mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
5fff0151b3
With all DMA address accesses wrapped, we can actually support 64-bit DMA if this option was chosen at IP integration time. If the IP has been configured for an address width greater than 32 bits, we assume the full 64 bit DMA width is working. In practise this will be limited by the actual system address bus width, which will ideally be the same as the DMA IP address width. If this is not the case, the actual width can still be configured using a dma-ranges property in the parent of the MAC node. This increases the DMA mask on those systems to let the kernel choose buffers from memory at higher addresses. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2080 lines
61 KiB
C
2080 lines
61 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Xilinx Axi Ethernet device driver
|
|
*
|
|
* Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
|
|
* Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
|
|
* Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
|
|
* Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
|
|
* Copyright (c) 2010 - 2011 PetaLogix
|
|
* Copyright (c) 2019 SED Systems, a division of Calian Ltd.
|
|
* Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
|
|
*
|
|
* This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
|
|
* and Spartan6.
|
|
*
|
|
* TODO:
|
|
* - Add Axi Fifo support.
|
|
* - Factor out Axi DMA code into separate driver.
|
|
* - Test and fix basic multicast filtering.
|
|
* - Add support for extended multicast filtering.
|
|
* - Test basic VLAN support.
|
|
* - Add support for extended VLAN support.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/of_mdio.h>
|
|
#include <linux/of_net.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/ethtool.h>
|
|
|
|
#include "xilinx_axienet.h"
|
|
|
|
/* Descriptors defines for Tx and Rx DMA */
|
|
#define TX_BD_NUM_DEFAULT 64
|
|
#define RX_BD_NUM_DEFAULT 1024
|
|
#define TX_BD_NUM_MAX 4096
|
|
#define RX_BD_NUM_MAX 4096
|
|
|
|
/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
|
|
#define DRIVER_NAME "xaxienet"
|
|
#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
|
|
#define DRIVER_VERSION "1.00a"
|
|
|
|
#define AXIENET_REGS_N 40
|
|
|
|
/* Match table for of_platform binding */
|
|
static const struct of_device_id axienet_of_match[] = {
|
|
{ .compatible = "xlnx,axi-ethernet-1.00.a", },
|
|
{ .compatible = "xlnx,axi-ethernet-1.01.a", },
|
|
{ .compatible = "xlnx,axi-ethernet-2.01.a", },
|
|
{},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, axienet_of_match);
|
|
|
|
/* Option table for setting up Axi Ethernet hardware options */
|
|
static struct axienet_option axienet_options[] = {
|
|
/* Turn on jumbo packet support for both Rx and Tx */
|
|
{
|
|
.opt = XAE_OPTION_JUMBO,
|
|
.reg = XAE_TC_OFFSET,
|
|
.m_or = XAE_TC_JUM_MASK,
|
|
}, {
|
|
.opt = XAE_OPTION_JUMBO,
|
|
.reg = XAE_RCW1_OFFSET,
|
|
.m_or = XAE_RCW1_JUM_MASK,
|
|
}, { /* Turn on VLAN packet support for both Rx and Tx */
|
|
.opt = XAE_OPTION_VLAN,
|
|
.reg = XAE_TC_OFFSET,
|
|
.m_or = XAE_TC_VLAN_MASK,
|
|
}, {
|
|
.opt = XAE_OPTION_VLAN,
|
|
.reg = XAE_RCW1_OFFSET,
|
|
.m_or = XAE_RCW1_VLAN_MASK,
|
|
}, { /* Turn on FCS stripping on receive packets */
|
|
.opt = XAE_OPTION_FCS_STRIP,
|
|
.reg = XAE_RCW1_OFFSET,
|
|
.m_or = XAE_RCW1_FCS_MASK,
|
|
}, { /* Turn on FCS insertion on transmit packets */
|
|
.opt = XAE_OPTION_FCS_INSERT,
|
|
.reg = XAE_TC_OFFSET,
|
|
.m_or = XAE_TC_FCS_MASK,
|
|
}, { /* Turn off length/type field checking on receive packets */
|
|
.opt = XAE_OPTION_LENTYPE_ERR,
|
|
.reg = XAE_RCW1_OFFSET,
|
|
.m_or = XAE_RCW1_LT_DIS_MASK,
|
|
}, { /* Turn on Rx flow control */
|
|
.opt = XAE_OPTION_FLOW_CONTROL,
|
|
.reg = XAE_FCC_OFFSET,
|
|
.m_or = XAE_FCC_FCRX_MASK,
|
|
}, { /* Turn on Tx flow control */
|
|
.opt = XAE_OPTION_FLOW_CONTROL,
|
|
.reg = XAE_FCC_OFFSET,
|
|
.m_or = XAE_FCC_FCTX_MASK,
|
|
}, { /* Turn on promiscuous frame filtering */
|
|
.opt = XAE_OPTION_PROMISC,
|
|
.reg = XAE_FMI_OFFSET,
|
|
.m_or = XAE_FMI_PM_MASK,
|
|
}, { /* Enable transmitter */
|
|
.opt = XAE_OPTION_TXEN,
|
|
.reg = XAE_TC_OFFSET,
|
|
.m_or = XAE_TC_TX_MASK,
|
|
}, { /* Enable receiver */
|
|
.opt = XAE_OPTION_RXEN,
|
|
.reg = XAE_RCW1_OFFSET,
|
|
.m_or = XAE_RCW1_RX_MASK,
|
|
},
|
|
{}
|
|
};
|
|
|
|
/**
|
|
* axienet_dma_in32 - Memory mapped Axi DMA register read
|
|
* @lp: Pointer to axienet local structure
|
|
* @reg: Address offset from the base address of the Axi DMA core
|
|
*
|
|
* Return: The contents of the Axi DMA register
|
|
*
|
|
* This function returns the contents of the corresponding Axi DMA register.
|
|
*/
|
|
static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
|
|
{
|
|
return ioread32(lp->dma_regs + reg);
|
|
}
|
|
|
|
/**
|
|
* axienet_dma_out32 - Memory mapped Axi DMA register write.
|
|
* @lp: Pointer to axienet local structure
|
|
* @reg: Address offset from the base address of the Axi DMA core
|
|
* @value: Value to be written into the Axi DMA register
|
|
*
|
|
* This function writes the desired value into the corresponding Axi DMA
|
|
* register.
|
|
*/
|
|
static inline void axienet_dma_out32(struct axienet_local *lp,
|
|
off_t reg, u32 value)
|
|
{
|
|
iowrite32(value, lp->dma_regs + reg);
|
|
}
|
|
|
|
static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
|
|
dma_addr_t addr)
|
|
{
|
|
axienet_dma_out32(lp, reg, lower_32_bits(addr));
|
|
|
|
if (lp->features & XAE_FEATURE_DMA_64BIT)
|
|
axienet_dma_out32(lp, reg + 4, upper_32_bits(addr));
|
|
}
|
|
|
|
static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
|
|
struct axidma_bd *desc)
|
|
{
|
|
desc->phys = lower_32_bits(addr);
|
|
if (lp->features & XAE_FEATURE_DMA_64BIT)
|
|
desc->phys_msb = upper_32_bits(addr);
|
|
}
|
|
|
|
static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
|
|
struct axidma_bd *desc)
|
|
{
|
|
dma_addr_t ret = desc->phys;
|
|
|
|
if (lp->features & XAE_FEATURE_DMA_64BIT)
|
|
ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* axienet_dma_bd_release - Release buffer descriptor rings
|
|
* @ndev: Pointer to the net_device structure
|
|
*
|
|
* This function is used to release the descriptors allocated in
|
|
* axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
|
|
* driver stop api is called.
|
|
*/
|
|
static void axienet_dma_bd_release(struct net_device *ndev)
|
|
{
|
|
int i;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
/* If we end up here, tx_bd_v must have been DMA allocated. */
|
|
dma_free_coherent(ndev->dev.parent,
|
|
sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
|
|
lp->tx_bd_v,
|
|
lp->tx_bd_p);
|
|
|
|
if (!lp->rx_bd_v)
|
|
return;
|
|
|
|
for (i = 0; i < lp->rx_bd_num; i++) {
|
|
dma_addr_t phys;
|
|
|
|
/* A NULL skb means this descriptor has not been initialised
|
|
* at all.
|
|
*/
|
|
if (!lp->rx_bd_v[i].skb)
|
|
break;
|
|
|
|
dev_kfree_skb(lp->rx_bd_v[i].skb);
|
|
|
|
/* For each descriptor, we programmed cntrl with the (non-zero)
|
|
* descriptor size, after it had been successfully allocated.
|
|
* So a non-zero value in there means we need to unmap it.
