linux_dsm_epyc7002/arch/arm64/kernel/fpsimd.c
Eric W. Biederman c852680959 signal/arm64: Use send_sig_fault where appropriate
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-09-27 21:55:23 +02:00

1274 lines
34 KiB
C

/*
* FP/SIMD context switching and fault handling
*
* Copyright (C) 2012 ARM Ltd.
* Author: Catalin Marinas <catalin.marinas@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bitmap.h>
#include <linux/bottom_half.h>
#include <linux/bug.h>
#include <linux/cache.h>
#include <linux/compat.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/kernel.h>
#include <linux/linkage.h>
#include <linux/irqflags.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/prctl.h>
#include <linux/preempt.h>
#include <linux/ptrace.h>
#include <linux/sched/signal.h>
#include <linux/sched/task_stack.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/stddef.h>
#include <linux/sysctl.h>
#include <asm/esr.h>
#include <asm/fpsimd.h>
#include <asm/cpufeature.h>
#include <asm/cputype.h>
#include <asm/processor.h>
#include <asm/simd.h>
#include <asm/sigcontext.h>
#include <asm/sysreg.h>
#include <asm/traps.h>
#define FPEXC_IOF (1 << 0)
#define FPEXC_DZF (1 << 1)
#define FPEXC_OFF (1 << 2)
#define FPEXC_UFF (1 << 3)
#define FPEXC_IXF (1 << 4)
#define FPEXC_IDF (1 << 7)
/*
* (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
*
* In order to reduce the number of times the FPSIMD state is needlessly saved
* and restored, we need to keep track of two things:
* (a) for each task, we need to remember which CPU was the last one to have
* the task's FPSIMD state loaded into its FPSIMD registers;
* (b) for each CPU, we need to remember which task's userland FPSIMD state has
* been loaded into its FPSIMD registers most recently, or whether it has
* been used to perform kernel mode NEON in the meantime.
*
* For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
* the id of the current CPU every time the state is loaded onto a CPU. For (b),
* we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
* address of the userland FPSIMD state of the task that was loaded onto the CPU
* the most recently, or NULL if kernel mode NEON has been performed after that.
*
* With this in place, we no longer have to restore the next FPSIMD state right
* when switching between tasks. Instead, we can defer this check to userland
* resume, at which time we verify whether the CPU's fpsimd_last_state and the
* task's fpsimd_cpu are still mutually in sync. If this is the case, we
* can omit the FPSIMD restore.
*
* As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
* indicate whether or not the userland FPSIMD state of the current task is
* present in the registers. The flag is set unless the FPSIMD registers of this
* CPU currently contain the most recent userland FPSIMD state of the current
* task.
*
* In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
* save the task's FPSIMD context back to task_struct from softirq context.
* To prevent this from racing with the manipulation of the task's FPSIMD state
* from task context and thereby corrupting the state, it is necessary to
* protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
* flag with local_bh_disable() unless softirqs are already masked.
*
* For a certain task, the sequence may look something like this:
* - the task gets scheduled in; if both the task's fpsimd_cpu field
* contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
* variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
* cleared, otherwise it is set;
*
* - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
* userland FPSIMD state is copied from memory to the registers, the task's
* fpsimd_cpu field is set to the id of the current CPU, the current
* CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
* TIF_FOREIGN_FPSTATE flag is cleared;
*
* - the task executes an ordinary syscall; upon return to userland, the
* TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
* restored;
*
* - the task executes a syscall which executes some NEON instructions; this is
* preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
* register contents to memory, clears the fpsimd_last_state per-cpu variable
* and sets the TIF_FOREIGN_FPSTATE flag;
*
* - the task gets preempted after kernel_neon_end() is called; as we have not
* returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
* whatever is in the FPSIMD registers is not saved to memory, but discarded.
*/
struct fpsimd_last_state_struct {
struct user_fpsimd_state *st;
};
static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
/* Default VL for tasks that don't set it explicitly: */
static int sve_default_vl = -1;
#ifdef CONFIG_ARM64_SVE
/* Maximum supported vector length across all CPUs (initially poisoned) */
int __ro_after_init sve_max_vl = SVE_VL_MIN;
/* Set of available vector lengths, as vq_to_bit(vq): */
static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
static void __percpu *efi_sve_state;
#else /* ! CONFIG_ARM64_SVE */
/* Dummy declaration for code that will be optimised out: */
extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
extern void __percpu *efi_sve_state;
#endif /* ! CONFIG_ARM64_SVE */
/*
* Call __sve_free() directly only if you know task can't be scheduled
* or preempted.
