linux_dsm_epyc7002/arch/arm/oprofile/op_model_xscale.c
Thomas Gleixner 52e405eaa9 [PATCH] ARM: fixup irqflags breakage after ARM genirq merge
The irgflags consolidation did conflict with the ARM to generic IRQ
conversion and was not applied for ARM. Fix it up.

Use the new IRQF_ constants and remove the SA_INTERRUPT define

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-02 17:29:22 -07:00

444 lines
10 KiB
C

/**
* @file op_model_xscale.c
* XScale Performance Monitor Driver
*
* @remark Copyright 2000-2004 Deepak Saxena <dsaxena@mvista.com>
* @remark Copyright 2000-2004 MontaVista Software Inc
* @remark Copyright 2004 Dave Jiang <dave.jiang@intel.com>
* @remark Copyright 2004 Intel Corporation
* @remark Copyright 2004 Zwane Mwaikambo <zwane@arm.linux.org.uk>
* @remark Copyright 2004 OProfile Authors
*
* @remark Read the file COPYING
*
* @author Zwane Mwaikambo
*/
/* #define DEBUG */
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/oprofile.h>
#include <linux/interrupt.h>
#include <asm/irq.h>
#include <asm/system.h>
#include "op_counter.h"
#include "op_arm_model.h"
#define PMU_ENABLE 0x001 /* Enable counters */
#define PMN_RESET 0x002 /* Reset event counters */
#define CCNT_RESET 0x004 /* Reset clock counter */
#define PMU_RESET (CCNT_RESET | PMN_RESET)
#define PMU_CNT64 0x008 /* Make CCNT count every 64th cycle */
/* TODO do runtime detection */
#ifdef CONFIG_ARCH_IOP310
#define XSCALE_PMU_IRQ IRQ_XS80200_PMU
#endif
#ifdef CONFIG_ARCH_IOP321
#define XSCALE_PMU_IRQ IRQ_IOP321_CORE_PMU
#endif
#ifdef CONFIG_ARCH_IOP331
#define XSCALE_PMU_IRQ IRQ_IOP331_CORE_PMU
#endif
#ifdef CONFIG_ARCH_PXA
#define XSCALE_PMU_IRQ IRQ_PMU
#endif
/*
* Different types of events that can be counted by the XScale PMU
* as used by Oprofile userspace. Here primarily for documentation
* purposes.
*/
#define EVT_ICACHE_MISS 0x00
#define EVT_ICACHE_NO_DELIVER 0x01
#define EVT_DATA_STALL 0x02
#define EVT_ITLB_MISS 0x03
#define EVT_DTLB_MISS 0x04
#define EVT_BRANCH 0x05
#define EVT_BRANCH_MISS 0x06
#define EVT_INSTRUCTION 0x07
#define EVT_DCACHE_FULL_STALL 0x08
#define EVT_DCACHE_FULL_STALL_CONTIG 0x09
#define EVT_DCACHE_ACCESS 0x0A
#define EVT_DCACHE_MISS 0x0B
#define EVT_DCACE_WRITE_BACK 0x0C
#define EVT_PC_CHANGED 0x0D
#define EVT_BCU_REQUEST 0x10
#define EVT_BCU_FULL 0x11
#define EVT_BCU_DRAIN 0x12
#define EVT_BCU_ECC_NO_ELOG 0x14
#define EVT_BCU_1_BIT_ERR 0x15
#define EVT_RMW 0x16
/* EVT_CCNT is not hardware defined */
#define EVT_CCNT 0xFE
#define EVT_UNUSED 0xFF
struct pmu_counter {
volatile unsigned long ovf;
unsigned long reset_counter;
};
enum { CCNT, PMN0, PMN1, PMN2, PMN3, MAX_COUNTERS };
static struct pmu_counter results[MAX_COUNTERS];
/*
* There are two versions of the PMU in current XScale processors
* with differing register layouts and number of performance counters.
* e.g. IOP321 is xsc1 whilst IOP331 is xsc2.
