, &dev->flags) ||
|
|
test_bit(R5_Wantcompute, &dev->flags)) &&
|
|
test_bit(R5_Insync, &dev->flags)) {
|
|
if (
|
|
test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
|
|
pr_debug("Read_old block "
|
|
"%d for r-m-w\n", i);
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
set_bit(R5_Wantread, &dev->flags);
|
|
s->locked++;
|
|
} else {
|
|
set_bit(STRIPE_DELAYED, &sh->state);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
}
|
|
}
|
|
}
|
|
if (rcw <= rmw && rcw > 0) {
|
|
/* want reconstruct write, but need to get some data */
|
|
rcw = 0;
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if (!test_bit(R5_OVERWRITE, &dev->flags) &&
|
|
i != sh->pd_idx && i != sh->qd_idx &&
|
|
!test_bit(R5_LOCKED, &dev->flags) &&
|
|
!(test_bit(R5_UPTODATE, &dev->flags) ||
|
|
test_bit(R5_Wantcompute, &dev->flags))) {
|
|
rcw++;
|
|
if (!test_bit(R5_Insync, &dev->flags))
|
|
continue; /* it's a failed drive */
|
|
if (
|
|
test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
|
|
pr_debug("Read_old block "
|
|
"%d for Reconstruct\n", i);
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
set_bit(R5_Wantread, &dev->flags);
|
|
s->locked++;
|
|
} else {
|
|
set_bit(STRIPE_DELAYED, &sh->state);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* now if nothing is locked, and if we have enough data,
|
|
* we can start a write request
|
|
*/
|
|
/* since handle_stripe can be called at any time we need to handle the
|
|
* case where a compute block operation has been submitted and then a
|
|
* subsequent call wants to start a write request. raid_run_ops only
|
|
* handles the case where compute block and reconstruct are requested
|
|
* simultaneously. If this is not the case then new writes need to be
|
|
* held off until the compute completes.
|
|
*/
|
|
if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
|
|
(s->locked == 0 && (rcw == 0 || rmw == 0) &&
|
|
!test_bit(STRIPE_BIT_DELAY, &sh->state)))
|
|
schedule_reconstruction(sh, s, rcw == 0, 0);
|
|
}
|
|
|
|
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
|
|
struct stripe_head_state *s, int disks)
|
|
{
|
|
struct r5dev *dev = NULL;
|
|
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
|
|
switch (sh->check_state) {
|
|
case check_state_idle:
|
|
/* start a new check operation if there are no failures */
|
|
if (s->failed == 0) {
|
|
BUG_ON(s->uptodate != disks);
|
|
sh->check_state = check_state_run;
|
|
set_bit(STRIPE_OP_CHECK, &s->ops_request);
|
|
clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
|
|
s->uptodate--;
|
|
break;
|
|
}
|
|
dev = &sh->dev[s->failed_num[0]];
|
|
/* fall through */
|
|
case check_state_compute_result:
|
|
sh->check_state = check_state_idle;
|
|
if (!dev)
|
|
dev = &sh->dev[sh->pd_idx];
|
|
|
|
/* check that a write has not made the stripe insync */
|
|
if (test_bit(STRIPE_INSYNC, &sh->state))
|
|
break;
|
|
|
|
/* either failed parity check, or recovery is happening */
|
|
BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
|
|
BUG_ON(s->uptodate != disks);
|
|
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
s->locked++;
|
|
set_bit(R5_Wantwrite, &dev->flags);
|
|
|
|
clear_bit(STRIPE_DEGRADED, &sh->state);
|
|
set_bit(STRIPE_INSYNC, &sh->state);
|
|
break;
|
|
case check_state_run:
|
|
break; /* we will be called again upon completion */
|
|
case check_state_check_result:
|
|
sh->check_state = check_state_idle;
|
|
|
|
/* if a failure occurred during the check operation, leave
|
|
* STRIPE_INSYNC not set and let the stripe be handled again
|
|
*/
|
|
if (s->failed)
|
|
break;
|
|
|
|
/* handle a successful check operation, if parity is correct
|
|
* we are done. Otherwise update the mismatch count and repair
|
|
* parity if !MD_RECOVERY_CHECK
|
|
*/
|
|
if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
|
|
/* parity is correct (on disc,
|
|
* not in buffer any more)
|
|
*/
|
|
set_bit(STRIPE_INSYNC, &sh->state);
|
|
else {
|
|
conf->mddev->resync_mismatches += STRIPE_SECTORS;
|
|
if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
|
|
/* don't try to repair!! */
|
|
set_bit(STRIPE_INSYNC, &sh->state);
|
|
else {
|
|
sh->check_state = check_state_compute_run;
|
|
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
|
|
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
|
|
set_bit(R5_Wantcompute,
|
|
&sh->dev[sh->pd_idx].flags);
|
|
sh->ops.target = sh->pd_idx;
|
|
sh->ops.target2 = -1;
|
|
s->uptodate++;
|
|
}
|
|
}
|
|
break;
|
|
case check_state_compute_run:
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
|
|
__func__, sh->check_state,
|
|
(unsigned long long) sh->sector);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
|
|
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
|
|
struct stripe_head_state *s,
|
|
int disks)
|
|
{
|
|
int pd_idx = sh->pd_idx;
|
|
int qd_idx = sh->qd_idx;
|
|
struct r5dev *dev;
|
|
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
|
|
BUG_ON(s->failed > 2);
|
|
|
|
/* Want to check and possibly repair P and Q.
|
|
* However there could be one 'failed' device, in which
|
|
* case we can only check one of them, possibly using the
|
|
* other to generate missing data
|
|
*/
|
|
|
|
switch (sh->check_state) {
|
|
case check_state_idle:
|
|
/* start a new check operation if there are < 2 failures */
|
|
if (s->failed == s->q_failed) {
|
|
/* The only possible failed device holds Q, so it
|
|
* makes sense to check P (If anything else were failed,
|
|
* we would have used P to recreate it).
|
|
*/
|
|
sh->check_state = check_state_run;
|
|
}
|
|
if (!s->q_failed && s->failed < 2) {
|
|
/* Q is not failed, and we didn't use it to generate
|
|
* anything, so it makes sense to check it
|
|
*/
|
|
if (sh->check_state == check_state_run)
|
|
sh->check_state = check_state_run_pq;
|
|
else
|
|
sh->check_state = check_state_run_q;
|
|
}
|
|
|
|
/* discard potentially stale zero_sum_result */
|
|
sh->ops.zero_sum_result = 0;
|
|
|
|
if (sh->check_state == check_state_run) {
|
|
/* async_xor_zero_sum destroys the contents of P */
|
|
clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
|
|
s->uptodate--;
|
|
}
|
|
if (sh->check_state >= check_state_run &&
|
|
sh->check_state <= check_state_run_pq) {
|
|
/* async_syndrome_zero_sum preserves P and Q, so
|
|
* no need to mark them !uptodate here
|
|
*/
|
|
set_bit(STRIPE_OP_CHECK, &s->ops_request);
|
|
break;
|
|
}
|
|
|
|
/* we have 2-disk failure */
|
|
BUG_ON(s->failed != 2);
|
|
/* fall through */
|
|
case check_state_compute_result:
|
|
sh->check_state = check_state_idle;
|
|
|
|
/* check that a write has not made the stripe insync */
|
|
if (test_bit(STRIPE_INSYNC, &sh->state))
|
|
break;
|
|
|
|
/* now write out any block on a failed drive,
|
|
* or P or Q if they were recomputed
|
|
*/
|
|
BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
|
|
if (s->failed == 2) {
|
|
dev = &sh->dev[s->failed_num[1]];
|
|
s->locked++;
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
set_bit(R5_Wantwrite, &dev->flags);
|
|
}
|
|
if (s->failed >= 1) {
|
|
dev = &sh->dev[s->failed_num[0]];
|
|
s->locked++;
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
set_bit(R5_Wantwrite, &dev->flags);
|
|
}
|
|
if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
|
|
dev = &sh->dev[pd_idx];
|
|
s->locked++;
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
set_bit(R5_Wantwrite, &dev->flags);
|
|
}
|
|
if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
|
|
dev = &sh->dev[qd_idx];
|
|
s->locked++;
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
set_bit(R5_Wantwrite, &dev->flags);
|
|
}
|
|
clear_bit(STRIPE_DEGRADED, &sh->state);
|
|
|
|
set_bit(STRIPE_INSYNC, &sh->state);
|
|
break;
|
|
case check_state_run:
|
|
case check_state_run_q:
|
|
case check_state_run_pq:
|
|
break; /* we will be called again upon completion */
|
|
case check_state_check_result:
|
|
sh->check_state = check_state_idle;
|
|
|
|
/* handle a successful check operation, if parity is correct
|
|
* we are done. Otherwise update the mismatch count and repair
|
|
* parity if !MD_RECOVERY_CHECK
|
|
*/
|
|
if (sh->ops.zero_sum_result == 0) {
|
|
/* both parities are correct */
|
|
if (!s->failed)
|
|
set_bit(STRIPE_INSYNC, &sh->state);
|
|
else {
|
|
/* in contrast to the raid5 case we can validate
|
|
* parity, but still have a failure to write
|
|
* back
|
|
*/
|
|
sh->check_state = check_state_compute_result;
|
|
/* Returning at this point means that we may go
|
|
* off and bring p and/or q uptodate again so
|
|
* we make sure to check zero_sum_result again
|
|
* to verify if p or q need writeback
|
|
*/
|
|
}
|
|
} else {
|
|
conf->mddev->resync_mismatches += STRIPE_SECTORS;
|
|
if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
|
|
/* don't try to repair!! */
|
|
set_bit(STRIPE_INSYNC, &sh->state);
|
|
else {
|
|
int *target = &sh->ops.target;
|
|
|
|
sh->ops.target = -1;
|
|
sh->ops.target2 = -1;
|
|
sh->check_state = check_state_compute_run;
|
|
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
|
|
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
|
|
if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
|
|
set_bit(R5_Wantcompute,
|
|
&sh->dev[pd_idx].flags);
|
|
*target = pd_idx;
|
|
target = &sh->ops.target2;
|
|
s->uptodate++;
|
|
}
|
|
if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
|
|
set_bit(R5_Wantcompute,
|
|
&sh->dev[qd_idx].flags);
|
|
*target = qd_idx;
|
|
s->uptodate++;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case check_state_compute_run:
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
|
|
__func__, sh->check_state,
|
|
(unsigned long long) sh->sector);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
|
|
{
|
|
int i;
|
|
|
|
/* We have read all the blocks in this stripe and now we need to
|
|
* copy some of them into a target stripe for expand.
|
|
*/
|
|
struct dma_async_tx_descriptor *tx = NULL;
|
|
clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
|
|
for (i = 0; i < sh->disks; i++)
|
|
if (i != sh->pd_idx && i != sh->qd_idx) {
|
|
int dd_idx, j;
|
|
struct stripe_head *sh2;
|
|
struct async_submit_ctl submit;
|
|
|
|
sector_t bn = compute_blocknr(sh, i, 1);
|
|
sector_t s = raid5_compute_sector(conf, bn, 0,
|
|
&dd_idx, NULL);
|
|
sh2 = get_active_stripe(conf, s, 0, 1, 1);
|
|
if (sh2 == NULL)
|
|
/* so far only the early blocks of this stripe
|
|
* have been requested. When later blocks
|
|
* get requested, we will try again
|
|
*/
|
|
continue;
|
|
if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
|
|
test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
|
|
/* must have already done this block */
|
|
release_stripe(sh2);
|
|
continue;
|
|
}
|
|
|
|
/* place all the copies on one channel */
|
|
init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
|
|
tx = async_memcpy(sh2->dev[dd_idx].page,
|
|
sh->dev[i].page, 0, 0, STRIPE_SIZE,
|
|
&submit);
|
|
|
|
set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
|
|
set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
|
|
for (j = 0; j < conf->raid_disks; j++)
|
|
if (j != sh2->pd_idx &&
|
|
j != sh2->qd_idx &&
|
|
!test_bit(R5_Expanded, &sh2->dev[j].flags))
|
|
break;
|
|
if (j == conf->raid_disks) {
|
|
set_bit(STRIPE_EXPAND_READY, &sh2->state);
|
|
set_bit(STRIPE_HANDLE, &sh2->state);
|
|
}
|
|
release_stripe(sh2);
|
|
|
|
}
|
|
/* done submitting copies, wait for them to complete */
|
|
if (tx) {
|
|
async_tx_ack(tx);
|
|
dma_wait_for_async_tx(tx);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* handle_stripe - do things to a stripe.
|
|
*
|
|
* We lock the stripe and then examine the state of various bits
|
|
* to see what needs to be done.
|
|
* Possible results:
|
|
* return some read request which now have data
|
|
* return some write requests which are safely on disc
|
|
* schedule a read on some buffers
|
|
* schedule a write of some buffers
|
|
* return confirmation of parity correctness
|
|
*
|
|
* buffers are taken off read_list or write_list, and bh_cache buffers
|
|
* get BH_Lock set before the stripe lock is released.