*/
static void __sve_free(struct task_struct *task)
{
kfree(task->thread.sve_state);
task->thread.sve_state = NULL;
}
static void sve_free(struct task_struct *task)
{
WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
__sve_free(task);
}
/*
* TIF_SVE controls whether a task can use SVE without trapping while
* in userspace, and also the way a task's FPSIMD/SVE state is stored
* in thread_struct.
*
* The kernel uses this flag to track whether a user task is actively
* using SVE, and therefore whether full SVE register state needs to
* be tracked. If not, the cheaper FPSIMD context handling code can
* be used instead of the more costly SVE equivalents.
*
* * TIF_SVE set:
*
* The task can execute SVE instructions while in userspace without
* trapping to the kernel.
*
* When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
* corresponding Zn), P0-P15 and FFR are encoded in in
* task->thread.sve_state, formatted appropriately for vector
* length task->thread.sve_vl.
*
* task->thread.sve_state must point to a valid buffer at least
* sve_state_size(task) bytes in size.
*
* During any syscall, the kernel may optionally clear TIF_SVE and
* discard the vector state except for the FPSIMD subset.
*
* * TIF_SVE clear:
*
* An attempt by the user task to execute an SVE instruction causes
* do_sve_acc() to be called, which does some preparation and then
* sets TIF_SVE.
*
* When stored, FPSIMD registers V0-V31 are encoded in
* task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
* logically zero but not stored anywhere; P0-P15 and FFR are not
* stored and have unspecified values from userspace's point of
* view. For hygiene purposes, the kernel zeroes them on next use,
* but userspace is discouraged from relying on this.
*
* task->thread.sve_state does not need to be non-NULL, valid or any
* particular size: it must not be dereferenced.
*
* * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
* irrespective of whether TIF_SVE is clear or set, since these are
* not vector length dependent.
*/
/*
* Update current's FPSIMD/SVE registers from thread_struct.
*
* This function should be called only when the FPSIMD/SVE state in
* thread_struct is known to be up to date, when preparing to enter
* userspace.
*
* Softirqs (and preemption) must be disabled.
*/
static void task_fpsimd_load(void)
{
WARN_ON(!in_softirq() && !irqs_disabled());
if (system_supports_sve() && test_thread_flag(TIF_SVE))
sve_load_state(sve_pffr(&current->thread),
&current->thread.uw.fpsimd_state.fpsr,
sve_vq_from_vl(current->thread.sve_vl) - 1);
else
fpsimd_load_state(&current->thread.uw.fpsimd_state);
}
/*
* Ensure FPSIMD/SVE storage in memory for the loaded context is up to
* date with respect to the CPU registers.
*
* Softirqs (and preemption) must be disabled.
*/
void fpsimd_save(void)
{
struct user_fpsimd_state *st = __this_cpu_read(fpsimd_last_state.st);
/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
WARN_ON(!in_softirq() && !irqs_disabled());
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) {
/*
* Can't save the user regs, so current would
* re-enter user with corrupt state.
* There's no way to recover, so kill it:
*/
force_signal_inject(SIGKILL, SI_KERNEL, 0);
return;
}
sve_save_state(sve_pffr(&current->thread), &st->fpsr);
} else
fpsimd_save_state(st);
}
}
/*
* Helpers to translate bit indices in sve_vq_map to VQ values (and
* vice versa). This allows find_next_bit() to be used to find the
* _maximum_ VQ not exceeding a certain value.
*/
static unsigned int vq_to_bit(unsigned int vq)
{
return SVE_VQ_MAX - vq;
}
static unsigned int bit_to_vq(unsigned int bit)
{
if (WARN_ON(bit >= SVE_VQ_MAX))
bit = SVE_VQ_MAX - 1;
return SVE_VQ_MAX - bit;
}
/*
* All vector length selection from userspace comes through here.
* We're on a slow path, so some sanity-checks are included.
* If things go wrong there's a bug somewhere, but try to fall back to a
* safe choice.