|
|
*/
|
|
if (lp->rx_bd_v[i].cntrl) {
|
|
phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
|
|
dma_unmap_single(ndev->dev.parent, phys,
|
|
lp->max_frm_size, DMA_FROM_DEVICE);
|
|
}
|
|
}
|
|
|
|
dma_free_coherent(ndev->dev.parent,
|
|
sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
|
|
lp->rx_bd_v,
|
|
lp->rx_bd_p);
|
|
}
|
|
|
|
/**
|
|
* axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
|
|
* @ndev: Pointer to the net_device structure
|
|
*
|
|
* Return: 0, on success -ENOMEM, on failure
|
|
*
|
|
* This function is called to initialize the Rx and Tx DMA descriptor
|
|
* rings. This initializes the descriptors with required default values
|
|
* and is called when Axi Ethernet driver reset is called.
|
|
*/
|
|
static int axienet_dma_bd_init(struct net_device *ndev)
|
|
{
|
|
u32 cr;
|
|
int i;
|
|
struct sk_buff *skb;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
/* Reset the indexes which are used for accessing the BDs */
|
|
lp->tx_bd_ci = 0;
|
|
lp->tx_bd_tail = 0;
|
|
lp->rx_bd_ci = 0;
|
|
|
|
/* Allocate the Tx and Rx buffer descriptors. */
|
|
lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
|
|
sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
|
|
&lp->tx_bd_p, GFP_KERNEL);
|
|
if (!lp->tx_bd_v)
|
|
return -ENOMEM;
|
|
|
|
lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
|
|
sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
|
|
&lp->rx_bd_p, GFP_KERNEL);
|
|
if (!lp->rx_bd_v)
|
|
goto out;
|
|
|
|
for (i = 0; i < lp->tx_bd_num; i++) {
|
|
dma_addr_t addr = lp->tx_bd_p +
|
|
sizeof(*lp->tx_bd_v) *
|
|
((i + 1) % lp->tx_bd_num);
|
|
|
|
lp->tx_bd_v[i].next = lower_32_bits(addr);
|
|
if (lp->features & XAE_FEATURE_DMA_64BIT)
|
|
lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
|
|
}
|
|
|
|
for (i = 0; i < lp->rx_bd_num; i++) {
|
|
dma_addr_t addr;
|
|
|
|
addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
|
|
((i + 1) % lp->rx_bd_num);
|
|
lp->rx_bd_v[i].next = lower_32_bits(addr);
|
|
if (lp->features & XAE_FEATURE_DMA_64BIT)
|
|
lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
|
|
|
|
skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
|
|
if (!skb)
|
|
goto out;
|
|
|
|
lp->rx_bd_v[i].skb = skb;
|
|
addr = dma_map_single(ndev->dev.parent, skb->data,
|
|
lp->max_frm_size, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(ndev->dev.parent, addr)) {
|
|
netdev_err(ndev, "DMA mapping error\n");
|
|
goto out;
|
|
}
|
|
desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
|
|
|
|
lp->rx_bd_v[i].cntrl = lp->max_frm_size;
|
|
}
|
|
|
|
/* Start updating the Rx channel control register */
|
|
cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
|
/* Update the interrupt coalesce count */
|
|
cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
|
|
((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
|
|
/* Update the delay timer count */
|
|
cr = ((cr & ~XAXIDMA_DELAY_MASK) |
|
|
(XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
|
|
/* Enable coalesce, delay timer and error interrupts */
|
|
cr |= XAXIDMA_IRQ_ALL_MASK;
|
|
/* Write to the Rx channel control register */
|
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
|
|
|
|
/* Start updating the Tx channel control register */
|
|
cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
|
/* Update the interrupt coalesce count */
|
|
cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
|
|
((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
|
|
/* Update the delay timer count */
|
|
cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
|
|
(XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
|
|
/* Enable coalesce, delay timer and error interrupts */
|
|
cr |= XAXIDMA_IRQ_ALL_MASK;
|
|
/* Write to the Tx channel control register */
|
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
|
|
|
|
/* Populate the tail pointer and bring the Rx Axi DMA engine out of
|
|
* halted state. This will make the Rx side ready for reception.
|
|
*/
|
|
axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
|
|
cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
|
|
cr | XAXIDMA_CR_RUNSTOP_MASK);
|
|
axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
|
|
(sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
|
|
|
|
/* Write to the RS (Run-stop) bit in the Tx channel control register.
|
|
* Tx channel is now ready to run. But only after we write to the
|
|
* tail pointer register that the Tx channel will start transmitting.
|
|
*/
|
|
axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
|
|
cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
|
|
cr | XAXIDMA_CR_RUNSTOP_MASK);
|
|
|
|
return 0;
|
|
out:
|
|
axienet_dma_bd_release(ndev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* axienet_set_mac_address - Write the MAC address
|
|
* @ndev: Pointer to the net_device structure
|
|
* @address: 6 byte Address to be written as MAC address
|
|
*
|
|
* This function is called to initialize the MAC address of the Axi Ethernet
|
|
* core. It writes to the UAW0 and UAW1 registers of the core.
|
|
*/
|
|
static void axienet_set_mac_address(struct net_device *ndev,
|
|
const void *address)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
if (address)
|
|
memcpy(ndev->dev_addr, address, ETH_ALEN);
|
|
if (!is_valid_ether_addr(ndev->dev_addr))
|
|
eth_hw_addr_random(ndev);
|
|
|
|
/* Set up unicast MAC address filter set its mac address */
|
|
axienet_iow(lp, XAE_UAW0_OFFSET,
|
|
(ndev->dev_addr[0]) |
|
|
(ndev->dev_addr[1] << 8) |
|
|
(ndev->dev_addr[2] << 16) |
|
|
(ndev->dev_addr[3] << 24));
|
|
axienet_iow(lp, XAE_UAW1_OFFSET,
|
|
(((axienet_ior(lp, XAE_UAW1_OFFSET)) &
|
|
~XAE_UAW1_UNICASTADDR_MASK) |
|
|
(ndev->dev_addr[4] |
|
|
(ndev->dev_addr[5] << 8))));
|
|
}
|
|
|
|
/**
|
|
* netdev_set_mac_address - Write the MAC address (from outside the driver)
|
|
* @ndev: Pointer to the net_device structure
|
|
* @p: 6 byte Address to be written as MAC address
|
|
*
|
|
* Return: 0 for all conditions. Presently, there is no failure case.
|
|
*
|
|
* This function is called to initialize the MAC address of the Axi Ethernet
|
|
* core. It calls the core specific axienet_set_mac_address. This is the
|
|
* function that goes into net_device_ops structure entry ndo_set_mac_address.
|
|
*/
|
|
static int netdev_set_mac_address(struct net_device *ndev, void *p)
|
|
{
|
|
struct sockaddr *addr = p;
|
|
axienet_set_mac_address(ndev, addr->sa_data);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* axienet_set_multicast_list - Prepare the multicast table
|
|
* @ndev: Pointer to the net_device structure
|
|
*
|
|
* This function is called to initialize the multicast table during
|
|
* initialization. The Axi Ethernet basic multicast support has a four-entry
|
|
* multicast table which is initialized here. Additionally this function
|
|
* goes into the net_device_ops structure entry ndo_set_multicast_list. This
|
|
* means whenever the multicast table entries need to be updated this
|
|
* function gets called.
|
|
*/
|
|
static void axienet_set_multicast_list(struct net_device *ndev)
|
|
{
|
|
int i;
|
|
u32 reg, af0reg, af1reg;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
|
|
netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
|
|
/* We must make the kernel realize we had to move into
|
|
* promiscuous mode. If it was a promiscuous mode request
|
|
* the flag is already set. If not we set it.
|
|
*/
|
|
ndev->flags |= IFF_PROMISC;
|
|
reg = axienet_ior(lp, XAE_FMI_OFFSET);
|
|
reg |= XAE_FMI_PM_MASK;
|
|
axienet_iow(lp, XAE_FMI_OFFSET, reg);
|
|
dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
|
|
} else if (!netdev_mc_empty(ndev)) {
|
|
struct netdev_hw_addr *ha;
|
|
|
|
i = 0;
|
|
netdev_for_each_mc_addr(ha, ndev) {
|
|
if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
|
|
break;
|
|
|
|
af0reg = (ha->addr[0]);
|
|
af0reg |= (ha->addr[1] << 8);
|
|
af0reg |= (ha->addr[2] << 16);
|
|
af0reg |= (ha->addr[3] << 24);
|
|
|
|
af1reg = (ha->addr[4]);
|
|
af1reg |= (ha->addr[5] << 8);
|
|
|
|
reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
|
|
reg |= i;
|
|
|
|
axienet_iow(lp, XAE_FMI_OFFSET, reg);
|
|
axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
|
|
axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
|
|
i++;
|
|
}
|
|
} else {
|
|
reg = axienet_ior(lp, XAE_FMI_OFFSET);
|
|
reg &= ~XAE_FMI_PM_MASK;
|
|
|
|
axienet_iow(lp, XAE_FMI_OFFSET, reg);
|
|
|
|
for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
|
|
reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
|
|
reg |= i;
|
|
|
|
axienet_iow(lp, XAE_FMI_OFFSET, reg);
|
|
axienet_iow(lp, XAE_AF0_OFFSET, 0);
|
|
axienet_iow(lp, XAE_AF1_OFFSET, 0);
|
|
}
|
|
|
|
dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* axienet_setoptions - Set an Axi Ethernet option
|
|
* @ndev: Pointer to the net_device structure
|
|
* @options: Option to be enabled/disabled
|
|
*
|
|
* The Axi Ethernet core has multiple features which can be selectively turned
|
|
* on or off. The typical options could be jumbo frame option, basic VLAN
|
|
* option, promiscuous mode option etc. This function is used to set or clear
|
|
* these options in the Axi Ethernet hardware. This is done through
|
|
* axienet_option structure .