|
|
*
|
|
*/
|
|
|
|
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
|
|
{
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int disks = sh->disks;
|
|
struct r5dev *dev;
|
|
int i;
|
|
|
|
memset(s, 0, sizeof(*s));
|
|
|
|
s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
|
|
s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
|
|
s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
|
|
s->failed_num[0] = -1;
|
|
s->failed_num[1] = -1;
|
|
|
|
/* Now to look around and see what can be done */
|
|
rcu_read_lock();
|
|
spin_lock_irq(&conf->device_lock);
|
|
for (i=disks; i--; ) {
|
|
struct md_rdev *rdev;
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
int is_bad = 0;
|
|
|
|
dev = &sh->dev[i];
|
|
|
|
pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
|
|
i, dev->flags, dev->toread, dev->towrite, dev->written);
|
|
/* maybe we can reply to a read
|
|
*
|
|
* new wantfill requests are only permitted while
|
|
* ops_complete_biofill is guaranteed to be inactive
|
|
*/
|
|
if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
|
|
!test_bit(STRIPE_BIOFILL_RUN, &sh->state))
|
|
set_bit(R5_Wantfill, &dev->flags);
|
|
|
|
/* now count some things */
|
|
if (test_bit(R5_LOCKED, &dev->flags))
|
|
s->locked++;
|
|
if (test_bit(R5_UPTODATE, &dev->flags))
|
|
s->uptodate++;
|
|
if (test_bit(R5_Wantcompute, &dev->flags)) {
|
|
s->compute++;
|
|
BUG_ON(s->compute > 2);
|
|
}
|
|
|
|
if (test_bit(R5_Wantfill, &dev->flags))
|
|
s->to_fill++;
|
|
else if (dev->toread)
|
|
s->to_read++;
|
|
if (dev->towrite) {
|
|
s->to_write++;
|
|
if (!test_bit(R5_OVERWRITE, &dev->flags))
|
|
s->non_overwrite++;
|
|
}
|
|
if (dev->written)
|
|
s->written++;
|
|
rdev = rcu_dereference(conf->disks[i].rdev);
|
|
if (rdev) {
|
|
is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
|
|
&first_bad, &bad_sectors);
|
|
if (s->blocked_rdev == NULL
|
|
&& (test_bit(Blocked, &rdev->flags)
|
|
|| is_bad < 0)) {
|
|
if (is_bad < 0)
|
|
set_bit(BlockedBadBlocks,
|
|
&rdev->flags);
|
|
s->blocked_rdev = rdev;
|
|
atomic_inc(&rdev->nr_pending);
|
|
}
|
|
}
|
|
clear_bit(R5_Insync, &dev->flags);
|
|
if (!rdev)
|
|
/* Not in-sync */;
|
|
else if (is_bad) {
|
|
/* also not in-sync */
|
|
if (!test_bit(WriteErrorSeen, &rdev->flags)) {
|
|
/* treat as in-sync, but with a read error
|
|
* which we can now try to correct
|
|
*/
|
|
set_bit(R5_Insync, &dev->flags);
|
|
set_bit(R5_ReadError, &dev->flags);
|
|
}
|
|
} else if (test_bit(In_sync, &rdev->flags))
|
|
set_bit(R5_Insync, &dev->flags);
|
|
else if (!test_bit(Faulty, &rdev->flags)) {
|
|
/* in sync if before recovery_offset */
|
|
if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
|
|
set_bit(R5_Insync, &dev->flags);
|
|
}
|
|
if (test_bit(R5_WriteError, &dev->flags)) {
|
|
clear_bit(R5_Insync, &dev->flags);
|
|
if (!test_bit(Faulty, &rdev->flags)) {
|
|
s->handle_bad_blocks = 1;
|
|
atomic_inc(&rdev->nr_pending);
|
|
} else
|
|
clear_bit(R5_WriteError, &dev->flags);
|
|
}
|
|
if (test_bit(R5_MadeGood, &dev->flags)) {
|
|
if (!test_bit(Faulty, &rdev->flags)) {
|
|
s->handle_bad_blocks = 1;
|
|
atomic_inc(&rdev->nr_pending);
|
|
} else
|
|
clear_bit(R5_MadeGood, &dev->flags);
|
|
}
|
|
if (!test_bit(R5_Insync, &dev->flags)) {
|
|
/* The ReadError flag will just be confusing now */
|
|
clear_bit(R5_ReadError, &dev->flags);
|
|
clear_bit(R5_ReWrite, &dev->flags);
|
|
}
|
|
if (test_bit(R5_ReadError, &dev->flags))
|
|
clear_bit(R5_Insync, &dev->flags);
|
|
if (!test_bit(R5_Insync, &dev->flags)) {
|
|
if (s->failed < 2)
|
|
s->failed_num[s->failed] = i;
|
|
s->failed++;
|
|
}
|
|
}
|
|
spin_unlock_irq(&conf->device_lock);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void handle_stripe(struct stripe_head *sh)
|
|
{
|
|
struct stripe_head_state s;
|
|
struct r5conf *conf = sh->raid_conf;
|
|
int i;
|
|
int prexor;
|
|
int disks = sh->disks;
|
|
struct r5dev *pdev, *qdev;
|
|
|
|
clear_bit(STRIPE_HANDLE, &sh->state);
|
|
if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
|
|
/* already being handled, ensure it gets handled
|
|
* again when current action finishes */
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
return;
|
|
}
|
|
|
|
if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
|
|
set_bit(STRIPE_SYNCING, &sh->state);
|
|
clear_bit(STRIPE_INSYNC, &sh->state);
|
|
}
|
|
clear_bit(STRIPE_DELAYED, &sh->state);
|
|
|
|
pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
|
|
"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
|
|
(unsigned long long)sh->sector, sh->state,
|
|
atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
|
|
sh->check_state, sh->reconstruct_state);
|
|
|
|
analyse_stripe(sh, &s);
|
|
|
|
if (s.handle_bad_blocks) {
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
goto finish;
|
|
}
|
|
|
|
if (unlikely(s.blocked_rdev)) {
|
|
if (s.syncing || s.expanding || s.expanded ||
|
|
s.to_write || s.written) {
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
goto finish;
|
|
}
|
|
/* There is nothing for the blocked_rdev to block */
|
|
rdev_dec_pending(s.blocked_rdev, conf->mddev);
|
|
s.blocked_rdev = NULL;
|
|
}
|
|
|
|
if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
|
|
set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
|
|
set_bit(STRIPE_BIOFILL_RUN, &sh->state);
|
|
}
|
|
|
|
pr_debug("locked=%d uptodate=%d to_read=%d"
|
|
" to_write=%d failed=%d failed_num=%d,%d\n",
|
|
s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
|
|
s.failed_num[0], s.failed_num[1]);
|
|
/* check if the array has lost more than max_degraded devices and,
|
|
* if so, some requests might need to be failed.
|
|
*/
|
|
if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
|
|
handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
|
|
if (s.failed > conf->max_degraded && s.syncing)
|
|
handle_failed_sync(conf, sh, &s);
|
|
|
|
/*
|
|
* might be able to return some write requests if the parity blocks
|
|
* are safe, or on a failed drive
|
|
*/
|
|
pdev = &sh->dev[sh->pd_idx];
|
|
s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
|
|
|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
|
|
qdev = &sh->dev[sh->qd_idx];
|
|
s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
|
|
|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
|
|
|| conf->level < 6;
|
|
|
|
if (s.written &&
|
|
(s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
|
|
&& !test_bit(R5_LOCKED, &pdev->flags)
|
|
&& test_bit(R5_UPTODATE, &pdev->flags)))) &&
|
|
(s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
|
|
&& !test_bit(R5_LOCKED, &qdev->flags)
|
|
&& test_bit(R5_UPTODATE, &qdev->flags)))))
|
|
handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
|
|
|
|
/* Now we might consider reading some blocks, either to check/generate
|
|
* parity, or to satisfy requests
|
|
* or to load a block that is being partially written.
|
|
*/
|
|
if (s.to_read || s.non_overwrite
|
|
|| (conf->level == 6 && s.to_write && s.failed)
|
|
|| (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
|
|
handle_stripe_fill(sh, &s, disks);
|
|
|
|
/* Now we check to see if any write operations have recently
|
|
* completed
|
|
*/
|
|
prexor = 0;
|
|
if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
|
|
prexor = 1;
|
|
if (sh->reconstruct_state == reconstruct_state_drain_result ||
|
|
sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
|
|
sh->reconstruct_state = reconstruct_state_idle;
|
|
|
|
/* All the 'written' buffers and the parity block are ready to
|
|
* be written back to disk
|
|
*/
|
|
BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
|
|
BUG_ON(sh->qd_idx >= 0 &&
|
|
!test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
|
|
for (i = disks; i--; ) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if (test_bit(R5_LOCKED, &dev->flags) &&
|
|
(i == sh->pd_idx || i == sh->qd_idx ||
|
|
dev->written)) {
|
|
pr_debug("Writing block %d\n", i);
|
|
set_bit(R5_Wantwrite, &dev->flags);
|
|
if (prexor)
|
|
continue;
|
|
if (!test_bit(R5_Insync, &dev->flags) ||
|
|
((i == sh->pd_idx || i == sh->qd_idx) &&
|
|
s.failed == 0))
|
|
set_bit(STRIPE_INSYNC, &sh->state);
|
|
}
|
|
}
|
|
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
|
|
s.dec_preread_active = 1;
|
|
}
|
|
|
|
/* Now to consider new write requests and what else, if anything
|
|
* should be read. We do not handle new writes when:
|
|
* 1/ A 'write' operation (copy+xor) is already in flight.
|
|
* 2/ A 'check' operation is in flight, as it may clobber the parity
|
|
* block.
|
|
*/
|
|
if (s.to_write && !sh->reconstruct_state && !sh->check_state)
|
|
handle_stripe_dirtying(conf, sh, &s, disks);
|
|
|
|
/* maybe we need to check and possibly fix the parity for this stripe
|
|
* Any reads will already have been scheduled, so we just see if enough
|
|
* data is available. The parity check is held off while parity
|
|
* dependent operations are in flight.
|
|
*/
|
|
if (sh->check_state ||
|
|
(s.syncing && s.locked == 0 &&
|
|
!test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
|
|
!test_bit(STRIPE_INSYNC, &sh->state))) {
|
|
if (conf->level == 6)
|
|
handle_parity_checks6(conf, sh, &s, disks);
|
|
else
|
|
handle_parity_checks5(conf, sh, &s, disks);
|
|
}
|
|
|
|
if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
|
|
md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
|
|
clear_bit(STRIPE_SYNCING, &sh->state);
|
|
}
|
|
|
|
/* If the failed drives are just a ReadError, then we might need
|
|
* to progress the repair/check process
|
|
*/
|
|
if (s.failed <= conf->max_degraded && !conf->mddev->ro)
|
|
for (i = 0; i < s.failed; i++) {
|
|
struct r5dev *dev = &sh->dev[s.failed_num[i]];
|
|
if (test_bit(R5_ReadError, &dev->flags)
|
|
&& !test_bit(R5_LOCKED, &dev->flags)
|
|
&& test_bit(R5_UPTODATE, &dev->flags)
|
|
) {
|
|
if (!test_bit(R5_ReWrite, &dev->flags)) {
|
|
set_bit(R5_Wantwrite, &dev->flags);
|
|
set_bit(R5_ReWrite, &dev->flags);
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
s.locked++;
|
|
} else {
|
|
/* let's read it back */
|
|
set_bit(R5_Wantread, &dev->flags);
|
|
set_bit(R5_LOCKED, &dev->flags);
|
|
s.locked++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Finish reconstruct operations initiated by the expansion process */
|
|
if (sh->reconstruct_state == reconstruct_state_result) {
|
|
struct stripe_head *sh_src
|
|
= get_active_stripe(conf, sh->sector, 1, 1, 1);
|
|
if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
|
|
/* sh cannot be written until sh_src has been read.
|
|
* so arrange for sh to be delayed a little
|
|
*/
|
|
set_bit(STRIPE_DELAYED, &sh->state);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
|
|
&sh_src->state))
|
|
atomic_inc(&conf->preread_active_stripes);
|
|
release_stripe(sh_src);
|
|
goto finish;
|
|
}
|
|
if (sh_src)
|
|
release_stripe(sh_src);
|
|
|
|
sh->reconstruct_state = reconstruct_state_idle;
|
|
clear_bit(STRIPE_EXPANDING, &sh->state);
|
|
for (i = conf->raid_disks; i--; ) {
|
|
set_bit(R5_Wantwrite, &sh->dev[i].flags);
|
|
set_bit(R5_LOCKED, &sh->dev[i].flags);
|
|
s.locked++;
|
|
}
|
|
}
|
|
|
|
if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
|
|
!sh->reconstruct_state) {
|
|
/* Need to write out all blocks after computing parity */
|
|
sh->disks = conf->raid_disks;
|
|
stripe_set_idx(sh->sector, conf, 0, sh);
|
|
schedule_reconstruction(sh, &s, 1, 1);
|
|
} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
|
|
clear_bit(STRIPE_EXPAND_READY, &sh->state);
|
|
atomic_dec(&conf->reshape_stripes);
|
|
wake_up(&conf->wait_for_overlap);
|
|
md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
|
|
}
|
|
|
|
if (s.expanding && s.locked == 0 &&
|
|
!test_bit(STRIPE_COMPUTE_RUN, &sh->state))
|
|
handle_stripe_expansion(conf, sh);
|
|
|
|
finish:
|
|
/* wait for this device to become unblocked */
|
|
if (conf->mddev->external && unlikely(s.blocked_rdev))
|
|
md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
|
|
|
|
if (s.handle_bad_blocks)
|
|
for (i = disks; i--; ) {
|
|
struct md_rdev *rdev;
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
|
|
/* We own a safe reference to the rdev */
|
|
rdev = conf->disks[i].rdev;
|
|
if (!rdev_set_badblocks(rdev, sh->sector,
|
|
STRIPE_SECTORS, 0))
|
|
md_error(conf->mddev, rdev);
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
}
|
|
if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
|
|
rdev = conf->disks[i].rdev;
|
|
rdev_clear_badblocks(rdev, sh->sector,
|
|
STRIPE_SECTORS);
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
}
|
|
}
|
|
|
|
if (s.ops_request)
|
|
raid_run_ops(sh, s.ops_request);
|
|
|
|
ops_run_io(sh, &s);
|
|
|
|
if (s.dec_preread_active) {
|
|
/* We delay this until after ops_run_io so that if make_request
|
|
* is waiting on a flush, it won't continue until the writes
|
|
* have actually been submitted.
