mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 14:49:18 +07:00
7022672e40
Spelling fixes in arch/parisc/. Signed-off-by: Simon Arlott <simon@fire.lp0.eu> Acked-by: Grant Grundler <grundler@parisc-linux.org> Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
196 lines
5.4 KiB
C
196 lines
5.4 KiB
C
/*
|
|
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
|
|
*
|
|
* Floating-point emulation code
|
|
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
/*
|
|
* BEGIN_DESC
|
|
*
|
|
* File:
|
|
* @(#) pa/spmath/dfsqrt.c $Revision: 1.1 $
|
|
*
|
|
* Purpose:
|
|
* Double Floating-point Square Root
|
|
*
|
|
* External Interfaces:
|
|
* dbl_fsqrt(srcptr,nullptr,dstptr,status)
|
|
*
|
|
* Internal Interfaces:
|
|
*
|
|
* Theory:
|
|
* <<please update with a overview of the operation of this file>>
|
|
*
|
|
* END_DESC
|
|
*/
|
|
|
|
|
|
#include "float.h"
|
|
#include "dbl_float.h"
|
|
|
|
/*
|
|
* Double Floating-point Square Root
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
|
unsigned int
|
|
dbl_fsqrt(
|
|
dbl_floating_point *srcptr,
|
|
unsigned int *nullptr,
|
|
dbl_floating_point *dstptr,
|
|
unsigned int *status)
|
|
{
|
|
register unsigned int srcp1, srcp2, resultp1, resultp2;
|
|
register unsigned int newbitp1, newbitp2, sump1, sump2;
|
|
register int src_exponent;
|
|
register boolean guardbit = FALSE, even_exponent;
|
|
|
|
Dbl_copyfromptr(srcptr,srcp1,srcp2);
|
|
/*
|
|
* check source operand for NaN or infinity
|
|
*/
|
|
if ((src_exponent = Dbl_exponent(srcp1)) == DBL_INFINITY_EXPONENT) {
|
|
/*
|
|
* is signaling NaN?
|
|
*/
|
|
if (Dbl_isone_signaling(srcp1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(srcp1);
|
|
}
|
|
/*
|
|
* Return quiet NaN or positive infinity.
|
|
* Fall through to negative test if negative infinity.
|
|
*/
|
|
if (Dbl_iszero_sign(srcp1) ||
|
|
Dbl_isnotzero_mantissa(srcp1,srcp2)) {
|
|
Dbl_copytoptr(srcp1,srcp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check for zero source operand
|
|
*/
|
|
if (Dbl_iszero_exponentmantissa(srcp1,srcp2)) {
|
|
Dbl_copytoptr(srcp1,srcp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* check for negative source operand
|
|
*/
|
|
if (Dbl_isone_sign(srcp1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_makequietnan(srcp1,srcp2);
|
|
Dbl_copytoptr(srcp1,srcp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* Generate result
|
|
*/
|
|
if (src_exponent > 0) {
|
|
even_exponent = Dbl_hidden(srcp1);
|
|
Dbl_clear_signexponent_set_hidden(srcp1);
|
|
}
|
|
else {
|
|
/* normalize operand */
|
|
Dbl_clear_signexponent(srcp1);
|
|
src_exponent++;
|
|
Dbl_normalize(srcp1,srcp2,src_exponent);
|
|
even_exponent = src_exponent & 1;
|
|
}
|
|
if (even_exponent) {
|
|
/* exponent is even */
|
|
/* Add comment here. Explain why odd exponent needs correction */
|
|
Dbl_leftshiftby1(srcp1,srcp2);
|
|
}
|
|
/*
|
|
* Add comment here. Explain following algorithm.
|
|
*
|
|
* Trust me, it works.
|
|
*
|
|
*/
|
|
Dbl_setzero(resultp1,resultp2);
|
|
Dbl_allp1(newbitp1) = 1 << (DBL_P - 32);
|
|
Dbl_setzero_mantissap2(newbitp2);
|
|
while (Dbl_isnotzero(newbitp1,newbitp2) && Dbl_isnotzero(srcp1,srcp2)) {
|
|
Dbl_addition(resultp1,resultp2,newbitp1,newbitp2,sump1,sump2);
|
|
if(Dbl_isnotgreaterthan(sump1,sump2,srcp1,srcp2)) {
|
|
Dbl_leftshiftby1(newbitp1,newbitp2);
|
|
/* update result */
|
|
Dbl_addition(resultp1,resultp2,newbitp1,newbitp2,
|
|
resultp1,resultp2);
|
|
Dbl_subtract(srcp1,srcp2,sump1,sump2,srcp1,srcp2);
|
|
Dbl_rightshiftby2(newbitp1,newbitp2);
|
|
}
|
|
else {
|
|
Dbl_rightshiftby1(newbitp1,newbitp2);
|
|
}
|
|
Dbl_leftshiftby1(srcp1,srcp2);
|
|
}
|
|
/* correct exponent for pre-shift */
|
|
if (even_exponent) {
|
|
Dbl_rightshiftby1(resultp1,resultp2);
|
|
}
|
|
|
|
/* check for inexact */
|
|
if (Dbl_isnotzero(srcp1,srcp2)) {
|
|
if (!even_exponent && Dbl_islessthan(resultp1,resultp2,srcp1,srcp2)) {
|
|
Dbl_increment(resultp1,resultp2);
|
|
}
|
|
guardbit = Dbl_lowmantissap2(resultp2);
|
|
Dbl_rightshiftby1(resultp1,resultp2);
|
|
|
|
/* now round result */
|
|
switch (Rounding_mode()) {
|
|
case ROUNDPLUS:
|
|
Dbl_increment(resultp1,resultp2);
|
|
break;
|
|
case ROUNDNEAREST:
|
|
/* stickybit is always true, so guardbit
|
|
* is enough to determine rounding */
|
|
if (guardbit) {
|
|
Dbl_increment(resultp1,resultp2);
|
|
}
|
|
break;
|
|
}
|
|
/* increment result exponent by 1 if mantissa overflowed */
|
|
if (Dbl_isone_hiddenoverflow(resultp1)) src_exponent+=2;
|
|
|
|
if (Is_inexacttrap_enabled()) {
|
|
Dbl_set_exponent(resultp1,
|
|
((src_exponent-DBL_BIAS)>>1)+DBL_BIAS);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(INEXACTEXCEPTION);
|
|
}
|
|
else Set_inexactflag();
|
|
}
|
|
else {
|
|
Dbl_rightshiftby1(resultp1,resultp2);
|
|
}
|
|
Dbl_set_exponent(resultp1,((src_exponent-DBL_BIAS)>>1)+DBL_BIAS);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|