*/
static unsigned int find_supported_vector_length(unsigned int vl)
{
int bit;
int max_vl = sve_max_vl;
if (WARN_ON(!sve_vl_valid(vl)))
vl = SVE_VL_MIN;
if (WARN_ON(!sve_vl_valid(max_vl)))
max_vl = SVE_VL_MIN;
if (vl > max_vl)
vl = max_vl;
bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
vq_to_bit(sve_vq_from_vl(vl)));
return sve_vl_from_vq(bit_to_vq(bit));
}
#ifdef CONFIG_SYSCTL
static int sve_proc_do_default_vl(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
int vl = sve_default_vl;
struct ctl_table tmp_table = {
.data = &vl,
.maxlen = sizeof(vl),
};
ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
if (ret || !write)
return ret;
/* Writing -1 has the special meaning "set to max": */
if (vl == -1)
vl = sve_max_vl;
if (!sve_vl_valid(vl))
return -EINVAL;
sve_default_vl = find_supported_vector_length(vl);
return 0;
}
static struct ctl_table sve_default_vl_table[] = {
{
.procname = "sve_default_vector_length",
.mode = 0644,
.proc_handler = sve_proc_do_default_vl,
},
{ }
};
static int __init sve_sysctl_init(void)
{
if (system_supports_sve())
if (!register_sysctl("abi", sve_default_vl_table))
return -EINVAL;
return 0;
}
#else /* ! CONFIG_SYSCTL */
static int __init sve_sysctl_init(void) { return 0; }
#endif /* ! CONFIG_SYSCTL */
#define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
/*
* Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
* task->thread.sve_state.
*
* Task can be a non-runnable task, or current. In the latter case,
* softirqs (and preemption) must be disabled.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
* task->thread.uw.fpsimd_state must be up to date before calling this
* function.
*/
static void fpsimd_to_sve(struct task_struct *task)
{
unsigned int vq;
void *sst = task->thread.sve_state;
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
unsigned int i;
if (!system_supports_sve())
return;
vq = sve_vq_from_vl(task->thread.sve_vl);
for (i = 0; i < 32; ++i)
memcpy(ZREG(sst, vq, i), &fst->vregs[i],
sizeof(fst->vregs[i]));
}
/*
* Transfer the SVE state in task->thread.sve_state to
* task->thread.uw.fpsimd_state.
*
* Task can be a non-runnable task, or current. In the latter case,
* softirqs (and preemption) must be disabled.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
* task->thread.sve_state must be up to date before calling this function.
*/
static void sve_to_fpsimd(struct task_struct *task)
{
unsigned int vq;
void const *sst = task->thread.sve_state;
struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
unsigned int i;
if (!system_supports_sve())
return;
vq = sve_vq_from_vl(task->thread.sve_vl);
for (i = 0; i < 32; ++i)
memcpy(&fst->vregs[i], ZREG(sst, vq, i),
sizeof(fst->vregs[i]));
}
#ifdef CONFIG_ARM64_SVE
/*
* Return how many bytes of memory are required to store the full SVE
* state for task, given task's currently configured vector length.
*/
size_t sve_state_size(struct task_struct const *task)
{
return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
}
/*
* Ensure that task->thread.sve_state is allocated and sufficiently large.
*
* This function should be used only in preparation for replacing
* task->thread.sve_state with new data. The memory is always zeroed
* here to prevent stale data from showing through: this is done in
* the interest of testability and predictability: except in the
* do_sve_acc() case, there is no ABI requirement to hide stale data
* written previously be task.
*/
void sve_alloc(struct task_struct *task)
{
if (task->thread.sve_state) {
memset(task->thread.sve_state, 0, sve_state_size(current));
return;
}
/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
task->thread.sve_state =
kzalloc(sve_state_size(task), GFP_KERNEL);
/*
* If future SVE revisions can have larger vectors though,
* this may cease to be true:
*/
BUG_ON(!task->thread.sve_state);
}
/*
* Ensure that task->thread.sve_state is up to date with respect to
* the user task, irrespective of when SVE is in use or not.
*
* This should only be called by ptrace. task must be non-runnable.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
*/
void fpsimd_sync_to_sve(struct task_struct *task)
{
if (!test_tsk_thread_flag(task, TIF_SVE))
fpsimd_to_sve(task);
}
/*
* Ensure that task->thread.uw.fpsimd_state is up to date with respect to
* the user task, irrespective of whether SVE is in use or not.