|
|
*/
|
|
atomic_dec(&conf->preread_active_stripes);
|
|
if (atomic_read(&conf->preread_active_stripes) <
|
|
IO_THRESHOLD)
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
}
|
|
|
|
return_io(s.return_bi);
|
|
|
|
clear_bit(STRIPE_ACTIVE, &sh->state);
|
|
}
|
|
|
|
static void raid5_activate_delayed(struct r5conf *conf)
|
|
{
|
|
if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
|
|
while (!list_empty(&conf->delayed_list)) {
|
|
struct list_head *l = conf->delayed_list.next;
|
|
struct stripe_head *sh;
|
|
sh = list_entry(l, struct stripe_head, lru);
|
|
list_del_init(l);
|
|
clear_bit(STRIPE_DELAYED, &sh->state);
|
|
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
|
|
atomic_inc(&conf->preread_active_stripes);
|
|
list_add_tail(&sh->lru, &conf->hold_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void activate_bit_delay(struct r5conf *conf)
|
|
{
|
|
/* device_lock is held */
|
|
struct list_head head;
|
|
list_add(&head, &conf->bitmap_list);
|
|
list_del_init(&conf->bitmap_list);
|
|
while (!list_empty(&head)) {
|
|
struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
|
|
list_del_init(&sh->lru);
|
|
atomic_inc(&sh->count);
|
|
__release_stripe(conf, sh);
|
|
}
|
|
}
|
|
|
|
int md_raid5_congested(struct mddev *mddev, int bits)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
|
|
/* No difference between reads and writes. Just check
|
|
* how busy the stripe_cache is
|
|
*/
|
|
|
|
if (conf->inactive_blocked)
|
|
return 1;
|
|
if (conf->quiesce)
|
|
return 1;
|
|
if (list_empty_careful(&conf->inactive_list))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(md_raid5_congested);
|
|
|
|
static int raid5_congested(void *data, int bits)
|
|
{
|
|
struct mddev *mddev = data;
|
|
|
|
return mddev_congested(mddev, bits) ||
|
|
md_raid5_congested(mddev, bits);
|
|
}
|
|
|
|
/* We want read requests to align with chunks where possible,
|
|
* but write requests don't need to.
|
|
*/
|
|
static int raid5_mergeable_bvec(struct request_queue *q,
|
|
struct bvec_merge_data *bvm,
|
|
struct bio_vec *biovec)
|
|
{
|
|
struct mddev *mddev = q->queuedata;
|
|
sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
|
|
int max;
|
|
unsigned int chunk_sectors = mddev->chunk_sectors;
|
|
unsigned int bio_sectors = bvm->bi_size >> 9;
|
|
|
|
if ((bvm->bi_rw & 1) == WRITE)
|
|
return biovec->bv_len; /* always allow writes to be mergeable */
|
|
|
|
if (mddev->new_chunk_sectors < mddev->chunk_sectors)
|
|
chunk_sectors = mddev->new_chunk_sectors;
|
|
max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
|
|
if (max < 0) max = 0;
|
|
if (max <= biovec->bv_len && bio_sectors == 0)
|
|
return biovec->bv_len;
|
|
else
|
|
return max;
|
|
}
|
|
|
|
|
|
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
|
|
{
|
|
sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
|
|
unsigned int chunk_sectors = mddev->chunk_sectors;
|
|
unsigned int bio_sectors = bio->bi_size >> 9;
|
|
|
|
if (mddev->new_chunk_sectors < mddev->chunk_sectors)
|
|
chunk_sectors = mddev->new_chunk_sectors;
|
|
return chunk_sectors >=
|
|
((sector & (chunk_sectors - 1)) + bio_sectors);
|
|
}
|
|
|
|
/*
|
|
* add bio to the retry LIFO ( in O(1) ... we are in interrupt )
|
|
* later sampled by raid5d.
|
|
*/
|
|
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
|
|
bi->bi_next = conf->retry_read_aligned_list;
|
|
conf->retry_read_aligned_list = bi;
|
|
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
}
|
|
|
|
|
|
static struct bio *remove_bio_from_retry(struct r5conf *conf)
|
|
{
|
|
struct bio *bi;
|
|
|
|
bi = conf->retry_read_aligned;
|
|
if (bi) {
|
|
conf->retry_read_aligned = NULL;
|
|
return bi;
|
|
}
|
|
bi = conf->retry_read_aligned_list;
|
|
if(bi) {
|
|
conf->retry_read_aligned_list = bi->bi_next;
|
|
bi->bi_next = NULL;
|
|
/*
|
|
* this sets the active strip count to 1 and the processed
|
|
* strip count to zero (upper 8 bits)
|
|
*/
|
|
bi->bi_phys_segments = 1; /* biased count of active stripes */
|
|
}
|
|
|
|
return bi;
|
|
}
|
|
|
|
|
|
/*
|
|
* The "raid5_align_endio" should check if the read succeeded and if it
|
|
* did, call bio_endio on the original bio (having bio_put the new bio
|
|
* first).
|
|
* If the read failed..
|
|
*/
|
|
static void raid5_align_endio(struct bio *bi, int error)
|
|
{
|
|
struct bio* raid_bi = bi->bi_private;
|
|
struct mddev *mddev;
|
|
struct r5conf *conf;
|
|
int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
|
|
struct md_rdev *rdev;
|
|
|
|
bio_put(bi);
|
|
|
|
rdev = (void*)raid_bi->bi_next;
|
|
raid_bi->bi_next = NULL;
|
|
mddev = rdev->mddev;
|
|
conf = mddev->private;
|
|
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
|
|
if (!error && uptodate) {
|
|
bio_endio(raid_bi, 0);
|
|
if (atomic_dec_and_test(&conf->active_aligned_reads))
|
|
wake_up(&conf->wait_for_stripe);
|
|
return;
|
|
}
|
|
|
|
|
|
pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
|
|
|
|
add_bio_to_retry(raid_bi, conf);
|
|
}
|
|
|
|
static int bio_fits_rdev(struct bio *bi)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bi->bi_bdev);
|
|
|
|
if ((bi->bi_size>>9) > queue_max_sectors(q))
|
|
return 0;
|
|
blk_recount_segments(q, bi);
|
|
if (bi->bi_phys_segments > queue_max_segments(q))
|
|
return 0;
|
|
|
|
if (q->merge_bvec_fn)
|
|
/* it's too hard to apply the merge_bvec_fn at this stage,
|
|
* just just give up
|
|
*/
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
int dd_idx;
|
|
struct bio* align_bi;
|
|
struct md_rdev *rdev;
|
|
|
|
if (!in_chunk_boundary(mddev, raid_bio)) {
|
|
pr_debug("chunk_aligned_read : non aligned\n");
|
|
return 0;
|
|
}
|
|
/*
|
|
* use bio_clone_mddev to make a copy of the bio
|
|
*/
|
|
align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
|
|
if (!align_bi)
|
|
return 0;
|
|
/*
|
|
* set bi_end_io to a new function, and set bi_private to the
|
|
* original bio.
|
|
*/
|
|
align_bi->bi_end_io = raid5_align_endio;
|
|
align_bi->bi_private = raid_bio;
|
|
/*
|
|
* compute position
|
|
*/
|
|
align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
|
|
0,
|
|
&dd_idx, NULL);
|
|
|
|
rcu_read_lock();
|
|
rdev = rcu_dereference(conf->disks[dd_idx].rdev);
|
|
if (rdev && test_bit(In_sync, &rdev->flags)) {
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
raid_bio->bi_next = (void*)rdev;
|
|
align_bi->bi_bdev = rdev->bdev;
|
|
align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
|
|
align_bi->bi_sector += rdev->data_offset;
|
|
|
|
if (!bio_fits_rdev(align_bi) ||
|
|
is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
|
|
&first_bad, &bad_sectors)) {
|
|
/* too big in some way, or has a known bad block */
|
|
bio_put(align_bi);
|
|
rdev_dec_pending(rdev, mddev);
|
|
return 0;
|
|
}
|
|
|
|
spin_lock_irq(&conf->device_lock);
|
|
wait_event_lock_irq(conf->wait_for_stripe,
|
|
conf->quiesce == 0,
|
|
conf->device_lock, /* nothing */);
|
|
atomic_inc(&conf->active_aligned_reads);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
|
|
generic_make_request(align_bi);
|
|
return 1;
|
|
} else {
|
|
rcu_read_unlock();
|
|
bio_put(align_bi);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* __get_priority_stripe - get the next stripe to process
|
|
*
|
|
* Full stripe writes are allowed to pass preread active stripes up until
|
|
* the bypass_threshold is exceeded. In general the bypass_count
|
|
* increments when the handle_list is handled before the hold_list; however, it
|
|
* will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
|
|
* stripe with in flight i/o. The bypass_count will be reset when the
|
|
* head of the hold_list has changed, i.e. the head was promoted to the
|
|
* handle_list.
|
|
*/
|
|
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
|
|
{
|
|
struct stripe_head *sh;
|
|
|
|
pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
|
|
__func__,
|
|
list_empty(&conf->handle_list) ? "empty" : "busy",
|
|
list_empty(&conf->hold_list) ? "empty" : "busy",
|
|
atomic_read(&conf->pending_full_writes), conf->bypass_count);
|
|
|
|
if (!list_empty(&conf->handle_list)) {
|
|
sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
|
|
|
|
if (list_empty(&conf->hold_list))
|
|
conf->bypass_count = 0;
|
|
else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
|
|
if (conf->hold_list.next == conf->last_hold)
|
|
conf->bypass_count++;
|
|
else {
|
|
conf->last_hold = conf->hold_list.next;
|
|
conf->bypass_count -= conf->bypass_threshold;
|
|
if (conf->bypass_count < 0)
|
|
conf->bypass_count = 0;
|
|
}
|
|
}
|
|
} else if (!list_empty(&conf->hold_list) &&
|
|
((conf->bypass_threshold &&
|
|
conf->bypass_count > conf->bypass_threshold) ||
|
|
atomic_read(&conf->pending_full_writes) == 0)) {
|
|
sh = list_entry(conf->hold_list.next,
|
|
typeof(*sh), lru);
|
|
conf->bypass_count -= conf->bypass_threshold;
|
|
if (conf->bypass_count < 0)
|
|
conf->bypass_count = 0;
|
|
} else
|
|
return NULL;
|
|
|
|
list_del_init(&sh->lru);
|
|
atomic_inc(&sh->count);
|
|
BUG_ON(atomic_read(&sh->count) != 1);
|
|
return sh;
|
|
}
|
|
|
|
static int make_request(struct mddev *mddev, struct bio * bi)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
int dd_idx;
|
|
sector_t new_sector;
|
|
sector_t logical_sector, last_sector;
|
|
struct stripe_head *sh;
|
|
const int rw = bio_data_dir(bi);
|
|
int remaining;
|
|
int plugged;
|
|
|
|
if (unlikely(bi->bi_rw & REQ_FLUSH)) {
|
|
md_flush_request(mddev, bi);
|
|
return 0;
|
|
}
|
|
|
|
md_write_start(mddev, bi);
|
|
|
|
if (rw == READ &&
|
|
mddev->reshape_position == MaxSector &&
|
|
chunk_aligned_read(mddev,bi))
|
|
return 0;
|
|
|
|
logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
|
|
last_sector = bi->bi_sector + (bi->bi_size>>9);
|
|
bi->bi_next = NULL;
|
|
bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
|
|
|
|
plugged = mddev_check_plugged(mddev);
|
|
for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
|
|
DEFINE_WAIT(w);
|
|
int disks, data_disks;
|
|
int previous;
|
|
|
|
retry:
|
|
previous = 0;
|
|
disks = conf->raid_disks;
|
|
prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
|
|
if (unlikely(conf->reshape_progress != MaxSector)) {
|
|
/* spinlock is needed as reshape_progress may be
|
|
* 64bit on a 32bit platform, and so it might be
|
|
* possible to see a half-updated value
|
|
* Of course reshape_progress could change after
|
|
* the lock is dropped, so once we get a reference
|
|
* to the stripe that we think it is, we will have
|
|
* to check again.
|
|
*/
|
|
spin_lock_irq(&conf->device_lock);
|
|
if (mddev->delta_disks < 0
|
|
? logical_sector < conf->reshape_progress
|
|
: logical_sector >= conf->reshape_progress) {
|
|
disks = conf->previous_raid_disks;
|
|
previous = 1;
|
|
} else {
|
|
if (mddev->delta_disks < 0
|
|
? logical_sector < conf->reshape_safe
|
|
: logical_sector >= conf->reshape_safe) {
|
|
spin_unlock_irq(&conf->device_lock);
|
|
schedule();
|
|
goto retry;
|
|
}
|
|
}
|
|
spin_unlock_irq(&conf->device_lock);
|
|
}
|
|
data_disks = disks - conf->max_degraded;
|
|
|
|
new_sector = raid5_compute_sector(conf, logical_sector,
|
|
previous,
|
|
&dd_idx, NULL);
|
|
pr_debug("raid456: make_request, sector %llu logical %llu\n",
|
|
(unsigned long long)new_sector,
|
|
(unsigned long long)logical_sector);
|
|
|
|
sh = get_active_stripe(conf, new_sector, previous,
|
|
(bi->bi_rw&RWA_MASK), 0);
|
|
if (sh) {
|
|
if (unlikely(previous)) {
|
|
/* expansion might have moved on while waiting for a
|
|
* stripe, so we must do the range check again.
|
|
* Expansion could still move past after this
|
|
* test, but as we are holding a reference to
|
|
* 'sh', we know that if that happens,
|
|
* STRIPE_EXPANDING will get set and the expansion
|
|
* won't proceed until we finish with the stripe.