|
|
*/
|
|
static void axienet_setoptions(struct net_device *ndev, u32 options)
|
|
{
|
|
int reg;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
struct axienet_option *tp = &axienet_options[0];
|
|
|
|
while (tp->opt) {
|
|
reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
|
|
if (options & tp->opt)
|
|
reg |= tp->m_or;
|
|
axienet_iow(lp, tp->reg, reg);
|
|
tp++;
|
|
}
|
|
|
|
lp->options |= options;
|
|
}
|
|
|
|
static int __axienet_device_reset(struct axienet_local *lp)
|
|
{
|
|
u32 timeout;
|
|
|
|
/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
|
|
* process of Axi DMA takes a while to complete as all pending
|
|
* commands/transfers will be flushed or completed during this
|
|
* reset process.
|
|
* Note that even though both TX and RX have their own reset register,
|
|
* they both reset the entire DMA core, so only one needs to be used.
|
|
*/
|
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
|
|
timeout = DELAY_OF_ONE_MILLISEC;
|
|
while (axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET) &
|
|
XAXIDMA_CR_RESET_MASK) {
|
|
udelay(1);
|
|
if (--timeout == 0) {
|
|
netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
|
|
__func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
|
|
* @ndev: Pointer to the net_device structure
|
|
*
|
|
* This function is called to reset and initialize the Axi Ethernet core. This
|
|
* is typically called during initialization. It does a reset of the Axi DMA
|
|
* Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
|
|
* areconnected to Axi Ethernet reset lines, this in turn resets the Axi
|
|
* Ethernet core. No separate hardware reset is done for the Axi Ethernet
|
|
* core.
|
|
* Returns 0 on success or a negative error number otherwise.
|
|
*/
|
|
static int axienet_device_reset(struct net_device *ndev)
|
|
{
|
|
u32 axienet_status;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
int ret;
|
|
|
|
ret = __axienet_device_reset(lp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
|
|
lp->options |= XAE_OPTION_VLAN;
|
|
lp->options &= (~XAE_OPTION_JUMBO);
|
|
|
|
if ((ndev->mtu > XAE_MTU) &&
|
|
(ndev->mtu <= XAE_JUMBO_MTU)) {
|
|
lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
|
|
XAE_TRL_SIZE;
|
|
|
|
if (lp->max_frm_size <= lp->rxmem)
|
|
lp->options |= XAE_OPTION_JUMBO;
|
|
}
|
|
|
|
ret = axienet_dma_bd_init(ndev);
|
|
if (ret) {
|
|
netdev_err(ndev, "%s: descriptor allocation failed\n",
|
|
__func__);
|
|
return ret;
|
|
}
|
|
|
|
axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
|
|
axienet_status &= ~XAE_RCW1_RX_MASK;
|
|
axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
|
|
|
|
axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
|
|
if (axienet_status & XAE_INT_RXRJECT_MASK)
|
|
axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
|
|
axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
|
|
XAE_INT_RECV_ERROR_MASK : 0);
|
|
|
|
axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
|
|
|
|
/* Sync default options with HW but leave receiver and
|
|
* transmitter disabled.
|
|
*/
|
|
axienet_setoptions(ndev, lp->options &
|
|
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
|
|
axienet_set_mac_address(ndev, NULL);
|
|
axienet_set_multicast_list(ndev);
|
|
axienet_setoptions(ndev, lp->options);
|
|
|
|
netif_trans_update(ndev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* axienet_free_tx_chain - Clean up a series of linked TX descriptors.
|
|
* @ndev: Pointer to the net_device structure
|
|
* @first_bd: Index of first descriptor to clean up
|
|
* @nr_bds: Number of descriptors to clean up, can be -1 if unknown.
|
|
* @sizep: Pointer to a u32 filled with the total sum of all bytes
|
|
* in all cleaned-up descriptors. Ignored if NULL.
|
|
*
|
|
* Would either be called after a successful transmit operation, or after
|
|
* there was an error when setting up the chain.
|
|
* Returns the number of descriptors handled.
|
|
*/
|
|
static int axienet_free_tx_chain(struct net_device *ndev, u32 first_bd,
|
|
int nr_bds, u32 *sizep)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
struct axidma_bd *cur_p;
|
|
int max_bds = nr_bds;
|
|
unsigned int status;
|
|
dma_addr_t phys;
|
|
int i;
|
|
|
|
if (max_bds == -1)
|
|
max_bds = lp->tx_bd_num;
|
|
|
|
for (i = 0; i < max_bds; i++) {
|
|
cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
|
|
status = cur_p->status;
|
|
|
|
/* If no number is given, clean up *all* descriptors that have
|
|
* been completed by the MAC.
|
|
*/
|
|
if (nr_bds == -1 && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
|
|
break;
|
|
|
|
phys = desc_get_phys_addr(lp, cur_p);
|
|
dma_unmap_single(ndev->dev.parent, phys,
|
|
(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
|
|
DMA_TO_DEVICE);
|
|
|
|
if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
|
|
dev_consume_skb_irq(cur_p->skb);
|
|
|
|
cur_p->cntrl = 0;
|
|
cur_p->app0 = 0;
|
|
cur_p->app1 = 0;
|
|
cur_p->app2 = 0;
|
|
cur_p->app4 = 0;
|
|
cur_p->status = 0;
|
|
cur_p->skb = NULL;
|
|
|
|
if (sizep)
|
|
*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* axienet_start_xmit_done - Invoked once a transmit is completed by the
|
|
* Axi DMA Tx channel.
|
|
* @ndev: Pointer to the net_device structure
|
|
*
|
|
* This function is invoked from the Axi DMA Tx isr to notify the completion
|
|
* of transmit operation. It clears fields in the corresponding Tx BDs and
|
|
* unmaps the corresponding buffer so that CPU can regain ownership of the
|
|
* buffer. It finally invokes "netif_wake_queue" to restart transmission if
|
|
* required.
|
|
*/
|
|
static void axienet_start_xmit_done(struct net_device *ndev)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
u32 packets = 0;
|
|
u32 size = 0;
|
|
|
|
packets = axienet_free_tx_chain(ndev, lp->tx_bd_ci, -1, &size);
|
|
|
|
lp->tx_bd_ci += packets;
|
|
if (lp->tx_bd_ci >= lp->tx_bd_num)
|
|
lp->tx_bd_ci -= lp->tx_bd_num;
|
|
|
|
ndev->stats.tx_packets += packets;
|
|
ndev->stats.tx_bytes += size;
|
|
|
|
/* Matches barrier in axienet_start_xmit */
|
|
smp_mb();
|
|
|
|
netif_wake_queue(ndev);
|
|
}
|
|
|
|
/**
|
|
* axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
|
|
* @lp: Pointer to the axienet_local structure
|
|
* @num_frag: The number of BDs to check for
|
|
*
|
|
* Return: 0, on success
|
|
* NETDEV_TX_BUSY, if any of the descriptors are not free
|
|
*
|
|
* This function is invoked before BDs are allocated and transmission starts.
|
|
* This function returns 0 if a BD or group of BDs can be allocated for
|
|
* transmission. If the BD or any of the BDs are not free the function
|
|
* returns a busy status. This is invoked from axienet_start_xmit.
|
|
*/
|
|
static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
|
|
int num_frag)
|
|
{
|
|
struct axidma_bd *cur_p;
|
|
cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
|
|
if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
|
|
return NETDEV_TX_BUSY;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* axienet_start_xmit - Starts the transmission.
|
|
* @skb: sk_buff pointer that contains data to be Txed.
|
|
* @ndev: Pointer to net_device structure.
|
|
*
|
|
* Return: NETDEV_TX_OK, on success
|
|
* NETDEV_TX_BUSY, if any of the descriptors are not free
|
|
*
|
|
* This function is invoked from upper layers to initiate transmission. The
|
|
* function uses the next available free BDs and populates their fields to
|
|
* start the transmission. Additionally if checksum offloading is supported,
|
|
* it populates AXI Stream Control fields with appropriate values.