* We detect which register layout to use in xscale_detect_pmu()
*/
enum { PMU_XSC1, PMU_XSC2 };
struct pmu_type {
int id;
char *name;
int num_counters;
unsigned int int_enable;
unsigned int cnt_ovf[MAX_COUNTERS];
unsigned int int_mask[MAX_COUNTERS];
};
static struct pmu_type pmu_parms[] = {
{
.id = PMU_XSC1,
.name = "arm/xscale1",
.num_counters = 3,
.int_mask = { [PMN0] = 0x10, [PMN1] = 0x20,
[CCNT] = 0x40 },
.cnt_ovf = { [CCNT] = 0x400, [PMN0] = 0x100,
[PMN1] = 0x200},
},
{
.id = PMU_XSC2,
.name = "arm/xscale2",
.num_counters = 5,
.int_mask = { [CCNT] = 0x01, [PMN0] = 0x02,
[PMN1] = 0x04, [PMN2] = 0x08,
[PMN3] = 0x10 },
.cnt_ovf = { [CCNT] = 0x01, [PMN0] = 0x02,
[PMN1] = 0x04, [PMN2] = 0x08,
[PMN3] = 0x10 },
},
};
static struct pmu_type *pmu;
static void write_pmnc(u32 val)
{
if (pmu->id == PMU_XSC1) {
/* upper 4bits and 7, 11 are write-as-0 */
val &= 0xffff77f;
__asm__ __volatile__ ("mcr p14, 0, %0, c0, c0, 0" : : "r" (val));
} else {
/* bits 4-23 are write-as-0, 24-31 are write ignored */
val &= 0xf;
__asm__ __volatile__ ("mcr p14, 0, %0, c0, c1, 0" : : "r" (val));
}
}
static u32 read_pmnc(void)
{
u32 val;
if (pmu->id == PMU_XSC1)
__asm__ __volatile__ ("mrc p14, 0, %0, c0, c0, 0" : "=r" (val));
else {
__asm__ __volatile__ ("mrc p14, 0, %0, c0, c1, 0" : "=r" (val));
/* bits 1-2 and 4-23 are read-unpredictable */
val &= 0xff000009;
}
return val;
}
static u32 __xsc1_read_counter(int counter)
{
u32 val = 0;
switch (counter) {
case CCNT:
__asm__ __volatile__ ("mrc p14, 0, %0, c1, c0, 0" : "=r" (val));
break;
case PMN0:
__asm__ __volatile__ ("mrc p14, 0, %0, c2, c0, 0" : "=r" (val));
break;
case PMN1:
__asm__ __volatile__ ("mrc p14, 0, %0, c3, c0, 0" : "=r" (val));
break;
}
return val;
}
static u32 __xsc2_read_counter(int counter)
{
u32 val = 0;
switch (counter) {
case CCNT:
__asm__ __volatile__ ("mrc p14, 0, %0, c1, c1, 0" : "=r" (val));
break;
case PMN0:
__asm__ __volatile__ ("mrc p14, 0, %0, c0, c2, 0" : "=r" (val));
break;
case PMN1:
__asm__ __volatile__ ("mrc p14, 0, %0, c1, c2, 0" : "=r" (val));
break;
case PMN2:
__asm__ __volatile__ ("mrc p14, 0, %0, c2, c2, 0" : "=r" (val));
break;
case PMN3:
__asm__ __volatile__ ("mrc p14, 0, %0, c3, c2, 0" : "=r" (val));
break;
}
return val;
}
static u32 read_counter(int counter)
{
u32 val;
if (pmu->id == PMU_XSC1)
val = __xsc1_read_counter(counter);
else
val = __xsc2_read_counter(counter);
return val;
}
static void __xsc1_write_counter(int counter, u32 val)
{
switch (counter) {
case CCNT:
__asm__ __volatile__ ("mcr p14, 0, %0, c1, c0, 0" : : "r" (val));
break;
case PMN0:
__asm__ __volatile__ ("mcr p14, 0, %0, c2, c0, 0" : : "r" (val));
break;
case PMN1:
__asm__ __volatile__ ("mcr p14, 0, %0, c3, c0, 0" : : "r" (val));
break;
}
}
static void __xsc2_write_counter(int counter, u32 val)
{
switch (counter) {
case CCNT:
__asm__ __volatile__ ("mcr p14, 0, %0, c1, c1, 0" : : "r" (val));
break;
case PMN0:
__asm__ __volatile__ ("mcr p14, 0, %0, c0, c2, 0" : : "r" (val));
break;
case PMN1:
__asm__ __volatile__ ("mcr p14, 0, %0, c1, c2, 0" : : "r" (val));
break;
case PMN2:
__asm__ __volatile__ ("mcr p14, 0, %0, c2, c2, 0" : : "r" (val));
break;
case PMN3:
__asm__ __volatile__ ("mcr p14, 0, %0, c3, c2, 0" : : "r" (val));
break;
}
}
static void write_counter(int counter, u32 val)
{
if (pmu->id == PMU_XSC1)
__xsc1_write_counter(counter, val);
else
__xsc2_write_counter(counter, val);
}
static int xscale_setup_ctrs(void)
{
u32 evtsel, pmnc;
int i;
for (i = CCNT; i < MAX_COUNTERS; i++) {
if (counter_config[i].enabled)
continue;
counter_config[i].event = EVT_UNUSED;
}
switch (pmu->id) {
case PMU_XSC1:
