mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 10:25:06 +07:00
eb254f323b
Pull x86 cache allocation interface from Thomas Gleixner: "This provides support for Intel's Cache Allocation Technology, a cache partitioning mechanism. The interface is odd, but the hardware interface of that CAT stuff is odd as well. We tried hard to come up with an abstraction, but that only allows rather simple partitioning, but no way of sharing and dealing with the per package nature of this mechanism. In the end we decided to expose the allocation bitmaps directly so all combinations of the hardware can be utilized. There are two ways of associating a cache partition: - Task A task can be added to a resource group. It uses the cache partition associated to the group. - CPU All tasks which are not member of a resource group use the group to which the CPU they are running on is associated with. That allows for simple CPU based partitioning schemes. The main expected user sare: - Virtualization so a VM can only trash only the associated part of the cash w/o disturbing others - Real-Time systems to seperate RT and general workloads. - Latency sensitive enterprise workloads - In theory this also can be used to protect against cache side channel attacks" [ Intel RDT is "Resource Director Technology". The interface really is rather odd and very specific, which delayed this pull request while I was thinking about it. The pull request itself came in early during the merge window, I just delayed it until things had calmed down and I had more time. But people tell me they'll use this, and the good news is that it is _so_ specific that it's rather independent of anything else, and no user is going to depend on the interface since it's pretty rare. So if push comes to shove, we can just remove the interface and nothing will break ] * 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits) x86/intel_rdt: Implement show_options() for resctrlfs x86/intel_rdt: Call intel_rdt_sched_in() with preemption disabled x86/intel_rdt: Update task closid immediately on CPU in rmdir and unmount x86/intel_rdt: Fix setting of closid when adding CPUs to a group x86/intel_rdt: Update percpu closid immeditately on CPUs affected by changee x86/intel_rdt: Reset per cpu closids on unmount x86/intel_rdt: Select KERNFS when enabling INTEL_RDT_A x86/intel_rdt: Prevent deadlock against hotplug lock x86/intel_rdt: Protect info directory from removal x86/intel_rdt: Add info files to Documentation x86/intel_rdt: Export the minimum number of set mask bits in sysfs x86/intel_rdt: Propagate error in rdt_mount() properly x86/intel_rdt: Add a missing #include MAINTAINERS: Add maintainer for Intel RDT resource allocation x86/intel_rdt: Add scheduler hook x86/intel_rdt: Add schemata file x86/intel_rdt: Add tasks files x86/intel_rdt: Add cpus file x86/intel_rdt: Add mkdir to resctrl file system x86/intel_rdt: Add "info" files to resctrl file system ...
305 lines
8.3 KiB
C
305 lines
8.3 KiB
C
/*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of process handling..
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/user.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kdebug.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/ldt.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/desc.h>
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
#include <asm/math_emu.h>
|
|
#endif
|
|
|
|
#include <linux/err.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/vm86.h>
|
|
#include <asm/intel_rdt.h>
|
|
|
|
void __show_regs(struct pt_regs *regs, int all)
|
|
{
|
|
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
|
|
unsigned long d0, d1, d2, d3, d6, d7;
|
|
unsigned long sp;
|
|
unsigned short ss, gs;
|
|
|
|
if (user_mode(regs)) {
|
|
sp = regs->sp;
|
|
ss = regs->ss & 0xffff;
|
|
gs = get_user_gs(regs);
|
|
} else {
|
|