|
|
*/
|
|
int must_retry = 0;
|
|
spin_lock_irq(&conf->device_lock);
|
|
if (mddev->delta_disks < 0
|
|
? logical_sector >= conf->reshape_progress
|
|
: logical_sector < conf->reshape_progress)
|
|
/* mismatch, need to try again */
|
|
must_retry = 1;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
if (must_retry) {
|
|
release_stripe(sh);
|
|
schedule();
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
if (rw == WRITE &&
|
|
logical_sector >= mddev->suspend_lo &&
|
|
logical_sector < mddev->suspend_hi) {
|
|
release_stripe(sh);
|
|
/* As the suspend_* range is controlled by
|
|
* userspace, we want an interruptible
|
|
* wait.
|
|
*/
|
|
flush_signals(current);
|
|
prepare_to_wait(&conf->wait_for_overlap,
|
|
&w, TASK_INTERRUPTIBLE);
|
|
if (logical_sector >= mddev->suspend_lo &&
|
|
logical_sector < mddev->suspend_hi)
|
|
schedule();
|
|
goto retry;
|
|
}
|
|
|
|
if (test_bit(STRIPE_EXPANDING, &sh->state) ||
|
|
!add_stripe_bio(sh, bi, dd_idx, rw)) {
|
|
/* Stripe is busy expanding or
|
|
* add failed due to overlap. Flush everything
|
|
* and wait a while
|
|
*/
|
|
md_wakeup_thread(mddev->thread);
|
|
release_stripe(sh);
|
|
schedule();
|
|
goto retry;
|
|
}
|
|
finish_wait(&conf->wait_for_overlap, &w);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
clear_bit(STRIPE_DELAYED, &sh->state);
|
|
if ((bi->bi_rw & REQ_SYNC) &&
|
|
!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
|
|
atomic_inc(&conf->preread_active_stripes);
|
|
release_stripe(sh);
|
|
} else {
|
|
/* cannot get stripe for read-ahead, just give-up */
|
|
clear_bit(BIO_UPTODATE, &bi->bi_flags);
|
|
finish_wait(&conf->wait_for_overlap, &w);
|
|
break;
|
|
}
|
|
|
|
}
|
|
if (!plugged)
|
|
md_wakeup_thread(mddev->thread);
|
|
|
|
spin_lock_irq(&conf->device_lock);
|
|
remaining = raid5_dec_bi_phys_segments(bi);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
if (remaining == 0) {
|
|
|
|
if ( rw == WRITE )
|
|
md_write_end(mddev);
|
|
|
|
bio_endio(bi, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
|
|
|
|
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
|
|
{
|
|
/* reshaping is quite different to recovery/resync so it is
|
|
* handled quite separately ... here.
|
|
*
|
|
* On each call to sync_request, we gather one chunk worth of
|
|
* destination stripes and flag them as expanding.
|
|
* Then we find all the source stripes and request reads.
|
|
* As the reads complete, handle_stripe will copy the data
|
|
* into the destination stripe and release that stripe.
|
|
*/
|
|
struct r5conf *conf = mddev->private;
|
|
struct stripe_head *sh;
|
|
sector_t first_sector, last_sector;
|
|
int raid_disks = conf->previous_raid_disks;
|
|
int data_disks = raid_disks - conf->max_degraded;
|
|
int new_data_disks = conf->raid_disks - conf->max_degraded;
|
|
int i;
|
|
int dd_idx;
|
|
sector_t writepos, readpos, safepos;
|
|
sector_t stripe_addr;
|
|
int reshape_sectors;
|
|
struct list_head stripes;
|
|
|
|
if (sector_nr == 0) {
|
|
/* If restarting in the middle, skip the initial sectors */
|
|
if (mddev->delta_disks < 0 &&
|
|
conf->reshape_progress < raid5_size(mddev, 0, 0)) {
|
|
sector_nr = raid5_size(mddev, 0, 0)
|
|
- conf->reshape_progress;
|
|
} else if (mddev->delta_disks >= 0 &&
|
|
conf->reshape_progress > 0)
|
|
sector_nr = conf->reshape_progress;
|
|
sector_div(sector_nr, new_data_disks);
|
|
if (sector_nr) {
|
|
mddev->curr_resync_completed = sector_nr;
|
|
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
|
|
*skipped = 1;
|
|
return sector_nr;
|
|
}
|
|
}
|
|
|
|
/* We need to process a full chunk at a time.
|
|
* If old and new chunk sizes differ, we need to process the
|
|
* largest of these
|
|
*/
|
|
if (mddev->new_chunk_sectors > mddev->chunk_sectors)
|
|
reshape_sectors = mddev->new_chunk_sectors;
|
|
else
|
|
reshape_sectors = mddev->chunk_sectors;
|
|
|
|
/* we update the metadata when there is more than 3Meg
|
|
* in the block range (that is rather arbitrary, should
|
|
* probably be time based) or when the data about to be
|
|
* copied would over-write the source of the data at
|
|
* the front of the range.
|
|
* i.e. one new_stripe along from reshape_progress new_maps
|
|
* to after where reshape_safe old_maps to
|
|
*/
|
|
writepos = conf->reshape_progress;
|
|
sector_div(writepos, new_data_disks);
|
|
readpos = conf->reshape_progress;
|
|
sector_div(readpos, data_disks);
|
|
safepos = conf->reshape_safe;
|
|
sector_div(safepos, data_disks);
|
|
if (mddev->delta_disks < 0) {
|
|
writepos -= min_t(sector_t, reshape_sectors, writepos);
|
|
readpos += reshape_sectors;
|
|
safepos += reshape_sectors;
|
|
} else {
|
|
writepos += reshape_sectors;
|
|
readpos -= min_t(sector_t, reshape_sectors, readpos);
|
|
safepos -= min_t(sector_t, reshape_sectors, safepos);
|
|
}
|
|
|
|
/* 'writepos' is the most advanced device address we might write.
|
|
* 'readpos' is the least advanced device address we might read.
|
|
* 'safepos' is the least address recorded in the metadata as having
|
|
* been reshaped.
|
|
* If 'readpos' is behind 'writepos', then there is no way that we can
|
|
* ensure safety in the face of a crash - that must be done by userspace
|
|
* making a backup of the data. So in that case there is no particular
|
|
* rush to update metadata.
|
|
* Otherwise if 'safepos' is behind 'writepos', then we really need to
|
|
* update the metadata to advance 'safepos' to match 'readpos' so that
|
|
* we can be safe in the event of a crash.
|
|
* So we insist on updating metadata if safepos is behind writepos and
|
|
* readpos is beyond writepos.
|
|
* In any case, update the metadata every 10 seconds.
|
|
* Maybe that number should be configurable, but I'm not sure it is
|
|
* worth it.... maybe it could be a multiple of safemode_delay???
|
|
*/
|
|
if ((mddev->delta_disks < 0
|
|
? (safepos > writepos && readpos < writepos)
|
|
: (safepos < writepos && readpos > writepos)) ||
|
|
time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
|
|
/* Cannot proceed until we've updated the superblock... */
|
|
wait_event(conf->wait_for_overlap,
|
|
atomic_read(&conf->reshape_stripes)==0);
|
|
mddev->reshape_position = conf->reshape_progress;
|
|
mddev->curr_resync_completed = sector_nr;
|
|
conf->reshape_checkpoint = jiffies;
|
|
set_bit(MD_CHANGE_DEVS, &mddev->flags);
|
|
md_wakeup_thread(mddev->thread);
|
|
wait_event(mddev->sb_wait, mddev->flags == 0 ||
|
|
kthread_should_stop());
|
|
spin_lock_irq(&conf->device_lock);
|
|
conf->reshape_safe = mddev->reshape_position;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
wake_up(&conf->wait_for_overlap);
|
|
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
|
|
}
|
|
|
|
if (mddev->delta_disks < 0) {
|
|
BUG_ON(conf->reshape_progress == 0);
|
|
stripe_addr = writepos;
|
|
BUG_ON((mddev->dev_sectors &
|
|
~((sector_t)reshape_sectors - 1))
|
|
- reshape_sectors - stripe_addr
|
|
!= sector_nr);
|
|
} else {
|
|
BUG_ON(writepos != sector_nr + reshape_sectors);
|
|
stripe_addr = sector_nr;
|
|
}
|
|
INIT_LIST_HEAD(&stripes);
|
|
for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
|
|
int j;
|
|
int skipped_disk = 0;
|
|
sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
|
|
set_bit(STRIPE_EXPANDING, &sh->state);
|
|
atomic_inc(&conf->reshape_stripes);
|
|
/* If any of this stripe is beyond the end of the old
|
|
* array, then we need to zero those blocks
|
|
*/
|
|
for (j=sh->disks; j--;) {
|
|
sector_t s;
|
|
if (j == sh->pd_idx)
|
|
continue;
|
|
if (conf->level == 6 &&
|
|
j == sh->qd_idx)
|
|
continue;
|
|
s = compute_blocknr(sh, j, 0);
|
|
if (s < raid5_size(mddev, 0, 0)) {
|
|
skipped_disk = 1;
|
|
continue;
|
|
}
|
|
memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
|
|
set_bit(R5_Expanded, &sh->dev[j].flags);
|
|
set_bit(R5_UPTODATE, &sh->dev[j].flags);
|
|
}
|
|
if (!skipped_disk) {
|
|
set_bit(STRIPE_EXPAND_READY, &sh->state);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
}
|
|
list_add(&sh->lru, &stripes);
|
|
}
|
|
spin_lock_irq(&conf->device_lock);
|
|
if (mddev->delta_disks < 0)
|
|
conf->reshape_progress -= reshape_sectors * new_data_disks;
|
|
else
|
|
conf->reshape_progress += reshape_sectors * new_data_disks;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
/* Ok, those stripe are ready. We can start scheduling
|
|
* reads on the source stripes.
|
|
* The source stripes are determined by mapping the first and last
|
|
* block on the destination stripes.
|
|
*/
|
|
first_sector =
|
|
raid5_compute_sector(conf, stripe_addr*(new_data_disks),
|
|
1, &dd_idx, NULL);
|
|
last_sector =
|
|
raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
|
|
* new_data_disks - 1),
|
|
1, &dd_idx, NULL);
|
|
if (last_sector >= mddev->dev_sectors)
|
|
last_sector = mddev->dev_sectors - 1;
|
|
while (first_sector <= last_sector) {
|
|
sh = get_active_stripe(conf, first_sector, 1, 0, 1);
|
|
set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
release_stripe(sh);
|
|
first_sector += STRIPE_SECTORS;
|
|
}
|
|
/* Now that the sources are clearly marked, we can release
|
|
* the destination stripes
|
|
*/
|
|
while (!list_empty(&stripes)) {
|
|
sh = list_entry(stripes.next, struct stripe_head, lru);
|
|
list_del_init(&sh->lru);
|
|
release_stripe(sh);
|
|
}
|
|
/* If this takes us to the resync_max point where we have to pause,
|
|
* then we need to write out the superblock.
|
|
*/
|
|
sector_nr += reshape_sectors;
|
|
if ((sector_nr - mddev->curr_resync_completed) * 2
|
|
>= mddev->resync_max - mddev->curr_resync_completed) {
|
|
/* Cannot proceed until we've updated the superblock... */
|
|
wait_event(conf->wait_for_overlap,
|
|
atomic_read(&conf->reshape_stripes) == 0);
|
|
mddev->reshape_position = conf->reshape_progress;
|
|
mddev->curr_resync_completed = sector_nr;
|
|
conf->reshape_checkpoint = jiffies;
|
|
set_bit(MD_CHANGE_DEVS, &mddev->flags);
|
|
md_wakeup_thread(mddev->thread);
|
|
wait_event(mddev->sb_wait,
|
|
!test_bit(MD_CHANGE_DEVS, &mddev->flags)
|
|
|| kthread_should_stop());
|
|
spin_lock_irq(&conf->device_lock);
|
|
conf->reshape_safe = mddev->reshape_position;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
wake_up(&conf->wait_for_overlap);
|
|
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
|
|
}
|
|
return reshape_sectors;
|
|
}
|
|
|
|
/* FIXME go_faster isn't used */
|
|
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
struct stripe_head *sh;
|
|
sector_t max_sector = mddev->dev_sectors;
|
|
sector_t sync_blocks;
|
|
int still_degraded = 0;
|
|
int i;
|
|
|
|
if (sector_nr >= max_sector) {
|
|
/* just being told to finish up .. nothing much to do */
|
|
|
|
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
|
|
end_reshape(conf);
|
|
return 0;
|
|
}
|
|
|
|
if (mddev->curr_resync < max_sector) /* aborted */
|
|
bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
|
|
&sync_blocks, 1);
|
|
else /* completed sync */
|
|
conf->fullsync = 0;
|
|
bitmap_close_sync(mddev->bitmap);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allow raid5_quiesce to complete */
|
|
wait_event(conf->wait_for_overlap, conf->quiesce != 2);
|
|
|
|
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
|
|
return reshape_request(mddev, sector_nr, skipped);
|
|
|
|
/* No need to check resync_max as we never do more than one
|
|
* stripe, and as resync_max will always be on a chunk boundary,
|
|
* if the check in md_do_sync didn't fire, there is no chance
|
|
* of overstepping resync_max here
|
|
*/
|
|
|
|
/* if there is too many failed drives and we are trying
|
|
* to resync, then assert that we are finished, because there is
|
|
* nothing we can do.