*
* This should only be called by ptrace. task must be non-runnable.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
*/
void sve_sync_to_fpsimd(struct task_struct *task)
{
if (test_tsk_thread_flag(task, TIF_SVE))
sve_to_fpsimd(task);
}
/*
* Ensure that task->thread.sve_state is up to date with respect to
* the task->thread.uw.fpsimd_state.
*
* This should only be called by ptrace to merge new FPSIMD register
* values into a task for which SVE is currently active.
* task must be non-runnable.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
* task->thread.uw.fpsimd_state must already have been initialised with
* the new FPSIMD register values to be merged in.
*/
void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
{
unsigned int vq;
void *sst = task->thread.sve_state;
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
unsigned int i;
if (!test_tsk_thread_flag(task, TIF_SVE))
return;
vq = sve_vq_from_vl(task->thread.sve_vl);
memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
for (i = 0; i < 32; ++i)
memcpy(ZREG(sst, vq, i), &fst->vregs[i],
sizeof(fst->vregs[i]));
}
int sve_set_vector_length(struct task_struct *task,
unsigned long vl, unsigned long flags)
{
if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
PR_SVE_SET_VL_ONEXEC))
return -EINVAL;
if (!sve_vl_valid(vl))
return -EINVAL;
/*
* Clamp to the maximum vector length that VL-agnostic SVE code can
* work with. A flag may be assigned in the future to allow setting
* of larger vector lengths without confusing older software.
*/
if (vl > SVE_VL_ARCH_MAX)
vl = SVE_VL_ARCH_MAX;
vl = find_supported_vector_length(vl);
if (flags & (PR_SVE_VL_INHERIT |
PR_SVE_SET_VL_ONEXEC))
task->thread.sve_vl_onexec = vl;
else
/* Reset VL to system default on next exec: */
task->thread.sve_vl_onexec = 0;
/* Only actually set the VL if not deferred: */
if (flags & PR_SVE_SET_VL_ONEXEC)
goto out;
if (vl == task->thread.sve_vl)
goto out;
/*
* To ensure the FPSIMD bits of the SVE vector registers are preserved,
* write any live register state back to task_struct, and convert to a
* non-SVE thread.
*/
if (task == current) {
local_bh_disable();
fpsimd_save();
set_thread_flag(TIF_FOREIGN_FPSTATE);
}
fpsimd_flush_task_state(task);
if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
sve_to_fpsimd(task);
if (task == current)
local_bh_enable();
/*
* Force reallocation of task SVE state to the correct size
* on next use:
*/
sve_free(task);
task->thread.sve_vl = vl;
out:
update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
flags & PR_SVE_VL_INHERIT);
return 0;
}
/*
* Encode the current vector length and flags for return.
* This is only required for prctl(): ptrace has separate fields
*
* flags are as for sve_set_vector_length().
*/
static int sve_prctl_status(unsigned long flags)
{
int ret;
if (flags & PR_SVE_SET_VL_ONEXEC)
ret = current->thread.sve_vl_onexec;
else
ret = current->thread.sve_vl;
if (test_thread_flag(TIF_SVE_VL_INHERIT))
ret |= PR_SVE_VL_INHERIT;
return ret;
}
/* PR_SVE_SET_VL */
int sve_set_current_vl(unsigned long arg)
{
unsigned long vl, flags;
int ret;
vl = arg & PR_SVE_VL_LEN_MASK;
flags = arg & ~vl;
if (!system_supports_sve())
return -EINVAL;
ret = sve_set_vector_length(current, vl, flags);
if (ret)
return ret;
return sve_prctl_status(flags);
}
/* PR_SVE_GET_VL */
int sve_get_current_vl(void)
{
if (!system_supports_sve())
return -EINVAL;
return sve_prctl_status(0);
}
/*
* Bitmap for temporary storage of the per-CPU set of supported vector lengths
* during secondary boot.