|
|
*/
|
|
static netdev_tx_t
|
|
axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
u32 ii;
|
|
u32 num_frag;
|
|
u32 csum_start_off;
|
|
u32 csum_index_off;
|
|
skb_frag_t *frag;
|
|
dma_addr_t tail_p, phys;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
struct axidma_bd *cur_p;
|
|
u32 orig_tail_ptr = lp->tx_bd_tail;
|
|
|
|
num_frag = skb_shinfo(skb)->nr_frags;
|
|
cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
|
|
|
|
if (axienet_check_tx_bd_space(lp, num_frag)) {
|
|
if (netif_queue_stopped(ndev))
|
|
return NETDEV_TX_BUSY;
|
|
|
|
netif_stop_queue(ndev);
|
|
|
|
/* Matches barrier in axienet_start_xmit_done */
|
|
smp_mb();
|
|
|
|
/* Space might have just been freed - check again */
|
|
if (axienet_check_tx_bd_space(lp, num_frag))
|
|
return NETDEV_TX_BUSY;
|
|
|
|
netif_wake_queue(ndev);
|
|
}
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
|
|
/* Tx Full Checksum Offload Enabled */
|
|
cur_p->app0 |= 2;
|
|
} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
|
|
csum_start_off = skb_transport_offset(skb);
|
|
csum_index_off = csum_start_off + skb->csum_offset;
|
|
/* Tx Partial Checksum Offload Enabled */
|
|
cur_p->app0 |= 1;
|
|
cur_p->app1 = (csum_start_off << 16) | csum_index_off;
|
|
}
|
|
} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
|
|
cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
|
|
}
|
|
|
|
phys = dma_map_single(ndev->dev.parent, skb->data,
|
|
skb_headlen(skb), DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "TX DMA mapping error\n");
|
|
ndev->stats.tx_dropped++;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
desc_set_phys_addr(lp, phys, cur_p);
|
|
cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
|
|
|
|
for (ii = 0; ii < num_frag; ii++) {
|
|
if (++lp->tx_bd_tail >= lp->tx_bd_num)
|
|
lp->tx_bd_tail = 0;
|
|
cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
|
|
frag = &skb_shinfo(skb)->frags[ii];
|
|
phys = dma_map_single(ndev->dev.parent,
|
|
skb_frag_address(frag),
|
|
skb_frag_size(frag),
|
|
DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "TX DMA mapping error\n");
|
|
ndev->stats.tx_dropped++;
|
|
axienet_free_tx_chain(ndev, orig_tail_ptr, ii + 1,
|
|
NULL);
|
|
lp->tx_bd_tail = orig_tail_ptr;
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
desc_set_phys_addr(lp, phys, cur_p);
|
|
cur_p->cntrl = skb_frag_size(frag);
|
|
}
|
|
|
|
cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
|
|
cur_p->skb = skb;
|
|
|
|
tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
|
|
/* Start the transfer */
|
|
axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
|
|
if (++lp->tx_bd_tail >= lp->tx_bd_num)
|
|
lp->tx_bd_tail = 0;
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/**
|
|
* axienet_recv - Is called from Axi DMA Rx Isr to complete the received
|
|
* BD processing.
|
|
* @ndev: Pointer to net_device structure.
|
|
*
|
|
* This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
|
|
* does minimal processing and invokes "netif_rx" to complete further
|
|
* processing.
|
|
*/
|
|
static void axienet_recv(struct net_device *ndev)
|
|
{
|
|
u32 length;
|
|
u32 csumstatus;
|
|
u32 size = 0;
|
|
u32 packets = 0;
|
|
dma_addr_t tail_p = 0;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
struct sk_buff *skb, *new_skb;
|
|
struct axidma_bd *cur_p;
|
|
|
|
cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
|
|
|
|
while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
|
|
dma_addr_t phys;
|
|
|
|
tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
|
|
|
|
phys = desc_get_phys_addr(lp, cur_p);
|
|
dma_unmap_single(ndev->dev.parent, phys, lp->max_frm_size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
skb = cur_p->skb;
|
|
cur_p->skb = NULL;
|
|
length = cur_p->app4 & 0x0000FFFF;
|
|
|
|
skb_put(skb, length);
|
|
skb->protocol = eth_type_trans(skb, ndev);
|
|
/*skb_checksum_none_assert(skb);*/
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
|
|
/* if we're doing Rx csum offload, set it up */
|
|
if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
|
|
csumstatus = (cur_p->app2 &
|
|
XAE_FULL_CSUM_STATUS_MASK) >> 3;
|
|
if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
|
|
(csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
|
|
skb->protocol == htons(ETH_P_IP) &&
|
|
skb->len > 64) {
|
|
skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
}
|
|
|
|
netif_rx(skb);
|
|
|
|
size += length;
|
|
packets++;
|
|
|
|
new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
|
|
if (!new_skb)
|
|
return;
|
|
|
|
phys = dma_map_single(ndev->dev.parent, new_skb->data,
|
|
lp->max_frm_size,
|
|
DMA_FROM_DEVICE);
|
|
if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "RX DMA mapping error\n");
|
|
dev_kfree_skb(new_skb);
|
|
return;
|
|
}
|
|
desc_set_phys_addr(lp, phys, cur_p);
|
|
|
|
cur_p->cntrl = lp->max_frm_size;
|
|
cur_p->status = 0;
|
|
cur_p->skb = new_skb;
|
|
|
|
if (++lp->rx_bd_ci >= lp->rx_bd_num)
|
|
lp->rx_bd_ci = 0;
|
|
cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
|
|
}
|
|
|
|
ndev->stats.rx_packets += packets;
|
|
ndev->stats.rx_bytes += size;
|
|
|
|
if (tail_p)
|
|
axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
|
|
}
|
|
|
|
/**
|
|
* axienet_tx_irq - Tx Done Isr.
|
|
* @irq: irq number
|
|
* @_ndev: net_device pointer
|
|
*
|
|
* Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
|
|
*
|
|
* This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
|
|
* to complete the BD processing.
|
|
*/
|
|
static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
|
|
{
|
|
u32 cr;
|
|
unsigned int status;
|
|
struct net_device *ndev = _ndev;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
|
|
if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
|
|
axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
|
|
axienet_start_xmit_done(lp->ndev);
|
|
goto out;
|
|
}
|
|
if (!(status & XAXIDMA_IRQ_ALL_MASK))
|
|
return IRQ_NONE;
|
|
if (status & XAXIDMA_IRQ_ERROR_MASK) {
|
|
dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
|
|
dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
|
|
(lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
|
|
(lp->tx_bd_v[lp->tx_bd_ci]).phys);
|
|
|
|
cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
|
/* Disable coalesce, delay timer and error interrupts */
|
|
cr &= (~XAXIDMA_IRQ_ALL_MASK);
|
|
/* Write to the Tx channel control register */
|
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
|
|
|
|
cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
|
/* Disable coalesce, delay timer and error interrupts */
|
|
cr &= (~XAXIDMA_IRQ_ALL_MASK);
|
|
/* Write to the Rx channel control register */
|
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
|
|
|
|
schedule_work(&lp->dma_err_task);
|
|
axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
|
|
}
|
|
out:
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* axienet_rx_irq - Rx Isr.
|
|
* @irq: irq number
|
|
* @_ndev: net_device pointer
|
|
*
|
|
* Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
|
|
*
|
|
* This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
|
|
* processing.
|
|
*/
|
|
static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
|
|
{
|
|
u32 cr;
|
|
unsigned int status;
|
|
struct net_device *ndev = _ndev;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
|
|
if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
|
|
axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
|
|
axienet_recv(lp->ndev);
|
|
goto out;
|
|
}
|
|
if (!(status & XAXIDMA_IRQ_ALL_MASK))
|
|
return IRQ_NONE;
|
|
if (status & XAXIDMA_IRQ_ERROR_MASK) {
|
|
dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
|
|
dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
|
|
(lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
|
|
(lp->rx_bd_v[lp->rx_bd_ci]).phys);
|
|
|
|
cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
|
/* Disable coalesce, delay timer and error interrupts */
|
|
cr &= (~XAXIDMA_IRQ_ALL_MASK);
|
|
/* Finally write to the Tx channel control register */
|
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
|
|
|
|
cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
|
/* Disable coalesce, delay timer and error interrupts */
|
|
cr &= (~XAXIDMA_IRQ_ALL_MASK);
|
|
/* write to the Rx channel control register */
|
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
|
|
|
|
schedule_work(&lp->dma_err_task);
|
|
axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
|
|
}
|
|
out:
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* axienet_eth_irq - Ethernet core Isr.
|
|
* @irq: irq number
|
|
* @_ndev: net_device pointer
|
|
*
|
|
* Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
|
|
*
|
|
* Handle miscellaneous conditions indicated by Ethernet core IRQ.
|
|
*/
|
|
static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
|
|
{
|
|
struct net_device *ndev = _ndev;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
unsigned int pending;
|
|
|
|
pending = axienet_ior(lp, XAE_IP_OFFSET);
|
|
if (!pending)
|
|
return IRQ_NONE;
|
|
|
|
if (pending & XAE_INT_RXFIFOOVR_MASK)
|
|
ndev->stats.rx_missed_errors++;
|
|
|
|
if (pending & XAE_INT_RXRJECT_MASK)
|
|
ndev->stats.rx_frame_errors++;
|
|
|
|
axienet_iow(lp, XAE_IS_OFFSET, pending);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void axienet_dma_err_handler(struct work_struct *work);
|
|
|
|
/**
|
|
* axienet_open - Driver open routine.