|
|
*/
|
|
if (mddev->degraded >= conf->max_degraded &&
|
|
test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
|
|
sector_t rv = mddev->dev_sectors - sector_nr;
|
|
*skipped = 1;
|
|
return rv;
|
|
}
|
|
if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
|
|
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
|
|
!conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
|
|
/* we can skip this block, and probably more */
|
|
sync_blocks /= STRIPE_SECTORS;
|
|
*skipped = 1;
|
|
return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
|
|
}
|
|
|
|
|
|
bitmap_cond_end_sync(mddev->bitmap, sector_nr);
|
|
|
|
sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
|
|
if (sh == NULL) {
|
|
sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
|
|
/* make sure we don't swamp the stripe cache if someone else
|
|
* is trying to get access
|
|
*/
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
/* Need to check if array will still be degraded after recovery/resync
|
|
* We don't need to check the 'failed' flag as when that gets set,
|
|
* recovery aborts.
|
|
*/
|
|
for (i = 0; i < conf->raid_disks; i++)
|
|
if (conf->disks[i].rdev == NULL)
|
|
still_degraded = 1;
|
|
|
|
bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
|
|
|
|
set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
|
|
|
|
handle_stripe(sh);
|
|
release_stripe(sh);
|
|
|
|
return STRIPE_SECTORS;
|
|
}
|
|
|
|
static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
|
|
{
|
|
/* We may not be able to submit a whole bio at once as there
|
|
* may not be enough stripe_heads available.
|
|
* We cannot pre-allocate enough stripe_heads as we may need
|
|
* more than exist in the cache (if we allow ever large chunks).
|
|
* So we do one stripe head at a time and record in
|
|
* ->bi_hw_segments how many have been done.
|
|
*
|
|
* We *know* that this entire raid_bio is in one chunk, so
|
|
* it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
|
|
*/
|
|
struct stripe_head *sh;
|
|
int dd_idx;
|
|
sector_t sector, logical_sector, last_sector;
|
|
int scnt = 0;
|
|
int remaining;
|
|
int handled = 0;
|
|
|
|
logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
|
|
sector = raid5_compute_sector(conf, logical_sector,
|
|
0, &dd_idx, NULL);
|
|
last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
|
|
|
|
for (; logical_sector < last_sector;
|
|
logical_sector += STRIPE_SECTORS,
|
|
sector += STRIPE_SECTORS,
|
|
scnt++) {
|
|
|
|
if (scnt < raid5_bi_hw_segments(raid_bio))
|
|
/* already done this stripe */
|
|
continue;
|
|
|
|
sh = get_active_stripe(conf, sector, 0, 1, 0);
|
|
|
|
if (!sh) {
|
|
/* failed to get a stripe - must wait */
|
|
raid5_set_bi_hw_segments(raid_bio, scnt);
|
|
conf->retry_read_aligned = raid_bio;
|
|
return handled;
|
|
}
|
|
|
|
set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
|
|
if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
|
|
release_stripe(sh);
|
|
raid5_set_bi_hw_segments(raid_bio, scnt);
|
|
conf->retry_read_aligned = raid_bio;
|
|
return handled;
|
|
}
|
|
|
|
handle_stripe(sh);
|
|
release_stripe(sh);
|
|
handled++;
|
|
}
|
|
spin_lock_irq(&conf->device_lock);
|
|
remaining = raid5_dec_bi_phys_segments(raid_bio);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
if (remaining == 0)
|
|
bio_endio(raid_bio, 0);
|
|
if (atomic_dec_and_test(&conf->active_aligned_reads))
|
|
wake_up(&conf->wait_for_stripe);
|
|
return handled;
|
|
}
|
|
|
|
|
|
/*
|
|
* This is our raid5 kernel thread.
|
|
*
|
|
* We scan the hash table for stripes which can be handled now.
|
|
* During the scan, completed stripes are saved for us by the interrupt
|
|
* handler, so that they will not have to wait for our next wakeup.
|
|
*/
|
|
static void raid5d(struct mddev *mddev)
|
|
{
|
|
struct stripe_head *sh;
|
|
struct r5conf *conf = mddev->private;
|
|
int handled;
|
|
struct blk_plug plug;
|
|
|
|
pr_debug("+++ raid5d active\n");
|
|
|
|
md_check_recovery(mddev);
|
|
|
|
blk_start_plug(&plug);
|
|
handled = 0;
|
|
spin_lock_irq(&conf->device_lock);
|
|
while (1) {
|
|
struct bio *bio;
|
|
|
|
if (atomic_read(&mddev->plug_cnt) == 0 &&
|
|
!list_empty(&conf->bitmap_list)) {
|
|
/* Now is a good time to flush some bitmap updates */
|
|
conf->seq_flush++;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
bitmap_unplug(mddev->bitmap);
|
|
spin_lock_irq(&conf->device_lock);
|
|
conf->seq_write = conf->seq_flush;
|
|
activate_bit_delay(conf);
|
|
}
|
|
if (atomic_read(&mddev->plug_cnt) == 0)
|
|
raid5_activate_delayed(conf);
|
|
|
|
while ((bio = remove_bio_from_retry(conf))) {
|
|
int ok;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
ok = retry_aligned_read(conf, bio);
|
|
spin_lock_irq(&conf->device_lock);
|
|
if (!ok)
|
|
break;
|
|
handled++;
|
|
}
|
|
|
|
sh = __get_priority_stripe(conf);
|
|
|
|
if (!sh)
|
|
break;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
|
|
handled++;
|
|
handle_stripe(sh);
|
|
release_stripe(sh);
|
|
cond_resched();
|
|
|
|
if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
|
|
md_check_recovery(mddev);
|
|
|
|
spin_lock_irq(&conf->device_lock);
|
|
}
|
|
pr_debug("%d stripes handled\n", handled);
|
|
|
|
spin_unlock_irq(&conf->device_lock);
|
|
|
|
async_tx_issue_pending_all();
|
|
blk_finish_plug(&plug);
|
|
|
|
pr_debug("--- raid5d inactive\n");
|
|
}
|
|
|
|
static ssize_t
|
|
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
if (conf)
|
|
return sprintf(page, "%d\n", conf->max_nr_stripes);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
raid5_set_cache_size(struct mddev *mddev, int size)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
int err;
|
|
|
|
if (size <= 16 || size > 32768)
|
|
return -EINVAL;
|
|
while (size < conf->max_nr_stripes) {
|
|
if (drop_one_stripe(conf))
|
|
conf->max_nr_stripes--;
|
|
else
|
|
break;
|
|
}
|
|
err = md_allow_write(mddev);
|
|
if (err)
|
|
return err;
|
|
while (size > conf->max_nr_stripes) {
|
|
if (grow_one_stripe(conf))
|
|
conf->max_nr_stripes++;
|
|
else break;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(raid5_set_cache_size);
|
|
|
|
static ssize_t
|
|
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
unsigned long new;
|
|
int err;
|
|
|
|
if (len >= PAGE_SIZE)
|
|
return -EINVAL;
|
|
if (!conf)
|
|
return -ENODEV;
|
|
|
|
if (strict_strtoul(page, 10, &new))
|
|
return -EINVAL;
|
|
err = raid5_set_cache_size(mddev, new);
|
|
if (err)
|
|
return err;
|
|
return len;
|
|
}
|
|
|
|
static struct md_sysfs_entry
|
|
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
|
|
raid5_show_stripe_cache_size,
|
|
raid5_store_stripe_cache_size);
|
|
|
|
static ssize_t
|
|
raid5_show_preread_threshold(struct mddev *mddev, char *page)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
if (conf)
|
|
return sprintf(page, "%d\n", conf->bypass_threshold);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t
|
|
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
unsigned long new;
|
|
if (len >= PAGE_SIZE)
|
|
return -EINVAL;
|
|
if (!conf)
|
|
return -ENODEV;
|
|
|
|
if (strict_strtoul(page, 10, &new))
|
|
return -EINVAL;
|
|
if (new > conf->max_nr_stripes)
|
|
return -EINVAL;
|
|
conf->bypass_threshold = new;
|
|
return len;
|
|
}
|
|
|
|
static struct md_sysfs_entry
|
|
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
|
|
S_IRUGO | S_IWUSR,
|
|
raid5_show_preread_threshold,
|
|
raid5_store_preread_threshold);
|
|
|
|
static ssize_t
|
|
stripe_cache_active_show(struct mddev *mddev, char *page)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
if (conf)
|
|
return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static struct md_sysfs_entry
|
|
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
|
|
|
|
static struct attribute *raid5_attrs[] = {
|
|
&raid5_stripecache_size.attr,
|
|
&raid5_stripecache_active.attr,
|
|
&raid5_preread_bypass_threshold.attr,
|
|
NULL,
|
|
};
|
|
static struct attribute_group raid5_attrs_group = {
|
|
.name = NULL,
|
|
.attrs = raid5_attrs,
|
|
};
|
|
|
|
static sector_t
|
|
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
|
|
if (!sectors)
|
|
sectors = mddev->dev_sectors;
|
|
if (!raid_disks)
|
|
/* size is defined by the smallest of previous and new size */
|
|
raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
|
|
|
|
sectors &= ~((sector_t)mddev->chunk_sectors - 1);
|
|
sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
|
|
return sectors * (raid_disks - conf->max_degraded);
|
|
}
|
|
|
|
static void raid5_free_percpu(struct r5conf *conf)
|
|
{
|
|
struct raid5_percpu *percpu;
|
|
unsigned long cpu;
|
|
|
|
if (!conf->percpu)
|
|
return;
|
|
|
|
get_online_cpus();
|
|
for_each_possible_cpu(cpu) {
|
|
percpu = per_cpu_ptr(conf->percpu, cpu);
|
|
safe_put_page(percpu->spare_page);
|
|
kfree(percpu->scribble);
|
|
}
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
unregister_cpu_notifier(&conf->cpu_notify);
|
|
#endif
|
|
put_online_cpus();
|
|
|
|
free_percpu(conf->percpu);
|
|
}
|
|
|
|
static void free_conf(struct r5conf *conf)
|
|
{
|
|
shrink_stripes(conf);
|
|
raid5_free_percpu(conf);
|
|
kfree(conf->disks);
|
|
kfree(conf->stripe_hashtbl);
|
|
kfree(conf);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
|
|
long cpu = (long)hcpu;
|
|
struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
if (conf->level == 6 && !percpu->spare_page)
|
|
percpu->spare_page = alloc_page(GFP_KERNEL);
|
|
if (!percpu->scribble)
|
|
percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
|
|
|
|
if (!percpu->scribble ||
|
|
(conf->level == 6 && !percpu->spare_page)) {
|
|
safe_put_page(percpu->spare_page);
|
|
kfree(percpu->scribble);
|
|
pr_err("%s: failed memory allocation for cpu%ld\n",
|
|
__func__, cpu);
|
|
return notifier_from_errno(-ENOMEM);
|
|
}
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
safe_put_page(percpu->spare_page);
|
|
kfree(percpu->scribble);
|
|
percpu->spare_page = NULL;
|
|
percpu->scribble = NULL;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
#endif
|
|
|
|
static int raid5_alloc_percpu(struct r5conf *conf)
|
|
{
|
|
unsigned long cpu;
|
|
struct page *spare_page;
|
|
struct raid5_percpu __percpu *allcpus;
|
|
void *scribble;
|
|
int err;
|
|
|
|
allcpus = alloc_percpu(struct raid5_percpu);
|
|
if (!allcpus)
|
|
return -ENOMEM;
|
|
conf->percpu = allcpus;
|
|
|
|
get_online_cpus();
|
|
err = 0;
|
|
for_each_present_cpu(cpu) {
|
|
if (conf->level == 6) {
|
|
spare_page = alloc_page(GFP_KERNEL);
|
|
if (!spare_page) {
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
|
|
}
|
|
scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
|
|
if (!scribble) {
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
|
|
}
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
conf->cpu_notify.notifier_call = raid456_cpu_notify;
|
|
conf->cpu_notify.priority = 0;
|
|
if (err == 0)
|
|
err = register_cpu_notifier(&conf->cpu_notify);
|
|
#endif
|
|
put_online_cpus();
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct r5conf *setup_conf(struct mddev *mddev)
|
|
{
|
|
struct r5conf *conf;
|
|
int raid_disk, memory, max_disks;
|
|
struct md_rdev *rdev;
|
|
struct disk_info *disk;
|
|
|
|
if (mddev->new_level != 5
|
|
&& mddev->new_level != 4
|
|
&& mddev->new_level != 6) {
|
|
printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
|
|
mdname(mddev), mddev->new_level);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
if ((mddev->new_level == 5
|
|
&& !algorithm_valid_raid5(mddev->new_layout)) ||
|
|
(mddev->new_level == 6
|
|
&& !algorithm_valid_raid6(mddev->new_layout))) {
|
|
printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
|
|
mdname(mddev), mddev->new_layout);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
if (mddev->new_level == 6 && mddev->raid_disks < 4) {
|
|
printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
|
|
mdname(mddev), mddev->raid_disks);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (!mddev->new_chunk_sectors ||
|
|
(mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
|
|
!is_power_of_2(mddev->new_chunk_sectors)) {
|
|
printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
|
|
mdname(mddev), mddev->new_chunk_sectors << 9);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
|
|
if (conf == NULL)
|
|
goto abort;
|
|
spin_lock_init(&conf->device_lock);
|
|
init_waitqueue_head(&conf->wait_for_stripe);
|
|
init_waitqueue_head(&conf->wait_for_overlap);
|
|
INIT_LIST_HEAD(&conf->handle_list);
|
|
INIT_LIST_HEAD(&conf->hold_list);
|
|
INIT_LIST_HEAD(&conf->delayed_list);
|
|
INIT_LIST_HEAD(&conf->bitmap_list);
|
|
INIT_LIST_HEAD(&conf->inactive_list);
|
|
atomic_set(&conf->active_stripes, 0);
|
|
atomic_set(&conf->preread_active_stripes, 0);
|
|
atomic_set(&conf->active_aligned_reads, 0);
|
|
conf->bypass_threshold = BYPASS_THRESHOLD;
|
|
conf->recovery_disabled = mddev->recovery_disabled - 1;
|
|
|
|
conf->raid_disks = mddev->raid_disks;
|
|
if (mddev->reshape_position == MaxSector)
|
|
conf->previous_raid_disks = mddev->raid_disks;
|
|
else
|
|
conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
|
|
max_disks = max(conf->raid_disks, conf->previous_raid_disks);
|
|
conf->scribble_len = scribble_len(max_disks);
|
|
|
|
conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
|
|
GFP_KERNEL);
|
|
if (!conf->disks)
|
|
goto abort;