*/
static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX);
static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
{
unsigned int vq, vl;
unsigned long zcr;
bitmap_zero(map, SVE_VQ_MAX);
zcr = ZCR_ELx_LEN_MASK;
zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
vl = sve_get_vl();
vq = sve_vq_from_vl(vl); /* skip intervening lengths */
set_bit(vq_to_bit(vq), map);
}
}
void __init sve_init_vq_map(void)
{
sve_probe_vqs(sve_vq_map);
}
/*
* If we haven't committed to the set of supported VQs yet, filter out
* those not supported by the current CPU.
*/
void sve_update_vq_map(void)
{
sve_probe_vqs(sve_secondary_vq_map);
bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX);
}
/* Check whether the current CPU supports all VQs in the committed set */
int sve_verify_vq_map(void)
{
int ret = 0;
sve_probe_vqs(sve_secondary_vq_map);
bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map,
SVE_VQ_MAX);
if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) {
pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
smp_processor_id());
ret = -EINVAL;
}
return ret;
}
static void __init sve_efi_setup(void)
{
if (!IS_ENABLED(CONFIG_EFI))
return;
/*
* alloc_percpu() warns and prints a backtrace if this goes wrong.
* This is evidence of a crippled system and we are returning void,
* so no attempt is made to handle this situation here.
*/
if (!sve_vl_valid(sve_max_vl))
goto fail;
efi_sve_state = __alloc_percpu(
SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
if (!efi_sve_state)
goto fail;
return;
fail:
panic("Cannot allocate percpu memory for EFI SVE save/restore");
}
/*
* Enable SVE for EL1.
* Intended for use by the cpufeatures code during CPU boot.
*/
void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
{
write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
isb();
}
/*
* Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
* vector length.
*
* Use only if SVE is present.
* This function clobbers the SVE vector length.
*/
u64 read_zcr_features(void)
{
u64 zcr;
unsigned int vq_max;
/*
* Set the maximum possible VL, and write zeroes to all other
* bits to see if they stick.
*/
sve_kernel_enable(NULL);
write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
zcr = read_sysreg_s(SYS_ZCR_EL1);
zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
vq_max = sve_vq_from_vl(sve_get_vl());
zcr |= vq_max - 1; /* set LEN field to maximum effective value */
return zcr;
}
void __init sve_setup(void)
{
u64 zcr;
if (!system_supports_sve())
return;
/*
* The SVE architecture mandates support for 128-bit vectors,
* so sve_vq_map must have at least SVE_VQ_MIN set.
* If something went wrong, at least try to patch it up:
*/
if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map);
zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
/*
* Sanity-check that the max VL we determined through CPU features
* corresponds properly to sve_vq_map. If not, do our best:
*/
if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
sve_max_vl = find_supported_vector_length(sve_max_vl);
/*
* For the default VL, pick the maximum supported value <= 64.
* VL == 64 is guaranteed not to grow the signal frame.
*/
sve_default_vl = find_supported_vector_length(64);
pr_info("SVE: maximum available vector length %u bytes per vector\n",
sve_max_vl);
pr_info("SVE: default vector length %u bytes per vector\n",
sve_default_vl);
sve_efi_setup();
}
/*
* Called from the put_task_struct() path, which cannot get here
* unless dead_task is really dead and not schedulable.
*/
void fpsimd_release_task(struct task_struct *dead_task)
{
__sve_free(dead_task);
}
#endif /* CONFIG_ARM64_SVE */
/*
* Trapped SVE access
*
* Storage is allocated for the full SVE state, the current FPSIMD
* register contents are migrated across, and TIF_SVE is set so that
* the SVE access trap will be disabled the next time this task
* reaches ret_to_user.
*
* TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
* would have disabled the SVE access trap for userspace during
* ret_to_user, making an SVE access trap impossible in that case.
*/
asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
{
/* Even if we chose not to use SVE, the hardware could still trap: */
if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
return;
}
sve_alloc(current);
local_bh_disable();
fpsimd_save();
fpsimd_to_sve(current);
/* Force ret_to_user to reload the registers: */
fpsimd_flush_task_state(current);
set_thread_flag(TIF_FOREIGN_FPSTATE);
if (test_and_set_thread_flag(TIF_SVE))
WARN_ON(1); /* SVE access shouldn't have trapped */
local_bh_enable();
}
/*
* Trapped FP/ASIMD access.
*/
asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
{
/* TODO: implement lazy context saving/restoring */
WARN_ON(1);
}
/*
* Raise a SIGFPE for the current process.