|
|
* @ndev: Pointer to net_device structure
|
|
*
|
|
* Return: 0, on success.
|
|
* non-zero error value on failure
|
|
*
|
|
* This is the driver open routine. It calls phylink_start to start the
|
|
* PHY device.
|
|
* It also allocates interrupt service routines, enables the interrupt lines
|
|
* and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
|
|
* descriptors are initialized.
|
|
*/
|
|
static int axienet_open(struct net_device *ndev)
|
|
{
|
|
int ret;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
dev_dbg(&ndev->dev, "axienet_open()\n");
|
|
|
|
/* Disable the MDIO interface till Axi Ethernet Reset is completed.
|
|
* When we do an Axi Ethernet reset, it resets the complete core
|
|
* including the MDIO. MDIO must be disabled before resetting
|
|
* and re-enabled afterwards.
|
|
* Hold MDIO bus lock to avoid MDIO accesses during the reset.
|
|
*/
|
|
mutex_lock(&lp->mii_bus->mdio_lock);
|
|
axienet_mdio_disable(lp);
|
|
ret = axienet_device_reset(ndev);
|
|
if (ret == 0)
|
|
ret = axienet_mdio_enable(lp);
|
|
mutex_unlock(&lp->mii_bus->mdio_lock);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
|
|
if (ret) {
|
|
dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
phylink_start(lp->phylink);
|
|
|
|
/* Enable worker thread for Axi DMA error handling */
|
|
INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
|
|
|
|
/* Enable interrupts for Axi DMA Tx */
|
|
ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
|
|
ndev->name, ndev);
|
|
if (ret)
|
|
goto err_tx_irq;
|
|
/* Enable interrupts for Axi DMA Rx */
|
|
ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
|
|
ndev->name, ndev);
|
|
if (ret)
|
|
goto err_rx_irq;
|
|
/* Enable interrupts for Axi Ethernet core (if defined) */
|
|
if (lp->eth_irq > 0) {
|
|
ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
|
|
ndev->name, ndev);
|
|
if (ret)
|
|
goto err_eth_irq;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_eth_irq:
|
|
free_irq(lp->rx_irq, ndev);
|
|
err_rx_irq:
|
|
free_irq(lp->tx_irq, ndev);
|
|
err_tx_irq:
|
|
phylink_stop(lp->phylink);
|
|
phylink_disconnect_phy(lp->phylink);
|
|
cancel_work_sync(&lp->dma_err_task);
|
|
dev_err(lp->dev, "request_irq() failed\n");
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* axienet_stop - Driver stop routine.
|
|
* @ndev: Pointer to net_device structure
|
|
*
|
|
* Return: 0, on success.
|
|
*
|
|
* This is the driver stop routine. It calls phylink_disconnect to stop the PHY
|
|
* device. It also removes the interrupt handlers and disables the interrupts.
|
|
* The Axi DMA Tx/Rx BDs are released.
|
|
*/
|
|
static int axienet_stop(struct net_device *ndev)
|
|
{
|
|
u32 cr, sr;
|
|
int count;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
dev_dbg(&ndev->dev, "axienet_close()\n");
|
|
|
|
phylink_stop(lp->phylink);
|
|
phylink_disconnect_phy(lp->phylink);
|
|
|
|
axienet_setoptions(ndev, lp->options &
|
|
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
|
|
|
|
cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
|
cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
|
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
|
|
|
|
cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
|
cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
|
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
|
|
|
|
axienet_iow(lp, XAE_IE_OFFSET, 0);
|
|
|
|
/* Give DMAs a chance to halt gracefully */
|
|
sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
|
|
for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
|
|
msleep(20);
|
|
sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
|
|
}
|
|
|
|
sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
|
|
for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
|
|
msleep(20);
|
|
sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
|
|
}
|
|
|
|
/* Do a reset to ensure DMA is really stopped */
|
|
mutex_lock(&lp->mii_bus->mdio_lock);
|
|
axienet_mdio_disable(lp);
|
|
__axienet_device_reset(lp);
|
|
axienet_mdio_enable(lp);
|
|
mutex_unlock(&lp->mii_bus->mdio_lock);
|
|
|
|
cancel_work_sync(&lp->dma_err_task);
|
|
|
|
if (lp->eth_irq > 0)
|
|
free_irq(lp->eth_irq, ndev);
|
|
free_irq(lp->tx_irq, ndev);
|
|
free_irq(lp->rx_irq, ndev);
|
|
|
|
axienet_dma_bd_release(ndev);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* axienet_change_mtu - Driver change mtu routine.
|
|
* @ndev: Pointer to net_device structure
|
|
* @new_mtu: New mtu value to be applied
|
|
*
|
|
* Return: Always returns 0 (success).
|
|
*
|
|
* This is the change mtu driver routine. It checks if the Axi Ethernet
|
|
* hardware supports jumbo frames before changing the mtu. This can be
|
|
* called only when the device is not up.
|
|
*/
|
|
static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
if (netif_running(ndev))
|
|
return -EBUSY;
|
|
|
|
if ((new_mtu + VLAN_ETH_HLEN +
|
|
XAE_TRL_SIZE) > lp->rxmem)
|
|
return -EINVAL;
|
|
|
|
ndev->mtu = new_mtu;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/**
|
|
* axienet_poll_controller - Axi Ethernet poll mechanism.
|
|
* @ndev: Pointer to net_device structure
|
|
*
|
|
* This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
|
|
* to polling the ISRs and are enabled back after the polling is done.
|
|
*/
|
|
static void axienet_poll_controller(struct net_device *ndev)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
disable_irq(lp->tx_irq);
|
|
disable_irq(lp->rx_irq);
|
|
axienet_rx_irq(lp->tx_irq, ndev);
|
|
axienet_tx_irq(lp->rx_irq, ndev);
|
|
enable_irq(lp->tx_irq);
|
|
enable_irq(lp->rx_irq);
|
|
}
|
|
#endif
|
|
|
|
static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(dev);
|
|
|
|
if (!netif_running(dev))
|
|
return -EINVAL;
|
|
|
|
return phylink_mii_ioctl(lp->phylink, rq, cmd);
|
|
}
|
|
|
|
static const struct net_device_ops axienet_netdev_ops = {
|
|
.ndo_open = axienet_open,
|
|
.ndo_stop = axienet_stop,
|
|
.ndo_start_xmit = axienet_start_xmit,
|
|
.ndo_change_mtu = axienet_change_mtu,
|
|
.ndo_set_mac_address = netdev_set_mac_address,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_do_ioctl = axienet_ioctl,
|
|
.ndo_set_rx_mode = axienet_set_multicast_list,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = axienet_poll_controller,
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
|
|
* @ndev: Pointer to net_device structure
|
|
* @ed: Pointer to ethtool_drvinfo structure
|
|
*
|
|
* This implements ethtool command for getting the driver information.
|
|
* Issue "ethtool -i ethX" under linux prompt to execute this function.
|
|
*/
|
|
static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
|
|
struct ethtool_drvinfo *ed)
|
|
{
|
|
strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
|
|
strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
|
|
}
|
|
|
|
/**
|
|
* axienet_ethtools_get_regs_len - Get the total regs length present in the
|
|
* AxiEthernet core.
|
|
* @ndev: Pointer to net_device structure
|
|
*
|
|
* This implements ethtool command for getting the total register length
|
|
* information.
|
|
*
|
|
* Return: the total regs length
|
|
*/
|
|
static int axienet_ethtools_get_regs_len(struct net_device *ndev)
|
|
{
|
|
return sizeof(u32) * AXIENET_REGS_N;
|
|
}
|
|
|
|
/**
|
|
* axienet_ethtools_get_regs - Dump the contents of all registers present
|
|
* in AxiEthernet core.
|
|
* @ndev: Pointer to net_device structure
|
|
* @regs: Pointer to ethtool_regs structure
|
|
* @ret: Void pointer used to return the contents of the registers.
|
|
*
|
|
* This implements ethtool command for getting the Axi Ethernet register dump.
|
|
* Issue "ethtool -d ethX" to execute this function.