|
|
|
|
conf->mddev = mddev;
|
|
|
|
if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
|
|
goto abort;
|
|
|
|
conf->level = mddev->new_level;
|
|
if (raid5_alloc_percpu(conf) != 0)
|
|
goto abort;
|
|
|
|
pr_debug("raid456: run(%s) called.\n", mdname(mddev));
|
|
|
|
list_for_each_entry(rdev, &mddev->disks, same_set) {
|
|
raid_disk = rdev->raid_disk;
|
|
if (raid_disk >= max_disks
|
|
|| raid_disk < 0)
|
|
continue;
|
|
disk = conf->disks + raid_disk;
|
|
|
|
disk->rdev = rdev;
|
|
|
|
if (test_bit(In_sync, &rdev->flags)) {
|
|
char b[BDEVNAME_SIZE];
|
|
printk(KERN_INFO "md/raid:%s: device %s operational as raid"
|
|
" disk %d\n",
|
|
mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
|
|
} else if (rdev->saved_raid_disk != raid_disk)
|
|
/* Cannot rely on bitmap to complete recovery */
|
|
conf->fullsync = 1;
|
|
}
|
|
|
|
conf->chunk_sectors = mddev->new_chunk_sectors;
|
|
conf->level = mddev->new_level;
|
|
if (conf->level == 6)
|
|
conf->max_degraded = 2;
|
|
else
|
|
conf->max_degraded = 1;
|
|
conf->algorithm = mddev->new_layout;
|
|
conf->max_nr_stripes = NR_STRIPES;
|
|
conf->reshape_progress = mddev->reshape_position;
|
|
if (conf->reshape_progress != MaxSector) {
|
|
conf->prev_chunk_sectors = mddev->chunk_sectors;
|
|
conf->prev_algo = mddev->layout;
|
|
}
|
|
|
|
memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
|
|
max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
|
|
if (grow_stripes(conf, conf->max_nr_stripes)) {
|
|
printk(KERN_ERR
|
|
"md/raid:%s: couldn't allocate %dkB for buffers\n",
|
|
mdname(mddev), memory);
|
|
goto abort;
|
|
} else
|
|
printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
|
|
mdname(mddev), memory);
|
|
|
|
conf->thread = md_register_thread(raid5d, mddev, NULL);
|
|
if (!conf->thread) {
|
|
printk(KERN_ERR
|
|
"md/raid:%s: couldn't allocate thread.\n",
|
|
mdname(mddev));
|
|
goto abort;
|
|
}
|
|
|
|
return conf;
|
|
|
|
abort:
|
|
if (conf) {
|
|
free_conf(conf);
|
|
return ERR_PTR(-EIO);
|
|
} else
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
|
|
static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
|
|
{
|
|
switch (algo) {
|
|
case ALGORITHM_PARITY_0:
|
|
if (raid_disk < max_degraded)
|
|
return 1;
|
|
break;
|
|
case ALGORITHM_PARITY_N:
|
|
if (raid_disk >= raid_disks - max_degraded)
|
|
return 1;
|
|
break;
|
|
case ALGORITHM_PARITY_0_6:
|
|
if (raid_disk == 0 ||
|
|
raid_disk == raid_disks - 1)
|
|
return 1;
|
|
break;
|
|
case ALGORITHM_LEFT_ASYMMETRIC_6:
|
|
case ALGORITHM_RIGHT_ASYMMETRIC_6:
|
|
case ALGORITHM_LEFT_SYMMETRIC_6:
|
|
case ALGORITHM_RIGHT_SYMMETRIC_6:
|
|
if (raid_disk == raid_disks - 1)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int run(struct mddev *mddev)
|
|
{
|
|
struct r5conf *conf;
|
|
int working_disks = 0;
|
|
int dirty_parity_disks = 0;
|
|
struct md_rdev *rdev;
|
|
sector_t reshape_offset = 0;
|
|
|
|
if (mddev->recovery_cp != MaxSector)
|
|
printk(KERN_NOTICE "md/raid:%s: not clean"
|
|
" -- starting background reconstruction\n",
|
|
mdname(mddev));
|
|
if (mddev->reshape_position != MaxSector) {
|
|
/* Check that we can continue the reshape.
|
|
* Currently only disks can change, it must
|
|
* increase, and we must be past the point where
|
|
* a stripe over-writes itself
|
|
*/
|
|
sector_t here_new, here_old;
|
|
int old_disks;
|
|
int max_degraded = (mddev->level == 6 ? 2 : 1);
|
|
|
|
if (mddev->new_level != mddev->level) {
|
|
printk(KERN_ERR "md/raid:%s: unsupported reshape "
|
|
"required - aborting.\n",
|
|
mdname(mddev));
|
|
return -EINVAL;
|
|
}
|
|
old_disks = mddev->raid_disks - mddev->delta_disks;
|
|
/* reshape_position must be on a new-stripe boundary, and one
|
|
* further up in new geometry must map after here in old
|
|
* geometry.
|
|
*/
|
|
here_new = mddev->reshape_position;
|
|
if (sector_div(here_new, mddev->new_chunk_sectors *
|
|
(mddev->raid_disks - max_degraded))) {
|
|
printk(KERN_ERR "md/raid:%s: reshape_position not "
|
|
"on a stripe boundary\n", mdname(mddev));
|
|
return -EINVAL;
|
|
}
|
|
reshape_offset = here_new * mddev->new_chunk_sectors;
|
|
/* here_new is the stripe we will write to */
|
|
here_old = mddev->reshape_position;
|
|
sector_div(here_old, mddev->chunk_sectors *
|
|
(old_disks-max_degraded));
|
|
/* here_old is the first stripe that we might need to read
|
|
* from */
|
|
if (mddev->delta_disks == 0) {
|
|
/* We cannot be sure it is safe to start an in-place
|
|
* reshape. It is only safe if user-space if monitoring
|
|
* and taking constant backups.
|
|
* mdadm always starts a situation like this in
|
|
* readonly mode so it can take control before
|
|
* allowing any writes. So just check for that.
|
|
*/
|
|
if ((here_new * mddev->new_chunk_sectors !=
|
|
here_old * mddev->chunk_sectors) ||
|
|
mddev->ro == 0) {
|
|
printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
|
|
" in read-only mode - aborting\n",
|
|
mdname(mddev));
|
|
return -EINVAL;
|
|
}
|
|
} else if (mddev->delta_disks < 0
|
|
? (here_new * mddev->new_chunk_sectors <=
|
|
here_old * mddev->chunk_sectors)
|
|
: (here_new * mddev->new_chunk_sectors >=
|
|
here_old * mddev->chunk_sectors)) {
|
|
/* Reading from the same stripe as writing to - bad */
|
|
printk(KERN_ERR "md/raid:%s: reshape_position too early for "
|
|
"auto-recovery - aborting.\n",
|
|
mdname(mddev));
|
|
return -EINVAL;
|
|
}
|
|
printk(KERN_INFO "md/raid:%s: reshape will continue\n",
|
|
mdname(mddev));
|
|
/* OK, we should be able to continue; */
|
|
} else {
|
|
BUG_ON(mddev->level != mddev->new_level);
|
|
BUG_ON(mddev->layout != mddev->new_layout);
|
|
BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
|
|
BUG_ON(mddev->delta_disks != 0);
|
|
}
|
|
|
|
if (mddev->private == NULL)
|
|
conf = setup_conf(mddev);
|
|
else
|
|
conf = mddev->private;
|
|
|
|
if (IS_ERR(conf))
|
|
return PTR_ERR(conf);
|
|
|
|
mddev->thread = conf->thread;
|
|
conf->thread = NULL;
|
|
mddev->private = conf;
|
|
|
|
/*
|
|
* 0 for a fully functional array, 1 or 2 for a degraded array.
|
|
*/
|
|
list_for_each_entry(rdev, &mddev->disks, same_set) {
|
|
if (rdev->raid_disk < 0)
|
|
continue;
|
|
if (test_bit(In_sync, &rdev->flags)) {
|
|
working_disks++;
|
|
continue;
|
|
}
|
|
/* This disc is not fully in-sync. However if it
|
|
* just stored parity (beyond the recovery_offset),
|
|
* when we don't need to be concerned about the
|
|
* array being dirty.
|
|
* When reshape goes 'backwards', we never have
|
|
* partially completed devices, so we only need
|
|
* to worry about reshape going forwards.
|
|
*/
|
|
/* Hack because v0.91 doesn't store recovery_offset properly. */
|
|
if (mddev->major_version == 0 &&
|
|
mddev->minor_version > 90)
|
|
rdev->recovery_offset = reshape_offset;
|
|
|
|
if (rdev->recovery_offset < reshape_offset) {
|
|
/* We need to check old and new layout */
|
|
if (!only_parity(rdev->raid_disk,
|
|
conf->algorithm,
|
|
conf->raid_disks,
|
|
conf->max_degraded))
|
|
continue;
|
|
}
|
|
if (!only_parity(rdev->raid_disk,
|
|
conf->prev_algo,
|
|
conf->previous_raid_disks,
|
|
conf->max_degraded))
|
|
continue;
|
|
dirty_parity_disks++;
|
|
}
|
|
|
|
mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
|
|
- working_disks);
|
|
|
|
if (has_failed(conf)) {
|
|
printk(KERN_ERR "md/raid:%s: not enough operational devices"
|
|
" (%d/%d failed)\n",
|
|
mdname(mddev), mddev->degraded, conf->raid_disks);
|
|
goto abort;
|
|
}
|
|
|
|
/* device size must be a multiple of chunk size */
|
|
mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
|
|
mddev->resync_max_sectors = mddev->dev_sectors;
|
|
|
|
if (mddev->degraded > dirty_parity_disks &&
|
|
mddev->recovery_cp != MaxSector) {
|
|
if (mddev->ok_start_degraded)
|
|
printk(KERN_WARNING
|
|
"md/raid:%s: starting dirty degraded array"
|
|
" - data corruption possible.\n",
|
|
mdname(mddev));
|
|
else {
|
|
printk(KERN_ERR
|
|
"md/raid:%s: cannot start dirty degraded array.\n",
|
|
mdname(mddev));
|
|
goto abort;
|
|
}
|
|
}
|
|
|
|
if (mddev->degraded == 0)
|
|
printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
|
|
" devices, algorithm %d\n", mdname(mddev), conf->level,
|
|
mddev->raid_disks-mddev->degraded, mddev->raid_disks,
|
|
mddev->new_layout);
|
|
else
|
|
printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
|
|
" out of %d devices, algorithm %d\n",
|
|
mdname(mddev), conf->level,
|
|
mddev->raid_disks - mddev->degraded,
|
|
mddev->raid_disks, mddev->new_layout);
|
|
|
|
print_raid5_conf(conf);
|
|
|
|
if (conf->reshape_progress != MaxSector) {
|
|
conf->reshape_safe = conf->reshape_progress;
|
|
atomic_set(&conf->reshape_stripes, 0);
|
|
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
|
|
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
|
|
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
|
|
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
|
|
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
|
|
"reshape");
|
|
}
|
|
|
|
|
|
/* Ok, everything is just fine now */
|
|
if (mddev->to_remove == &raid5_attrs_group)
|
|
mddev->to_remove = NULL;
|
|
else if (mddev->kobj.sd &&
|
|
sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
|
|
printk(KERN_WARNING
|
|
"raid5: failed to create sysfs attributes for %s\n",
|
|
mdname(mddev));
|
|
md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
|
|
|
|
if (mddev->queue) {
|
|
int chunk_size;
|
|
/* read-ahead size must cover two whole stripes, which
|
|
* is 2 * (datadisks) * chunksize where 'n' is the
|
|
* number of raid devices
|
|
*/
|
|
int data_disks = conf->previous_raid_disks - conf->max_degraded;
|
|
int stripe = data_disks *
|
|
((mddev->chunk_sectors << 9) / PAGE_SIZE);
|
|
if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
|
|
mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
|
|
|
|
blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
|
|
|
|
mddev->queue->backing_dev_info.congested_data = mddev;
|
|
mddev->queue->backing_dev_info.congested_fn = raid5_congested;
|
|
|
|
chunk_size = mddev->chunk_sectors << 9;
|
|
blk_queue_io_min(mddev->queue, chunk_size);
|
|
blk_queue_io_opt(mddev->queue, chunk_size *
|
|
(conf->raid_disks - conf->max_degraded));
|
|
|
|
list_for_each_entry(rdev, &mddev->disks, same_set)
|
|
disk_stack_limits(mddev->gendisk, rdev->bdev,
|
|
rdev->data_offset << 9);
|
|
}
|
|
|
|
return 0;
|
|
abort:
|
|
md_unregister_thread(&mddev->thread);
|
|
print_raid5_conf(conf);
|
|
free_conf(conf);
|
|
mddev->private = NULL;
|
|
printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
|
|
return -EIO;
|
|
}
|
|
|
|
static int stop(struct mddev *mddev)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
|
|
md_unregister_thread(&mddev->thread);
|
|
if (mddev->queue)
|
|
mddev->queue->backing_dev_info.congested_fn = NULL;
|
|
free_conf(conf);
|
|
mddev->private = NULL;
|
|
mddev->to_remove = &raid5_attrs_group;
|
|
return 0;
|
|
}
|
|
|
|
static void status(struct seq_file *seq, struct mddev *mddev)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
int i;
|
|
|
|
seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
|
|
mddev->chunk_sectors / 2, mddev->layout);
|
|
seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
|
|
for (i = 0; i < conf->raid_disks; i++)
|
|
seq_printf (seq, "%s",
|
|
conf->disks[i].rdev &&
|
|
test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
|
|
seq_printf (seq, "]");
|
|
}
|
|
|
|
static void print_raid5_conf (struct r5conf *conf)
|
|
{
|
|
int i;
|
|
struct disk_info *tmp;
|
|
|
|
printk(KERN_DEBUG "RAID conf printout:\n");
|
|
if (!conf) {
|
|
printk("(conf==NULL)\n");
|
|
return;
|
|
}
|
|
printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
|
|
conf->raid_disks,
|
|
conf->raid_disks - conf->mddev->degraded);
|
|
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
char b[BDEVNAME_SIZE];
|
|
tmp = conf->disks + i;
|
|
if (tmp->rdev)
|
|
printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
|
|
i, !test_bit(Faulty, &tmp->rdev->flags),
|
|
bdevname(tmp->rdev->bdev, b));
|
|
}
|
|
}
|
|
|
|
static int raid5_spare_active(struct mddev *mddev)
|
|
{
|
|
int i;
|
|
struct r5conf *conf = mddev->private;
|
|
struct disk_info *tmp;
|
|
int count = 0;
|
|
unsigned long flags;
|
|
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
tmp = conf->disks + i;
|
|
if (tmp->rdev
|
|
&& tmp->rdev->recovery_offset == MaxSector
|
|
&& !test_bit(Faulty, &tmp->rdev->flags)
|
|
&& !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
|
|
count++;
|
|
sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
|
|
}
|
|
}
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
mddev->degraded -= count;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
print_raid5_conf(conf);
|
|
return count;
|
|
}
|
|
|
|
static int raid5_remove_disk(struct mddev *mddev, int number)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
int err = 0;
|
|
struct md_rdev *rdev;
|
|
struct disk_info *p = conf->disks + number;
|
|
|
|
print_raid5_conf(conf);
|
|
rdev = p->rdev;
|
|
if (rdev) {
|
|
if (number >= conf->raid_disks &&
|
|
conf->reshape_progress == MaxSector)
|
|
clear_bit(In_sync, &rdev->flags);
|
|
|
|
if (test_bit(In_sync, &rdev->flags) ||
|
|
atomic_read(&rdev->nr_pending)) {
|
|
err = -EBUSY;
|
|
goto abort;
|
|
}
|
|
/* Only remove non-faulty devices if recovery
|
|
* isn't possible.