*/
asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
{
unsigned int si_code = FPE_FLTUNK;
if (esr & ESR_ELx_FP_EXC_TFV) {
if (esr & FPEXC_IOF)
si_code = FPE_FLTINV;
else if (esr & FPEXC_DZF)
si_code = FPE_FLTDIV;
else if (esr & FPEXC_OFF)
si_code = FPE_FLTOVF;
else if (esr & FPEXC_UFF)
si_code = FPE_FLTUND;
else if (esr & FPEXC_IXF)
si_code = FPE_FLTRES;
}
send_sig_fault(SIGFPE, si_code,
(void __user *)instruction_pointer(regs),
current);
}
void fpsimd_thread_switch(struct task_struct *next)
{
bool wrong_task, wrong_cpu;
if (!system_supports_fpsimd())
return;
/* Save unsaved fpsimd state, if any: */
fpsimd_save();
/*
* Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
* state. For kernel threads, FPSIMD registers are never loaded
* and wrong_task and wrong_cpu will always be true.
*/
wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
&next->thread.uw.fpsimd_state;
wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
wrong_task || wrong_cpu);
}
void fpsimd_flush_thread(void)
{
int vl, supported_vl;
if (!system_supports_fpsimd())
return;
local_bh_disable();
memset(&current->thread.uw.fpsimd_state, 0,
sizeof(current->thread.uw.fpsimd_state));
fpsimd_flush_task_state(current);
if (system_supports_sve()) {
clear_thread_flag(TIF_SVE);
sve_free(current);
/*
* Reset the task vector length as required.
* This is where we ensure that all user tasks have a valid
* vector length configured: no kernel task can become a user
* task without an exec and hence a call to this function.
* By the time the first call to this function is made, all
* early hardware probing is complete, so sve_default_vl
* should be valid.
* If a bug causes this to go wrong, we make some noise and
* try to fudge thread.sve_vl to a safe value here.
*/
vl = current->thread.sve_vl_onexec ?
current->thread.sve_vl_onexec : sve_default_vl;
if (WARN_ON(!sve_vl_valid(vl)))
vl = SVE_VL_MIN;
supported_vl = find_supported_vector_length(vl);
if (WARN_ON(supported_vl != vl))
vl = supported_vl;
current->thread.sve_vl = vl;
/*
* If the task is not set to inherit, ensure that the vector
* length will be reset by a subsequent exec:
*/
if (!test_thread_flag(TIF_SVE_VL_INHERIT))
current->thread.sve_vl_onexec = 0;
}
set_thread_flag(TIF_FOREIGN_FPSTATE);
local_bh_enable();
}
/*
* Save the userland FPSIMD state of 'current' to memory, but only if the state
* currently held in the registers does in fact belong to 'current'
*/
void fpsimd_preserve_current_state(void)
{
if (!system_supports_fpsimd())
return;
local_bh_disable();
fpsimd_save();
local_bh_enable();
}
/*
* Like fpsimd_preserve_current_state(), but ensure that
* current->thread.uw.fpsimd_state is updated so that it can be copied to
* the signal frame.
*/
void fpsimd_signal_preserve_current_state(void)
{
fpsimd_preserve_current_state();
if (system_supports_sve() && test_thread_flag(TIF_SVE))
sve_to_fpsimd(current);
}
/*
* Associate current's FPSIMD context with this cpu
* Preemption must be disabled when calling this function.