|
|
*/
|
|
static void axienet_ethtools_get_regs(struct net_device *ndev,
|
|
struct ethtool_regs *regs, void *ret)
|
|
{
|
|
u32 *data = (u32 *) ret;
|
|
size_t len = sizeof(u32) * AXIENET_REGS_N;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
regs->version = 0;
|
|
regs->len = len;
|
|
|
|
memset(data, 0, len);
|
|
data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
|
|
data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
|
|
data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
|
|
data[3] = axienet_ior(lp, XAE_IS_OFFSET);
|
|
data[4] = axienet_ior(lp, XAE_IP_OFFSET);
|
|
data[5] = axienet_ior(lp, XAE_IE_OFFSET);
|
|
data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
|
|
data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
|
|
data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
|
|
data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
|
|
data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
|
|
data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
|
|
data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
|
|
data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
|
|
data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
|
|
data[15] = axienet_ior(lp, XAE_TC_OFFSET);
|
|
data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
|
|
data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
|
|
data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
|
|
data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
|
|
data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
|
|
data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
|
|
data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
|
|
data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
|
|
data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
|
|
data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
|
|
data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
|
|
data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
|
|
data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
|
data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
|
|
data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
|
|
data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
|
|
data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
|
data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
|
|
data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
|
|
data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
|
|
}
|
|
|
|
static void axienet_ethtools_get_ringparam(struct net_device *ndev,
|
|
struct ethtool_ringparam *ering)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
ering->rx_max_pending = RX_BD_NUM_MAX;
|
|
ering->rx_mini_max_pending = 0;
|
|
ering->rx_jumbo_max_pending = 0;
|
|
ering->tx_max_pending = TX_BD_NUM_MAX;
|
|
ering->rx_pending = lp->rx_bd_num;
|
|
ering->rx_mini_pending = 0;
|
|
ering->rx_jumbo_pending = 0;
|
|
ering->tx_pending = lp->tx_bd_num;
|
|
}
|
|
|
|
static int axienet_ethtools_set_ringparam(struct net_device *ndev,
|
|
struct ethtool_ringparam *ering)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
if (ering->rx_pending > RX_BD_NUM_MAX ||
|
|
ering->rx_mini_pending ||
|
|
ering->rx_jumbo_pending ||
|
|
ering->rx_pending > TX_BD_NUM_MAX)
|
|
return -EINVAL;
|
|
|
|
if (netif_running(ndev))
|
|
return -EBUSY;
|
|
|
|
lp->rx_bd_num = ering->rx_pending;
|
|
lp->tx_bd_num = ering->tx_pending;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* axienet_ethtools_get_pauseparam - Get the pause parameter setting for
|
|
* Tx and Rx paths.
|
|
* @ndev: Pointer to net_device structure
|
|
* @epauseparm: Pointer to ethtool_pauseparam structure.
|
|
*
|
|
* This implements ethtool command for getting axi ethernet pause frame
|
|
* setting. Issue "ethtool -a ethX" to execute this function.
|
|
*/
|
|
static void
|
|
axienet_ethtools_get_pauseparam(struct net_device *ndev,
|
|
struct ethtool_pauseparam *epauseparm)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
|
|
}
|
|
|
|
/**
|
|
* axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
|
|
* settings.
|
|
* @ndev: Pointer to net_device structure
|
|
* @epauseparm:Pointer to ethtool_pauseparam structure
|
|
*
|
|
* This implements ethtool command for enabling flow control on Rx and Tx
|
|
* paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
|
|
* function.
|
|
*
|
|
* Return: 0 on success, -EFAULT if device is running
|
|
*/
|
|
static int
|
|
axienet_ethtools_set_pauseparam(struct net_device *ndev,
|
|
struct ethtool_pauseparam *epauseparm)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
|
|
}
|
|
|
|
/**
|
|
* axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
|
|
* @ndev: Pointer to net_device structure
|
|
* @ecoalesce: Pointer to ethtool_coalesce structure
|
|
*
|
|
* This implements ethtool command for getting the DMA interrupt coalescing
|
|
* count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
|
|
* execute this function.
|
|
*
|
|
* Return: 0 always
|
|
*/
|
|
static int axienet_ethtools_get_coalesce(struct net_device *ndev,
|
|
struct ethtool_coalesce *ecoalesce)
|
|
{
|
|
u32 regval = 0;
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
|
ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
|
|
>> XAXIDMA_COALESCE_SHIFT;
|
|
regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
|
ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
|
|
>> XAXIDMA_COALESCE_SHIFT;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
|
|
* @ndev: Pointer to net_device structure
|
|
* @ecoalesce: Pointer to ethtool_coalesce structure
|
|
*
|
|
* This implements ethtool command for setting the DMA interrupt coalescing
|
|
* count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
|
|
* prompt to execute this function.
|
|
*
|
|
* Return: 0, on success, Non-zero error value on failure.
|
|
*/
|
|
static int axienet_ethtools_set_coalesce(struct net_device *ndev,
|
|
struct ethtool_coalesce *ecoalesce)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
if (netif_running(ndev)) {
|
|
netdev_err(ndev,
|
|
"Please stop netif before applying configuration\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (ecoalesce->rx_max_coalesced_frames)
|
|
lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
|
|
if (ecoalesce->tx_max_coalesced_frames)
|
|
lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
axienet_ethtools_get_link_ksettings(struct net_device *ndev,
|
|
struct ethtool_link_ksettings *cmd)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
return phylink_ethtool_ksettings_get(lp->phylink, cmd);
|
|
}
|
|
|
|
static int
|
|
axienet_ethtools_set_link_ksettings(struct net_device *ndev,
|
|
const struct ethtool_link_ksettings *cmd)
|
|
{
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
return phylink_ethtool_ksettings_set(lp->phylink, cmd);
|
|
}
|
|
|
|
static const struct ethtool_ops axienet_ethtool_ops = {
|
|
.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES,
|
|
.get_drvinfo = axienet_ethtools_get_drvinfo,
|
|
.get_regs_len = axienet_ethtools_get_regs_len,
|
|
.get_regs = axienet_ethtools_get_regs,
|
|
.get_link = ethtool_op_get_link,
|
|
.get_ringparam = axienet_ethtools_get_ringparam,
|
|
.set_ringparam = axienet_ethtools_set_ringparam,
|
|
.get_pauseparam = axienet_ethtools_get_pauseparam,
|
|
.set_pauseparam = axienet_ethtools_set_pauseparam,
|
|
.get_coalesce = axienet_ethtools_get_coalesce,
|
|
.set_coalesce = axienet_ethtools_set_coalesce,
|
|
.get_link_ksettings = axienet_ethtools_get_link_ksettings,
|
|
.set_link_ksettings = axienet_ethtools_set_link_ksettings,
|
|
};
|
|
|
|
static void axienet_validate(struct phylink_config *config,
|
|
unsigned long *supported,
|
|
struct phylink_link_state *state)
|
|
{
|
|
struct net_device *ndev = to_net_dev(config->dev);
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
|
|
|
|
/* Only support the mode we are configured for */
|
|
if (state->interface != PHY_INTERFACE_MODE_NA &&
|
|
state->interface != lp->phy_mode) {
|
|
netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
|
|
phy_modes(state->interface),
|
|
phy_modes(lp->phy_mode));
|
|
bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
|
|
return;
|
|
}
|
|
|
|
phylink_set(mask, Autoneg);
|
|
phylink_set_port_modes(mask);
|
|
|
|
phylink_set(mask, Asym_Pause);
|
|
phylink_set(mask, Pause);
|
|
phylink_set(mask, 1000baseX_Full);
|
|
phylink_set(mask, 10baseT_Full);
|
|
phylink_set(mask, 100baseT_Full);
|
|
phylink_set(mask, 1000baseT_Full);
|
|
|
|
bitmap_and(supported, supported, mask,
|
|
__ETHTOOL_LINK_MODE_MASK_NBITS);
|
|
bitmap_and(state->advertising, state->advertising, mask,
|
|
__ETHTOOL_LINK_MODE_MASK_NBITS);
|
|
}
|
|
|
|
static void axienet_mac_pcs_get_state(struct phylink_config *config,
|
|
struct phylink_link_state *state)
|
|
{
|
|
struct net_device *ndev = to_net_dev(config->dev);
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
u32 emmc_reg, fcc_reg;
|
|
|
|
state->interface = lp->phy_mode;
|
|
|
|
emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
|
|
if (emmc_reg & XAE_EMMC_LINKSPD_1000)
|
|
state->speed = SPEED_1000;
|
|
else if (emmc_reg & XAE_EMMC_LINKSPD_100)
|
|
state->speed = SPEED_100;
|
|
else
|
|
state->speed = SPEED_10;
|
|
|
|
state->pause = 0;
|
|
fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
|
|
if (fcc_reg & XAE_FCC_FCTX_MASK)
|
|
state->pause |= MLO_PAUSE_TX;
|
|
if (fcc_reg & XAE_FCC_FCRX_MASK)
|
|
state->pause |= MLO_PAUSE_RX;
|
|
|
|
state->an_complete = 0;
|
|
state->duplex = 1;
|
|
}
|
|
|
|
static void axienet_mac_an_restart(struct phylink_config *config)
|
|
{
|
|
/* Unsupported, do nothing */
|
|
}
|
|
|
|
static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
|
|
const struct phylink_link_state *state)
|
|
{
|
|
/* nothing meaningful to do */
|
|
}
|
|
|
|
static void axienet_mac_link_down(struct phylink_config *config,
|
|
unsigned int mode,
|
|
phy_interface_t interface)
|
|
{
|
|
/* nothing meaningful to do */
|
|
}
|
|
|
|
static void axienet_mac_link_up(struct phylink_config *config,
|
|
struct phy_device *phy,
|
|
unsigned int mode, phy_interface_t interface,
|
|
int speed, int duplex,
|
|
bool tx_pause, bool rx_pause)
|
|
{
|
|
struct net_device *ndev = to_net_dev(config->dev);
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
u32 emmc_reg, fcc_reg;
|
|
|
|
emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
|
|
emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
|
|
|
|
switch (speed) {
|
|
case SPEED_1000:
|
|
emmc_reg |= XAE_EMMC_LINKSPD_1000;
|
|
break;
|
|
case SPEED_100:
|
|
emmc_reg |= XAE_EMMC_LINKSPD_100;
|
|
break;
|
|
case SPEED_10:
|
|
emmc_reg |= XAE_EMMC_LINKSPD_10;
|
|
break;
|
|
default:
|
|
dev_err(&ndev->dev,
|
|
"Speed other than 10, 100 or 1Gbps is not supported\n");
|
|
break;
|
|
}
|
|
|
|
axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
|
|
|
|
fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
|
|
if (tx_pause)
|
|
fcc_reg |= XAE_FCC_FCTX_MASK;
|
|
else
|
|
fcc_reg &= ~XAE_FCC_FCTX_MASK;
|
|
if (rx_pause)
|
|
fcc_reg |= XAE_FCC_FCRX_MASK;
|
|
else
|
|
fcc_reg &= ~XAE_FCC_FCRX_MASK;
|
|
axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
|
|
}
|
|
|
|
static const struct phylink_mac_ops axienet_phylink_ops = {
|
|
.validate = axienet_validate,
|
|
.mac_pcs_get_state = axienet_mac_pcs_get_state,
|
|
.mac_an_restart = axienet_mac_an_restart,
|
|
.mac_config = axienet_mac_config,
|
|
.mac_link_down = axienet_mac_link_down,
|
|
.mac_link_up = axienet_mac_link_up,
|
|
};
|
|
|
|
/**
|
|
* axienet_dma_err_handler - Work queue task for Axi DMA Error
|
|
* @work: pointer to work_struct
|
|
*
|
|
* Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
|
|
* Tx/Rx BDs.