|
|
*/
|
|
if (!test_bit(Faulty, &rdev->flags) &&
|
|
mddev->recovery_disabled != conf->recovery_disabled &&
|
|
!has_failed(conf) &&
|
|
number < conf->raid_disks) {
|
|
err = -EBUSY;
|
|
goto abort;
|
|
}
|
|
p->rdev = NULL;
|
|
synchronize_rcu();
|
|
if (atomic_read(&rdev->nr_pending)) {
|
|
/* lost the race, try later */
|
|
err = -EBUSY;
|
|
p->rdev = rdev;
|
|
}
|
|
}
|
|
abort:
|
|
|
|
print_raid5_conf(conf);
|
|
return err;
|
|
}
|
|
|
|
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
int err = -EEXIST;
|
|
int disk;
|
|
struct disk_info *p;
|
|
int first = 0;
|
|
int last = conf->raid_disks - 1;
|
|
|
|
if (mddev->recovery_disabled == conf->recovery_disabled)
|
|
return -EBUSY;
|
|
|
|
if (has_failed(conf))
|
|
/* no point adding a device */
|
|
return -EINVAL;
|
|
|
|
if (rdev->raid_disk >= 0)
|
|
first = last = rdev->raid_disk;
|
|
|
|
/*
|
|
* find the disk ... but prefer rdev->saved_raid_disk
|
|
* if possible.
|
|
*/
|
|
if (rdev->saved_raid_disk >= 0 &&
|
|
rdev->saved_raid_disk >= first &&
|
|
conf->disks[rdev->saved_raid_disk].rdev == NULL)
|
|
disk = rdev->saved_raid_disk;
|
|
else
|
|
disk = first;
|
|
for ( ; disk <= last ; disk++)
|
|
if ((p=conf->disks + disk)->rdev == NULL) {
|
|
clear_bit(In_sync, &rdev->flags);
|
|
rdev->raid_disk = disk;
|
|
err = 0;
|
|
if (rdev->saved_raid_disk != disk)
|
|
conf->fullsync = 1;
|
|
rcu_assign_pointer(p->rdev, rdev);
|
|
break;
|
|
}
|
|
print_raid5_conf(conf);
|
|
return err;
|
|
}
|
|
|
|
static int raid5_resize(struct mddev *mddev, sector_t sectors)
|
|
{
|
|
/* no resync is happening, and there is enough space
|
|
* on all devices, so we can resize.
|
|
* We need to make sure resync covers any new space.
|
|
* If the array is shrinking we should possibly wait until
|
|
* any io in the removed space completes, but it hardly seems
|
|
* worth it.
|
|
*/
|
|
sectors &= ~((sector_t)mddev->chunk_sectors - 1);
|
|
md_set_array_sectors(mddev, raid5_size(mddev, sectors,
|
|
mddev->raid_disks));
|
|
if (mddev->array_sectors >
|
|
raid5_size(mddev, sectors, mddev->raid_disks))
|
|
return -EINVAL;
|
|
set_capacity(mddev->gendisk, mddev->array_sectors);
|
|
revalidate_disk(mddev->gendisk);
|
|
if (sectors > mddev->dev_sectors &&
|
|
mddev->recovery_cp > mddev->dev_sectors) {
|
|
mddev->recovery_cp = mddev->dev_sectors;
|
|
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
|
|
}
|
|
mddev->dev_sectors = sectors;
|
|
mddev->resync_max_sectors = sectors;
|
|
return 0;
|
|
}
|
|
|
|
static int check_stripe_cache(struct mddev *mddev)
|
|
{
|
|
/* Can only proceed if there are plenty of stripe_heads.
|
|
* We need a minimum of one full stripe,, and for sensible progress
|
|
* it is best to have about 4 times that.
|
|
* If we require 4 times, then the default 256 4K stripe_heads will
|
|
* allow for chunk sizes up to 256K, which is probably OK.
|
|
* If the chunk size is greater, user-space should request more
|
|
* stripe_heads first.
|
|
*/
|
|
struct r5conf *conf = mddev->private;
|
|
if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
|
|
> conf->max_nr_stripes ||
|
|
((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
|
|
> conf->max_nr_stripes) {
|
|
printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
|
|
mdname(mddev),
|
|
((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
|
|
/ STRIPE_SIZE)*4);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int check_reshape(struct mddev *mddev)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
|
|
if (mddev->delta_disks == 0 &&
|
|
mddev->new_layout == mddev->layout &&
|
|
mddev->new_chunk_sectors == mddev->chunk_sectors)
|
|
return 0; /* nothing to do */
|
|
if (mddev->bitmap)
|
|
/* Cannot grow a bitmap yet */
|
|
return -EBUSY;
|
|
if (has_failed(conf))
|
|
return -EINVAL;
|
|
if (mddev->delta_disks < 0) {
|
|
/* We might be able to shrink, but the devices must
|
|
* be made bigger first.
|
|
* For raid6, 4 is the minimum size.
|
|
* Otherwise 2 is the minimum
|
|
*/
|
|
int min = 2;
|
|
if (mddev->level == 6)
|
|
min = 4;
|
|
if (mddev->raid_disks + mddev->delta_disks < min)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!check_stripe_cache(mddev))
|
|
return -ENOSPC;
|
|
|
|
return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
|
|
}
|
|
|
|
static int raid5_start_reshape(struct mddev *mddev)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
struct md_rdev *rdev;
|
|
int spares = 0;
|
|
unsigned long flags;
|
|
|
|
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
|
|
return -EBUSY;
|
|
|
|
if (!check_stripe_cache(mddev))
|
|
return -ENOSPC;
|
|
|
|
list_for_each_entry(rdev, &mddev->disks, same_set)
|
|
if (!test_bit(In_sync, &rdev->flags)
|
|
&& !test_bit(Faulty, &rdev->flags))
|
|
spares++;
|
|
|
|
if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
|
|
/* Not enough devices even to make a degraded array
|
|
* of that size
|
|
*/
|
|
return -EINVAL;
|
|
|
|
/* Refuse to reduce size of the array. Any reductions in
|
|
* array size must be through explicit setting of array_size
|
|
* attribute.
|
|
*/
|
|
if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
|
|
< mddev->array_sectors) {
|
|
printk(KERN_ERR "md/raid:%s: array size must be reduced "
|
|
"before number of disks\n", mdname(mddev));
|
|
return -EINVAL;
|
|
}
|
|
|
|
atomic_set(&conf->reshape_stripes, 0);
|
|
spin_lock_irq(&conf->device_lock);
|
|
conf->previous_raid_disks = conf->raid_disks;
|
|
conf->raid_disks += mddev->delta_disks;
|
|
conf->prev_chunk_sectors = conf->chunk_sectors;
|
|
conf->chunk_sectors = mddev->new_chunk_sectors;
|
|
conf->prev_algo = conf->algorithm;
|
|
conf->algorithm = mddev->new_layout;
|
|
if (mddev->delta_disks < 0)
|
|
conf->reshape_progress = raid5_size(mddev, 0, 0);
|
|
else
|
|
conf->reshape_progress = 0;
|
|
conf->reshape_safe = conf->reshape_progress;
|
|
conf->generation++;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
|
|
/* Add some new drives, as many as will fit.
|
|
* We know there are enough to make the newly sized array work.
|
|
* Don't add devices if we are reducing the number of
|
|
* devices in the array. This is because it is not possible
|
|
* to correctly record the "partially reconstructed" state of
|
|
* such devices during the reshape and confusion could result.
|
|
*/
|
|
if (mddev->delta_disks >= 0) {
|
|
int added_devices = 0;
|
|
list_for_each_entry(rdev, &mddev->disks, same_set)
|
|
if (rdev->raid_disk < 0 &&
|
|
!test_bit(Faulty, &rdev->flags)) {
|
|
if (raid5_add_disk(mddev, rdev) == 0) {
|
|
if (rdev->raid_disk
|
|
>= conf->previous_raid_disks) {
|
|
set_bit(In_sync, &rdev->flags);
|
|
added_devices++;
|
|
} else
|
|
rdev->recovery_offset = 0;
|
|
|
|
if (sysfs_link_rdev(mddev, rdev))
|
|
/* Failure here is OK */;
|
|
}
|
|
} else if (rdev->raid_disk >= conf->previous_raid_disks
|
|
&& !test_bit(Faulty, &rdev->flags)) {
|
|
/* This is a spare that was manually added */
|
|
set_bit(In_sync, &rdev->flags);
|
|
added_devices++;
|
|
}
|
|
|
|
/* When a reshape changes the number of devices,
|
|
* ->degraded is measured against the larger of the
|
|
* pre and post number of devices.
|
|
*/
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
|
|
- added_devices;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
}
|
|
mddev->raid_disks = conf->raid_disks;
|
|
mddev->reshape_position = conf->reshape_progress;
|
|
set_bit(MD_CHANGE_DEVS, &mddev->flags);
|
|
|
|
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
|
|
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
|
|
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
|
|
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
|
|
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
|
|
"reshape");
|
|
if (!mddev->sync_thread) {
|
|
mddev->recovery = 0;
|
|
spin_lock_irq(&conf->device_lock);
|
|
mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
|
|
conf->reshape_progress = MaxSector;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
return -EAGAIN;
|
|
}
|
|
conf->reshape_checkpoint = jiffies;
|
|
md_wakeup_thread(mddev->sync_thread);
|
|
md_new_event(mddev);
|
|
return 0;
|
|
}
|
|
|
|
/* This is called from the reshape thread and should make any
|
|
* changes needed in 'conf'
|
|
*/
|
|
static void end_reshape(struct r5conf *conf)
|
|
{
|
|
|
|
if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
|
|
|
|
spin_lock_irq(&conf->device_lock);
|
|
conf->previous_raid_disks = conf->raid_disks;
|
|
conf->reshape_progress = MaxSector;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
wake_up(&conf->wait_for_overlap);
|
|
|
|
/* read-ahead size must cover two whole stripes, which is
|
|
* 2 * (datadisks) * chunksize where 'n' is the number of raid devices
|
|
*/
|
|
if (conf->mddev->queue) {
|
|
int data_disks = conf->raid_disks - conf->max_degraded;
|
|
int stripe = data_disks * ((conf->chunk_sectors << 9)
|
|
/ PAGE_SIZE);
|
|
if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
|
|
conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This is called from the raid5d thread with mddev_lock held.
|
|
* It makes config changes to the device.