sp = kernel_stack_pointer(regs);
|
|
savesegment(ss, ss);
|
|
savesegment(gs, gs);
|
|
}
|
|
|
|
printk(KERN_DEFAULT "EIP: %pS\n", (void *)regs->ip);
|
|
printk(KERN_DEFAULT "EFLAGS: %08lx CPU: %d\n", regs->flags,
|
|
smp_processor_id());
|
|
|
|
printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
|
|
regs->ax, regs->bx, regs->cx, regs->dx);
|
|
printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
|
|
regs->si, regs->di, regs->bp, sp);
|
|
printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
|
|
(u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
|
|
|
|
if (!all)
|
|
return;
|
|
|
|
cr0 = read_cr0();
|
|
cr2 = read_cr2();
|
|
cr3 = read_cr3();
|
|
cr4 = __read_cr4();
|
|
printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
|
|
cr0, cr2, cr3, cr4);
|
|
|
|
get_debugreg(d0, 0);
|
|
get_debugreg(d1, 1);
|
|
get_debugreg(d2, 2);
|
|
get_debugreg(d3, 3);
|
|
get_debugreg(d6, 6);
|
|
get_debugreg(d7, 7);
|
|
|
|
/* Only print out debug registers if they are in their non-default state. */
|
|
if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
|
|
(d6 == DR6_RESERVED) && (d7 == 0x400))
|
|
return;
|
|
|
|
printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
|
|
d0, d1, d2, d3);
|
|
printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
|
|
d6, d7);
|
|
}
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
{
|
|
BUG_ON(dead_task->mm);
|
|
release_vm86_irqs(dead_task);
|
|
}
|
|
|
|
int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
|
|
unsigned long arg, struct task_struct *p, unsigned long tls)
|
|
{
|
|
struct pt_regs *childregs = task_pt_regs(p);
|
|
struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
|
|
struct inactive_task_frame *frame = &fork_frame->frame;
|
|
struct task_struct *tsk;
|
|
int err;
|
|
|
|
frame->bp = 0;
|
|
frame->ret_addr = (unsigned long) ret_from_fork;
|
|
p->thread.sp = (unsigned long) fork_frame;
|
|
p->thread.sp0 = (unsigned long) (childregs+1);
|
|
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
/* kernel thread */
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
frame->bx = sp; /* function */
|
|
frame->di = arg;
|
|
p->thread.io_bitmap_ptr = NULL;
|
|
return 0;
|
|
}
|
|
frame->bx = 0;
|
|
*childregs = *current_pt_regs();
|
|
childregs->ax = 0;
|
|
if (sp)
|
|
childregs->sp = sp;
|
|
|
|
task_user_gs(p) = get_user_gs(current_pt_regs());
|
|
|
|
p->thread.io_bitmap_ptr = NULL;
|
|
tsk = current;
|
|
err = -ENOMEM;
|
|
|
|
if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
|
|
p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
|
|
IO_BITMAP_BYTES, GFP_KERNEL);
|
|
if (!p->thread.io_bitmap_ptr) {
|
|
p->thread.io_bitmap_max = 0;
|
|
return -ENOMEM;
|
|
}
|
|
set_tsk_thread_flag(p, TIF_IO_BITMAP);
|
|
}
|
|
|
|
err = 0;
|
|
|
|
/*
|
|
* Set a new TLS for the child thread?
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS)
|
|
err = do_set_thread_area(p, -1,
|
|
(struct user_desc __user *)tls, 0);
|
|
|
|
if (err && p->thread.io_bitmap_ptr) {
|
|
kfree(p->thread.io_bitmap_ptr);
|
|
p->thread.io_bitmap_max = 0;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void
|
|
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
|
|
{
|
|
set_user_gs(regs, 0);
|
|
regs->fs = 0;
|
|
regs->ds = __USER_DS;
|
|
regs->es = __USER_DS;
|
|
regs->ss = __USER_DS;
|
|
regs->cs = __USER_CS;
|
|
regs->ip = new_ip;
|
|
regs->sp = new_sp;
|
|
regs->flags = X86_EFLAGS_IF;
|
|
force_iret();
|
|
}
|
|
EXPORT_SYMBOL_GPL(start_thread);
|
|
|
|
|
|
/*
|
|
* switch_to(x,y) should switch tasks from x to y.
|
|
*
|
|
* We fsave/fwait so that an exception goes off at the right time
|
|
* (as a call from the fsave or fwait in effect) rather than to
|
|
* the wrong process. Lazy FP saving no longer makes any sense
|
|
* with modern CPU's, and this simplifies a lot of things (SMP
|
|
* and UP become the same).