|
|
*/
|
|
static void axienet_dma_err_handler(struct work_struct *work)
|
|
{
|
|
u32 axienet_status;
|
|
u32 cr, i;
|
|
struct axienet_local *lp = container_of(work, struct axienet_local,
|
|
dma_err_task);
|
|
struct net_device *ndev = lp->ndev;
|
|
struct axidma_bd *cur_p;
|
|
|
|
axienet_setoptions(ndev, lp->options &
|
|
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
|
|
/* Disable the MDIO interface till Axi Ethernet Reset is completed.
|
|
* When we do an Axi Ethernet reset, it resets the complete core
|
|
* including the MDIO. MDIO must be disabled before resetting
|
|
* and re-enabled afterwards.
|
|
* Hold MDIO bus lock to avoid MDIO accesses during the reset.
|
|
*/
|
|
mutex_lock(&lp->mii_bus->mdio_lock);
|
|
axienet_mdio_disable(lp);
|
|
__axienet_device_reset(lp);
|
|
axienet_mdio_enable(lp);
|
|
mutex_unlock(&lp->mii_bus->mdio_lock);
|
|
|
|
for (i = 0; i < lp->tx_bd_num; i++) {
|
|
cur_p = &lp->tx_bd_v[i];
|
|
if (cur_p->cntrl) {
|
|
dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
|
|
|
|
dma_unmap_single(ndev->dev.parent, addr,
|
|
(cur_p->cntrl &
|
|
XAXIDMA_BD_CTRL_LENGTH_MASK),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
if (cur_p->skb)
|
|
dev_kfree_skb_irq(cur_p->skb);
|
|
cur_p->phys = 0;
|
|
cur_p->phys_msb = 0;
|
|
cur_p->cntrl = 0;
|
|
cur_p->status = 0;
|
|
cur_p->app0 = 0;
|
|
cur_p->app1 = 0;
|
|
cur_p->app2 = 0;
|
|
cur_p->app3 = 0;
|
|
cur_p->app4 = 0;
|
|
cur_p->skb = NULL;
|
|
}
|
|
|
|
for (i = 0; i < lp->rx_bd_num; i++) {
|
|
cur_p = &lp->rx_bd_v[i];
|
|
cur_p->status = 0;
|
|
cur_p->app0 = 0;
|
|
cur_p->app1 = 0;
|
|
cur_p->app2 = 0;
|
|
cur_p->app3 = 0;
|
|
cur_p->app4 = 0;
|
|
}
|
|
|
|
lp->tx_bd_ci = 0;
|
|
lp->tx_bd_tail = 0;
|
|
lp->rx_bd_ci = 0;
|
|
|
|
/* Start updating the Rx channel control register */
|
|
cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
|
/* Update the interrupt coalesce count */
|
|
cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
|
|
(XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
|
|
/* Update the delay timer count */
|
|
cr = ((cr & ~XAXIDMA_DELAY_MASK) |
|
|
(XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
|
|
/* Enable coalesce, delay timer and error interrupts */
|
|
cr |= XAXIDMA_IRQ_ALL_MASK;
|
|
/* Finally write to the Rx channel control register */
|
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
|
|
|
|
/* Start updating the Tx channel control register */
|
|
cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
|
/* Update the interrupt coalesce count */
|
|
cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
|
|
(XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
|
|
/* Update the delay timer count */
|
|
cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
|
|
(XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
|
|
/* Enable coalesce, delay timer and error interrupts */
|
|
cr |= XAXIDMA_IRQ_ALL_MASK;
|
|
/* Finally write to the Tx channel control register */
|
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
|
|
|
|
/* Populate the tail pointer and bring the Rx Axi DMA engine out of
|
|
* halted state. This will make the Rx side ready for reception.
|
|
*/
|
|
axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
|
|
cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
|
|
cr | XAXIDMA_CR_RUNSTOP_MASK);
|
|
axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
|
|
(sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
|
|
|
|
/* Write to the RS (Run-stop) bit in the Tx channel control register.
|
|
* Tx channel is now ready to run. But only after we write to the
|
|
* tail pointer register that the Tx channel will start transmitting
|
|
*/
|
|
axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
|
|
cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
|
|
cr | XAXIDMA_CR_RUNSTOP_MASK);
|
|
|
|
axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
|
|
axienet_status &= ~XAE_RCW1_RX_MASK;
|
|
axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
|
|
|
|
axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
|
|
if (axienet_status & XAE_INT_RXRJECT_MASK)
|
|
axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
|
|
axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
|
|
XAE_INT_RECV_ERROR_MASK : 0);
|
|
axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
|
|
|
|
/* Sync default options with HW but leave receiver and
|
|
* transmitter disabled.
|
|
*/
|
|
axienet_setoptions(ndev, lp->options &
|
|
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
|
|
axienet_set_mac_address(ndev, NULL);
|
|
axienet_set_multicast_list(ndev);
|
|
axienet_setoptions(ndev, lp->options);
|
|
}
|
|
|
|
/**
|
|
* axienet_probe - Axi Ethernet probe function.
|
|
* @pdev: Pointer to platform device structure.
|
|
*
|
|
* Return: 0, on success
|
|
* Non-zero error value on failure.
|
|
*
|
|
* This is the probe routine for Axi Ethernet driver. This is called before
|
|
* any other driver routines are invoked. It allocates and sets up the Ethernet
|
|
* device. Parses through device tree and populates fields of
|
|
* axienet_local. It registers the Ethernet device.