|
|
*/
|
|
static void raid5_finish_reshape(struct mddev *mddev)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
|
|
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
|
|
|
|
if (mddev->delta_disks > 0) {
|
|
md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
|
|
set_capacity(mddev->gendisk, mddev->array_sectors);
|
|
revalidate_disk(mddev->gendisk);
|
|
} else {
|
|
int d;
|
|
mddev->degraded = conf->raid_disks;
|
|
for (d = 0; d < conf->raid_disks ; d++)
|
|
if (conf->disks[d].rdev &&
|
|
test_bit(In_sync,
|
|
&conf->disks[d].rdev->flags))
|
|
mddev->degraded--;
|
|
for (d = conf->raid_disks ;
|
|
d < conf->raid_disks - mddev->delta_disks;
|
|
d++) {
|
|
struct md_rdev *rdev = conf->disks[d].rdev;
|
|
if (rdev && raid5_remove_disk(mddev, d) == 0) {
|
|
sysfs_unlink_rdev(mddev, rdev);
|
|
rdev->raid_disk = -1;
|
|
}
|
|
}
|
|
}
|
|
mddev->layout = conf->algorithm;
|
|
mddev->chunk_sectors = conf->chunk_sectors;
|
|
mddev->reshape_position = MaxSector;
|
|
mddev->delta_disks = 0;
|
|
}
|
|
}
|
|
|
|
static void raid5_quiesce(struct mddev *mddev, int state)
|
|
{
|
|
struct r5conf *conf = mddev->private;
|
|
|
|
switch(state) {
|
|
case 2: /* resume for a suspend */
|
|
wake_up(&conf->wait_for_overlap);
|
|
break;
|
|
|
|
case 1: /* stop all writes */
|
|
spin_lock_irq(&conf->device_lock);
|
|
/* '2' tells resync/reshape to pause so that all
|
|
* active stripes can drain
|
|
*/
|
|
conf->quiesce = 2;
|
|
wait_event_lock_irq(conf->wait_for_stripe,
|
|
atomic_read(&conf->active_stripes) == 0 &&
|
|
atomic_read(&conf->active_aligned_reads) == 0,
|
|
conf->device_lock, /* nothing */);
|
|
conf->quiesce = 1;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
/* allow reshape to continue */
|
|
wake_up(&conf->wait_for_overlap);
|
|
break;
|
|
|
|
case 0: /* re-enable writes */
|
|
spin_lock_irq(&conf->device_lock);
|
|
conf->quiesce = 0;
|
|
wake_up(&conf->wait_for_stripe);
|
|
wake_up(&conf->wait_for_overlap);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
|
|
{
|
|
struct r0conf *raid0_conf = mddev->private;
|
|
sector_t sectors;
|
|
|
|
/* for raid0 takeover only one zone is supported */
|
|
if (raid0_conf->nr_strip_zones > 1) {
|
|
printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
|
|
mdname(mddev));
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
sectors = raid0_conf->strip_zone[0].zone_end;
|
|
sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
|
|
mddev->dev_sectors = sectors;
|
|
mddev->new_level = level;
|
|
mddev->new_layout = ALGORITHM_PARITY_N;
|
|
mddev->new_chunk_sectors = mddev->chunk_sectors;
|
|
mddev->raid_disks += 1;
|
|
mddev->delta_disks = 1;
|
|
/* make sure it will be not marked as dirty */
|
|
mddev->recovery_cp = MaxSector;
|
|
|
|
return setup_conf(mddev);
|
|
}
|
|
|
|
|
|
static void *raid5_takeover_raid1(struct mddev *mddev)
|
|
{
|
|
int chunksect;
|
|
|
|
if (mddev->raid_disks != 2 ||
|
|
mddev->degraded > 1)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Should check if there are write-behind devices? */
|
|
|
|
chunksect = 64*2; /* 64K by default */
|
|
|
|
/* The array must be an exact multiple of chunksize */
|
|
while (chunksect && (mddev->array_sectors & (chunksect-1)))
|
|
chunksect >>= 1;
|
|
|
|
if ((chunksect<<9) < STRIPE_SIZE)
|
|
/* array size does not allow a suitable chunk size */
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
mddev->new_level = 5;
|
|
mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
|
|
mddev->new_chunk_sectors = chunksect;
|
|
|
|
return setup_conf(mddev);
|
|
}
|
|
|
|
static void *raid5_takeover_raid6(struct mddev *mddev)
|
|
{
|
|
int new_layout;
|
|
|
|
switch (mddev->layout) {
|
|
case ALGORITHM_LEFT_ASYMMETRIC_6:
|
|
new_layout = ALGORITHM_LEFT_ASYMMETRIC;
|
|
break;
|
|
case ALGORITHM_RIGHT_ASYMMETRIC_6:
|
|
new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
|
|
break;
|
|
case ALGORITHM_LEFT_SYMMETRIC_6:
|
|
new_layout = ALGORITHM_LEFT_SYMMETRIC;
|
|
break;
|
|
case ALGORITHM_RIGHT_SYMMETRIC_6:
|
|
new_layout = ALGORITHM_RIGHT_SYMMETRIC;
|
|
break;
|
|
case ALGORITHM_PARITY_0_6:
|
|
new_layout = ALGORITHM_PARITY_0;
|
|
break;
|
|
case ALGORITHM_PARITY_N:
|
|
new_layout = ALGORITHM_PARITY_N;
|
|
break;
|
|
default:
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
mddev->new_level = 5;
|
|
mddev->new_layout = new_layout;
|
|
mddev->delta_disks = -1;
|
|
mddev->raid_disks -= 1;
|
|
return setup_conf(mddev);
|
|
}
|
|
|
|
|
|
static int raid5_check_reshape(struct mddev *mddev)
|
|
{
|
|
/* For a 2-drive array, the layout and chunk size can be changed
|
|
* immediately as not restriping is needed.
|
|
* For larger arrays we record the new value - after validation
|
|
* to be used by a reshape pass.
|
|
*/
|
|
struct r5conf *conf = mddev->private;
|
|
int new_chunk = mddev->new_chunk_sectors;
|
|
|
|
if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
|
|
return -EINVAL;
|
|
if (new_chunk > 0) {
|
|
if (!is_power_of_2(new_chunk))
|
|
return -EINVAL;
|
|
if (new_chunk < (PAGE_SIZE>>9))
|
|
return -EINVAL;
|
|
if (mddev->array_sectors & (new_chunk-1))
|
|
/* not factor of array size */
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* They look valid */
|
|
|
|
if (mddev->raid_disks == 2) {
|
|
/* can make the change immediately */
|
|
if (mddev->new_layout >= 0) {
|
|
conf->algorithm = mddev->new_layout;
|
|
mddev->layout = mddev->new_layout;
|
|
}
|
|
if (new_chunk > 0) {
|
|
conf->chunk_sectors = new_chunk ;
|
|
mddev->chunk_sectors = new_chunk;
|
|
}
|
|
set_bit(MD_CHANGE_DEVS, &mddev->flags);
|
|
md_wakeup_thread(mddev->thread);
|
|
}
|
|
return check_reshape(mddev);
|
|
}
|
|
|
|
static int raid6_check_reshape(struct mddev *mddev)
|
|
{
|
|
int new_chunk = mddev->new_chunk_sectors;
|
|
|
|
if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
|
|
return -EINVAL;
|
|
if (new_chunk > 0) {
|
|
if (!is_power_of_2(new_chunk))
|
|
return -EINVAL;
|
|
if (new_chunk < (PAGE_SIZE >> 9))
|
|
return -EINVAL;
|
|
if (mddev->array_sectors & (new_chunk-1))
|
|
/* not factor of array size */
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* They look valid */
|
|
return check_reshape(mddev);
|
|
}
|
|
|
|
static void *raid5_takeover(struct mddev *mddev)
|
|
{
|
|
/* raid5 can take over:
|
|
* raid0 - if there is only one strip zone - make it a raid4 layout
|
|
* raid1 - if there are two drives. We need to know the chunk size
|
|
* raid4 - trivial - just use a raid4 layout.
|
|
* raid6 - Providing it is a *_6 layout
|
|
*/
|
|
if (mddev->level == 0)
|
|
return raid45_takeover_raid0(mddev, 5);
|
|
if (mddev->level == 1)
|
|
return raid5_takeover_raid1(mddev);
|
|
if (mddev->level == 4) {
|
|
mddev->new_layout = ALGORITHM_PARITY_N;
|
|
mddev->new_level = 5;
|
|
return setup_conf(mddev);
|
|
}
|
|
if (mddev->level == 6)
|
|
return raid5_takeover_raid6(mddev);
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
static void *raid4_takeover(struct mddev *mddev)
|
|
{
|
|
/* raid4 can take over:
|
|
* raid0 - if there is only one strip zone
|
|
* raid5 - if layout is right
|
|
*/
|
|
if (mddev->level == 0)
|
|
return raid45_takeover_raid0(mddev, 4);
|
|
if (mddev->level == 5 &&
|
|
mddev->layout == ALGORITHM_PARITY_N) {
|
|
mddev->new_layout = 0;
|
|
mddev->new_level = 4;
|
|
return setup_conf(mddev);
|
|
}
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
static struct md_personality raid5_personality;
|
|
|
|
static void *raid6_takeover(struct mddev *mddev)
|
|
{
|
|
/* Currently can only take over a raid5. We map the
|
|
* personality to an equivalent raid6 personality
|
|
* with the Q block at the end.
|
|
*/
|
|
int new_layout;
|
|
|
|
if (mddev->pers != &raid5_personality)
|
|
return ERR_PTR(-EINVAL);
|
|
if (mddev->degraded > 1)
|
|
return ERR_PTR(-EINVAL);
|
|
if (mddev->raid_disks > 253)
|
|
return ERR_PTR(-EINVAL);
|
|
if (mddev->raid_disks < 3)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
switch (mddev->layout) {
|
|
case ALGORITHM_LEFT_ASYMMETRIC:
|
|
new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
|
|
break;
|
|
case ALGORITHM_RIGHT_ASYMMETRIC:
|
|
new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
|
|
break;
|
|
case ALGORITHM_LEFT_SYMMETRIC:
|
|
new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
|
|
break;
|
|
case ALGORITHM_RIGHT_SYMMETRIC:
|
|
new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
|
|
break;
|
|
case ALGORITHM_PARITY_0:
|
|
new_layout = ALGORITHM_PARITY_0_6;
|
|
break;
|
|
case ALGORITHM_PARITY_N:
|
|
new_layout = ALGORITHM_PARITY_N;
|
|
break;
|
|
default:
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
mddev->new_level = 6;
|
|
mddev->new_layout = new_layout;
|
|
mddev->delta_disks = 1;
|
|
mddev->raid_disks += 1;
|
|
return setup_conf(mddev);
|
|
}
|
|
|
|
|
|
static struct md_personality raid6_personality =
|
|
{
|
|
.name = "raid6",
|
|
.level = 6,
|
|
.owner = THIS_MODULE,
|
|
.make_request = make_request,
|
|
.run = run,
|
|
.stop = stop,
|
|
.status = status,
|
|
.error_handler = error,
|
|
.hot_add_disk = raid5_add_disk,
|
|
.hot_remove_disk= raid5_remove_disk,
|
|
.spare_active = raid5_spare_active,
|
|
.sync_request = sync_request,
|
|
.resize = raid5_resize,
|
|
.size = raid5_size,
|
|
.check_reshape = raid6_check_reshape,
|
|
.start_reshape = raid5_start_reshape,
|
|
.finish_reshape = raid5_finish_reshape,
|
|
.quiesce = raid5_quiesce,
|
|
.takeover = raid6_takeover,
|
|
};
|
|
static struct md_personality raid5_personality =
|
|
{
|
|
.name = "raid5",
|
|
.level = 5,
|
|
.owner = THIS_MODULE,
|
|
.make_request = make_request,
|
|
.run = run,
|
|
.stop = stop,
|
|
.status = status,
|
|
.error_handler = error,
|
|
.hot_add_disk = raid5_add_disk,
|
|
.hot_remove_disk= raid5_remove_disk,
|
|
.spare_active = raid5_spare_active,
|
|
.sync_request = sync_request,
|
|
.resize = raid5_resize,
|
|
.size = raid5_size,
|
|
.check_reshape = raid5_check_reshape,
|
|
.start_reshape = raid5_start_reshape,
|
|
.finish_reshape = raid5_finish_reshape,
|
|
.quiesce = raid5_quiesce,
|
|
.takeover = raid5_takeover,
|
|
};
|
|
|
|
static struct md_personality raid4_personality =
|
|
{
|
|
.name = "raid4",
|
|
.level = 4,
|
|
.owner = THIS_MODULE,
|
|
.make_request = make_request,
|
|
.run = run,
|
|
.stop = stop,
|
|
.status = status,
|
|
.error_handler = error,
|
|
.hot_add_disk = raid5_add_disk,
|
|
.hot_remove_disk= raid5_remove_disk,
|
|
.spare_active = raid5_spare_active,
|
|
.sync_request = sync_request,
|
|
.resize = raid5_resize,
|
|
.size = raid5_size,
|
|
.check_reshape = raid5_check_reshape,
|
|
.start_reshape = raid5_start_reshape,
|
|
.finish_reshape = raid5_finish_reshape,
|
|
.quiesce = raid5_quiesce,
|
|
.takeover = raid4_takeover,
|
|
};
|
|
|
|
static int __init raid5_init(void)
|
|
{
|
|
register_md_personality(&raid6_personality);
|
|
register_md_personality(&raid5_personality);
|
|
register_md_personality(&raid4_personality);
|
|
return 0;
|
|
}
|
|
|
|
static void raid5_exit(void)
|
|
{
|
|
unregister_md_personality(&raid6_personality);
|
|
unregister_md_personality(&raid5_personality);
|
|
unregister_md_personality(&raid4_personality);
|
|
}
|
|
|
|
module_init(raid5_init);
|
|
module_exit(raid5_exit);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
|
|
MODULE_ALIAS("md-personality-4"); /* RAID5 */
|
|
MODULE_ALIAS("md-raid5");
|
|
MODULE_ALIAS("md-raid4");
|
|
MODULE_ALIAS("md-level-5");
|
|
MODULE_ALIAS("md-level-4");
|
|
MODULE_ALIAS("md-personality-8"); /* RAID6 */
|
|
MODULE_ALIAS("md-raid6");
|
|
MODULE_ALIAS("md-level-6");
|
|
|
|
/* This used to be two separate modules, they were: */
|
|
MODULE_ALIAS("raid5");
|
|
MODULE_ALIAS("raid6");
|