|
|
*
|
|
* NOTE! We used to use the x86 hardware context switching. The
|
|
* reason for not using it any more becomes apparent when you
|
|
* try to recover gracefully from saved state that is no longer
|
|
* valid (stale segment register values in particular). With the
|
|
* hardware task-switch, there is no way to fix up bad state in
|
|
* a reasonable manner.
|
|
*
|
|
* The fact that Intel documents the hardware task-switching to
|
|
* be slow is a fairly red herring - this code is not noticeably
|
|
* faster. However, there _is_ some room for improvement here,
|
|
* so the performance issues may eventually be a valid point.
|
|
* More important, however, is the fact that this allows us much
|
|
* more flexibility.
|
|
*
|
|
* The return value (in %ax) will be the "prev" task after
|
|
* the task-switch, and shows up in ret_from_fork in entry.S,
|
|
* for example.
|
|
*/
|
|
__visible __notrace_funcgraph struct task_struct *
|
|
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
|
|
{
|
|
struct thread_struct *prev = &prev_p->thread,
|
|
*next = &next_p->thread;
|
|
struct fpu *prev_fpu = &prev->fpu;
|
|
struct fpu *next_fpu = &next->fpu;
|
|
int cpu = smp_processor_id();
|
|
struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
|
|
|
|
/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
|
|
|
|
switch_fpu_prepare(prev_fpu, cpu);
|
|
|
|
/*
|
|
* Save away %gs. No need to save %fs, as it was saved on the
|
|
* stack on entry. No need to save %es and %ds, as those are
|
|
* always kernel segments while inside the kernel. Doing this
|
|
* before setting the new TLS descriptors avoids the situation
|
|
* where we temporarily have non-reloadable segments in %fs
|
|
* and %gs. This could be an issue if the NMI handler ever
|
|
* used %fs or %gs (it does not today), or if the kernel is
|
|
* running inside of a hypervisor layer.
|
|
*/
|
|
lazy_save_gs(prev->gs);
|
|
|
|
/*
|
|
* Load the per-thread Thread-Local Storage descriptor.
|
|
*/
|
|
load_TLS(next, cpu);
|
|
|
|
/*
|
|
* Restore IOPL if needed. In normal use, the flags restore
|
|
* in the switch assembly will handle this. But if the kernel
|
|
* is running virtualized at a non-zero CPL, the popf will
|
|
* not restore flags, so it must be done in a separate step.
|
|
*/
|
|
if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
|
|
set_iopl_mask(next->iopl);
|
|
|
|
/*
|
|
* Now maybe handle debug registers and/or IO bitmaps
|
|
*/
|
|
if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
|
|
task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
|
|
__switch_to_xtra(prev_p, next_p, tss);
|
|
|
|
/*
|
|
* Leave lazy mode, flushing any hypercalls made here.
|
|
* This must be done before restoring TLS segments so
|
|
* the GDT and LDT are properly updated, and must be
|
|
* done before fpu__restore(), so the TS bit is up
|
|
* to date.
|
|
*/
|
|
arch_end_context_switch(next_p);
|
|
|
|
/*
|
|
* Reload esp0 and cpu_current_top_of_stack. This changes
|
|
* current_thread_info().
|
|
*/
|
|
load_sp0(tss, next);
|
|
this_cpu_write(cpu_current_top_of_stack,
|
|
(unsigned long)task_stack_page(next_p) +
|
|
THREAD_SIZE);
|
|
|
|
/*
|
|
* Restore %gs if needed (which is common)
|
|
*/
|
|
if (prev->gs | next->gs)
|
|
lazy_load_gs(next->gs);
|
|
|
|
switch_fpu_finish(next_fpu, cpu);
|
|
|
|
this_cpu_write(current_task, next_p);
|
|
|
|
/* Load the Intel cache allocation PQR MSR. */
|
|
intel_rdt_sched_in();
|
|
|
|
return prev_p;
|
|
}
|