|
|
*/
|
|
static int axienet_probe(struct platform_device *pdev)
|
|
{
|
|
int ret;
|
|
struct device_node *np;
|
|
struct axienet_local *lp;
|
|
struct net_device *ndev;
|
|
const void *mac_addr;
|
|
struct resource *ethres;
|
|
int addr_width = 32;
|
|
u32 value;
|
|
|
|
ndev = alloc_etherdev(sizeof(*lp));
|
|
if (!ndev)
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, ndev);
|
|
|
|
SET_NETDEV_DEV(ndev, &pdev->dev);
|
|
ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
|
|
ndev->features = NETIF_F_SG;
|
|
ndev->netdev_ops = &axienet_netdev_ops;
|
|
ndev->ethtool_ops = &axienet_ethtool_ops;
|
|
|
|
/* MTU range: 64 - 9000 */
|
|
ndev->min_mtu = 64;
|
|
ndev->max_mtu = XAE_JUMBO_MTU;
|
|
|
|
lp = netdev_priv(ndev);
|
|
lp->ndev = ndev;
|
|
lp->dev = &pdev->dev;
|
|
lp->options = XAE_OPTION_DEFAULTS;
|
|
lp->rx_bd_num = RX_BD_NUM_DEFAULT;
|
|
lp->tx_bd_num = TX_BD_NUM_DEFAULT;
|
|
/* Map device registers */
|
|
ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
|
|
if (IS_ERR(lp->regs)) {
|
|
dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
|
|
ret = PTR_ERR(lp->regs);
|
|
goto free_netdev;
|
|
}
|
|
lp->regs_start = ethres->start;
|
|
|
|
/* Setup checksum offload, but default to off if not specified */
|
|
lp->features = 0;
|
|
|
|
ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
|
|
if (!ret) {
|
|
switch (value) {
|
|
case 1:
|
|
lp->csum_offload_on_tx_path =
|
|
XAE_FEATURE_PARTIAL_TX_CSUM;
|
|
lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
|
|
/* Can checksum TCP/UDP over IPv4. */
|
|
ndev->features |= NETIF_F_IP_CSUM;
|
|
break;
|
|
case 2:
|
|
lp->csum_offload_on_tx_path =
|
|
XAE_FEATURE_FULL_TX_CSUM;
|
|
lp->features |= XAE_FEATURE_FULL_TX_CSUM;
|
|
/* Can checksum TCP/UDP over IPv4. */
|
|
ndev->features |= NETIF_F_IP_CSUM;
|
|
break;
|
|
default:
|
|
lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
|
|
}
|
|
}
|
|
ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
|
|
if (!ret) {
|
|
switch (value) {
|
|
case 1:
|
|
lp->csum_offload_on_rx_path =
|
|
XAE_FEATURE_PARTIAL_RX_CSUM;
|
|
lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
|
|
break;
|
|
case 2:
|
|
lp->csum_offload_on_rx_path =
|
|
XAE_FEATURE_FULL_RX_CSUM;
|
|
lp->features |= XAE_FEATURE_FULL_RX_CSUM;
|
|
break;
|
|
default:
|
|
lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
|
|
}
|
|
}
|
|
/* For supporting jumbo frames, the Axi Ethernet hardware must have
|
|
* a larger Rx/Tx Memory. Typically, the size must be large so that
|
|
* we can enable jumbo option and start supporting jumbo frames.
|
|
* Here we check for memory allocated for Rx/Tx in the hardware from
|
|
* the device-tree and accordingly set flags.
|
|
*/
|
|
of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
|
|
|
|
/* Start with the proprietary, and broken phy_type */
|
|
ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
|
|
if (!ret) {
|
|
netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
|
|
switch (value) {
|
|
case XAE_PHY_TYPE_MII:
|
|
lp->phy_mode = PHY_INTERFACE_MODE_MII;
|
|
break;
|
|
case XAE_PHY_TYPE_GMII:
|
|
lp->phy_mode = PHY_INTERFACE_MODE_GMII;
|
|
break;
|
|
case XAE_PHY_TYPE_RGMII_2_0:
|
|
lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
|
|
break;
|
|
case XAE_PHY_TYPE_SGMII:
|
|
lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
|
|
break;
|
|
case XAE_PHY_TYPE_1000BASE_X:
|
|
lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto free_netdev;
|
|
}
|
|
} else {
|
|
ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
|
|
if (ret)
|
|
goto free_netdev;
|
|
}
|
|
|
|
/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
|
|
np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
|
|
if (np) {
|
|
struct resource dmares;
|
|
|
|
ret = of_address_to_resource(np, 0, &dmares);
|
|
if (ret) {
|
|
dev_err(&pdev->dev,
|
|
"unable to get DMA resource\n");
|
|
of_node_put(np);
|
|
goto free_netdev;
|
|
}
|
|
lp->dma_regs = devm_ioremap_resource(&pdev->dev,
|
|
&dmares);
|
|
lp->rx_irq = irq_of_parse_and_map(np, 1);
|
|
lp->tx_irq = irq_of_parse_and_map(np, 0);
|
|
of_node_put(np);
|
|
lp->eth_irq = platform_get_irq_optional(pdev, 0);
|
|
} else {
|
|
/* Check for these resources directly on the Ethernet node. */
|
|
struct resource *res = platform_get_resource(pdev,
|
|
IORESOURCE_MEM, 1);
|
|
lp->dma_regs = devm_ioremap_resource(&pdev->dev, res);
|
|
lp->rx_irq = platform_get_irq(pdev, 1);
|
|
lp->tx_irq = platform_get_irq(pdev, 0);
|
|
lp->eth_irq = platform_get_irq_optional(pdev, 2);
|
|
}
|
|
if (IS_ERR(lp->dma_regs)) {
|
|
dev_err(&pdev->dev, "could not map DMA regs\n");
|
|
ret = PTR_ERR(lp->dma_regs);
|
|
goto free_netdev;
|
|
}
|
|
if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
|
|
dev_err(&pdev->dev, "could not determine irqs\n");
|
|
ret = -ENOMEM;
|
|
goto free_netdev;
|
|
}
|
|
|
|
/* Autodetect the need for 64-bit DMA pointers.
|
|
* When the IP is configured for a bus width bigger than 32 bits,
|
|
* writing the MSB registers is mandatory, even if they are all 0.
|
|
* We can detect this case by writing all 1's to one such register
|
|
* and see if that sticks: when the IP is configured for 32 bits
|
|
* only, those registers are RES0.
|
|
* Those MSB registers were introduced in IP v7.1, which we check first.
|
|
*/
|
|
if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
|
|
void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
|
|
|
|
iowrite32(0x0, desc);
|
|
if (ioread32(desc) == 0) { /* sanity check */
|
|
iowrite32(0xffffffff, desc);
|
|
if (ioread32(desc) > 0) {
|
|
lp->features |= XAE_FEATURE_DMA_64BIT;
|
|
addr_width = 64;
|
|
dev_info(&pdev->dev,
|
|
"autodetected 64-bit DMA range\n");
|
|
}
|
|
iowrite32(0x0, desc);
|
|
}
|
|
}
|
|
|
|
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "No suitable DMA available\n");
|
|
goto free_netdev;
|
|
}
|
|
|
|
/* Check for Ethernet core IRQ (optional) */
|
|
if (lp->eth_irq <= 0)
|
|
dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
|
|
|
|
/* Retrieve the MAC address */
|
|
mac_addr = of_get_mac_address(pdev->dev.of_node);
|
|
if (IS_ERR(mac_addr)) {
|
|
dev_warn(&pdev->dev, "could not find MAC address property: %ld\n",
|
|
PTR_ERR(mac_addr));
|
|
mac_addr = NULL;
|
|
}
|
|
axienet_set_mac_address(ndev, mac_addr);
|
|
|
|
lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
|
|
lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
|
|
|
|
lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
|
|
if (lp->phy_node) {
|
|
lp->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(lp->clk)) {
|
|
dev_warn(&pdev->dev, "Failed to get clock: %ld\n",
|
|
PTR_ERR(lp->clk));
|
|
lp->clk = NULL;
|
|
} else {
|
|
ret = clk_prepare_enable(lp->clk);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Unable to enable clock: %d\n",
|
|
ret);
|
|
goto free_netdev;
|
|
}
|
|
}
|
|
|
|
ret = axienet_mdio_setup(lp);
|
|
if (ret)
|
|
dev_warn(&pdev->dev,
|
|
"error registering MDIO bus: %d\n", ret);
|
|
}
|
|
|
|
lp->phylink_config.dev = &ndev->dev;
|
|
lp->phylink_config.type = PHYLINK_NETDEV;
|
|
|
|
lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
|
|
lp->phy_mode,
|
|
&axienet_phylink_ops);
|
|
if (IS_ERR(lp->phylink)) {
|
|
ret = PTR_ERR(lp->phylink);
|
|
dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
|
|
goto free_netdev;
|
|
}
|
|
|
|
ret = register_netdev(lp->ndev);
|
|
if (ret) {
|
|
dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
|
|
goto free_netdev;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_netdev:
|
|
free_netdev(ndev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int axienet_remove(struct platform_device *pdev)
|
|
{
|
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
|
struct axienet_local *lp = netdev_priv(ndev);
|
|
|
|
unregister_netdev(ndev);
|
|
|
|
if (lp->phylink)
|
|
phylink_destroy(lp->phylink);
|
|
|
|
axienet_mdio_teardown(lp);
|
|
|
|
if (lp->clk)
|
|
clk_disable_unprepare(lp->clk);
|
|
|
|
of_node_put(lp->phy_node);
|
|
lp->phy_node = NULL;
|
|
|
|
free_netdev(ndev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void axienet_shutdown(struct platform_device *pdev)
|
|
{
|
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
|
|
|
rtnl_lock();
|
|
netif_device_detach(ndev);
|
|
|
|
if (netif_running(ndev))
|
|
dev_close(ndev);
|
|
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static struct platform_driver axienet_driver = {
|
|
.probe = axienet_probe,
|
|
.remove = axienet_remove,
|
|
.shutdown = axienet_shutdown,
|
|
.driver = {
|
|
.name = "xilinx_axienet",
|
|
.of_match_table = axienet_of_match,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(axienet_driver);
|
|
|
|
MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
|
|
MODULE_AUTHOR("Xilinx");
|
|
MODULE_LICENSE("GPL");
|