pmnc = (counter_config[PMN1].event << 20) | (counter_config[PMN0].event << 12);
pr_debug("xscale_setup_ctrs: pmnc: %#08x\n", pmnc);
write_pmnc(pmnc);
break;
case PMU_XSC2:
evtsel = counter_config[PMN0].event | (counter_config[PMN1].event << 8) |
(counter_config[PMN2].event << 16) | (counter_config[PMN3].event << 24);
pr_debug("xscale_setup_ctrs: evtsel %#08x\n", evtsel);
__asm__ __volatile__ ("mcr p14, 0, %0, c8, c1, 0" : : "r" (evtsel));
break;
}
for (i = CCNT; i < MAX_COUNTERS; i++) {
if (counter_config[i].event == EVT_UNUSED) {
counter_config[i].event = 0;
pmu->int_enable &= ~pmu->int_mask[i];
continue;
}
results[i].reset_counter = counter_config[i].count;
write_counter(i, -(u32)counter_config[i].count);
pmu->int_enable |= pmu->int_mask[i];
pr_debug("xscale_setup_ctrs: counter%d %#08x from %#08lx\n", i,
read_counter(i), counter_config[i].count);
}
return 0;
}
static void inline __xsc1_check_ctrs(void)
{
int i;
u32 pmnc = read_pmnc();
/* NOTE: there's an A stepping errata that states if an overflow */
/* bit already exists and another occurs, the previous */
/* Overflow bit gets cleared. There's no workaround. */
/* Fixed in B stepping or later */
/* Write the value back to clear the overflow flags. Overflow */
/* flags remain in pmnc for use below */
write_pmnc(pmnc & ~PMU_ENABLE);
for (i = CCNT; i <= PMN1; i++) {
if (!(pmu->int_mask[i] & pmu->int_enable))
continue;
if (pmnc & pmu->cnt_ovf[i])
results[i].ovf++;
}
}
static void inline __xsc2_check_ctrs(void)
{
int i;
u32 flag = 0, pmnc = read_pmnc();
pmnc &= ~PMU_ENABLE;
write_pmnc(pmnc);
/* read overflow flag register */
__asm__ __volatile__ ("mrc p14, 0, %0, c5, c1, 0" : "=r" (flag));
for (i = CCNT; i <= PMN3; i++) {
if (!(pmu->int_mask[i] & pmu->int_enable))
continue;
if (flag & pmu->cnt_ovf[i])
results[i].ovf++;
}
/* writeback clears overflow bits */
__asm__ __volatile__ ("mcr p14, 0, %0, c5, c1, 0" : : "r" (flag));
}
static irqreturn_t xscale_pmu_interrupt(int irq, void *arg, struct pt_regs *regs)
{
int i;
u32 pmnc;
if (pmu->id == PMU_XSC1)
__xsc1_check_ctrs();
else
__xsc2_check_ctrs();
for (i = CCNT; i < MAX_COUNTERS; i++) {
if (!results[i].ovf)
continue;
write_counter(i, -(u32)results[i].reset_counter);
oprofile_add_sample(regs, i);
results[i].ovf--;
}
pmnc = read_pmnc() | PMU_ENABLE;
write_pmnc(pmnc);
return IRQ_HANDLED;
}
static void xscale_pmu_stop(void)
{
u32 pmnc = read_pmnc();
pmnc &= ~PMU_ENABLE;
write_pmnc(pmnc);
free_irq(XSCALE_PMU_IRQ, results);
}
static int xscale_pmu_start(void)
{
int ret;
u32 pmnc = read_pmnc();
ret = request_irq(XSCALE_PMU_IRQ, xscale_pmu_interrupt, IRQF_DISABLED,
"XScale PMU", (void *)results);
if (ret < 0) {
printk(KERN_ERR "oprofile: unable to request IRQ%d for XScale PMU\n",
XSCALE_PMU_IRQ);
return ret;
}
if (pmu->id == PMU_XSC1)
pmnc |= pmu->int_enable;
else {
__asm__ __volatile__ ("mcr p14, 0, %0, c4, c1, 0" : : "r" (pmu->int_enable));
pmnc &= ~PMU_CNT64;
}
pmnc |= PMU_ENABLE;
write_pmnc(pmnc);
pr_debug("xscale_pmu_start: pmnc: %#08x mask: %08x\n", pmnc, pmu->int_enable);
return 0;
}
static int xscale_detect_pmu(void)
{
int ret = 0;
u32 id;
id = (read_cpuid(CPUID_ID) >> 13) & 0x7;
switch (id) {
case 1:
pmu = &pmu_parms[PMU_XSC1];
break;
case 2:
pmu = &pmu_parms[PMU_XSC2];
break;
default:
ret = -ENODEV;
break;
}
if (!ret) {
op_xscale_spec.name = pmu->name;
op_xscale_spec.num_counters = pmu->num_counters;
pr_debug("xscale_detect_pmu: detected %s PMU\n", pmu->name);
}
return ret;
}
struct op_arm_model_spec op_xscale_spec = {
.init = xscale_detect_pmu,
.setup_ctrs = xscale_setup_ctrs,
.start = xscale_pmu_start,
.stop = xscale_pmu_stop,
};