*/
void fpsimd_bind_task_to_cpu(void)
{
struct fpsimd_last_state_struct *last =
this_cpu_ptr(&fpsimd_last_state);
last->st = &current->thread.uw.fpsimd_state;
current->thread.fpsimd_cpu = smp_processor_id();
if (system_supports_sve()) {
/* Toggle SVE trapping for userspace if needed */
if (test_thread_flag(TIF_SVE))
sve_user_enable();
else
sve_user_disable();
/* Serialised by exception return to user */
}
}
void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st)
{
struct fpsimd_last_state_struct *last =
this_cpu_ptr(&fpsimd_last_state);
WARN_ON(!in_softirq() && !irqs_disabled());
last->st = st;
}
/*
* Load the userland FPSIMD state of 'current' from memory, but only if the
* FPSIMD state already held in the registers is /not/ the most recent FPSIMD
* state of 'current'
*/
void fpsimd_restore_current_state(void)
{
if (!system_supports_fpsimd())
return;
local_bh_disable();
if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
task_fpsimd_load();
fpsimd_bind_task_to_cpu();
}
local_bh_enable();
}
/*
* Load an updated userland FPSIMD state for 'current' from memory and set the
* flag that indicates that the FPSIMD register contents are the most recent
* FPSIMD state of 'current'
*/
void fpsimd_update_current_state(struct user_fpsimd_state const *state)
{
if (!system_supports_fpsimd())
return;
local_bh_disable();
current->thread.uw.fpsimd_state = *state;
if (system_supports_sve() && test_thread_flag(TIF_SVE))
fpsimd_to_sve(current);
task_fpsimd_load();
fpsimd_bind_task_to_cpu();
clear_thread_flag(TIF_FOREIGN_FPSTATE);
local_bh_enable();
}
/*
* Invalidate live CPU copies of task t's FPSIMD state
*/
void fpsimd_flush_task_state(struct task_struct *t)
{
t->thread.fpsimd_cpu = NR_CPUS;
}
void fpsimd_flush_cpu_state(void)
{
__this_cpu_write(fpsimd_last_state.st, NULL);
set_thread_flag(TIF_FOREIGN_FPSTATE);
}
#ifdef CONFIG_KERNEL_MODE_NEON
DEFINE_PER_CPU(bool, kernel_neon_busy);
EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
/*
* Kernel-side NEON support functions
*/
/*
* kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
* context
*
* Must not be called unless may_use_simd() returns true.
* Task context in the FPSIMD registers is saved back to memory as necessary.
*
* A matching call to kernel_neon_end() must be made before returning from the
* calling context.
*
* The caller may freely use the FPSIMD registers until kernel_neon_end() is
* called.
*/
void kernel_neon_begin(void)
{
if (WARN_ON(!system_supports_fpsimd()))
return;
BUG_ON(!may_use_simd());
local_bh_disable();
__this_cpu_write(kernel_neon_busy, true);
/* Save unsaved fpsimd state, if any: */
fpsimd_save();
/* Invalidate any task state remaining in the fpsimd regs: */
fpsimd_flush_cpu_state();
preempt_disable();
local_bh_enable();
}
EXPORT_SYMBOL(kernel_neon_begin);
/*
* kernel_neon_end(): give the CPU FPSIMD registers back to the current task
*
* Must be called from a context in which kernel_neon_begin() was previously
* called, with no call to kernel_neon_end() in the meantime.
*
* The caller must not use the FPSIMD registers after this function is called,
* unless kernel_neon_begin() is called again in the meantime.
*/
void kernel_neon_end(void)
{
bool busy;
if (!system_supports_fpsimd())
return;
busy = __this_cpu_xchg(kernel_neon_busy, false);
WARN_ON(!busy); /* No matching kernel_neon_begin()? */
preempt_enable();
}
EXPORT_SYMBOL(kernel_neon_end);
#ifdef CONFIG_EFI
static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
static DEFINE_PER_CPU(bool, efi_sve_state_used);
/*
* EFI runtime services support functions
*
* The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
* This means that for EFI (and only for EFI), we have to assume that FPSIMD
* is always used rather than being an optional accelerator.
*
* These functions provide the necessary support for ensuring FPSIMD
* save/restore in the contexts from which EFI is used.
*
* Do not use them for any other purpose -- if tempted to do so, you are
* either doing something wrong or you need to propose some refactoring.
*/
/*
* __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
*/
void __efi_fpsimd_begin(void)
{
if (!system_supports_fpsimd())
return;
WARN_ON(preemptible());
if (may_use_simd()) {
kernel_neon_begin();
} else {
/*
* If !efi_sve_state, SVE can't be in use yet and doesn't need
* preserving:
*/
if (system_supports_sve() && likely(efi_sve_state)) {
char *sve_state = this_cpu_ptr(efi_sve_state);
__this_cpu_write(efi_sve_state_used, true);
sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
&this_cpu_ptr(&efi_fpsimd_state)->fpsr);
} else {
fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
}
__this_cpu_write(efi_fpsimd_state_used, true);
}
}
/*
* __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
*/
void __efi_fpsimd_end(void)
{
if (!system_supports_fpsimd())
return;
if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
kernel_neon_end();
} else {
if (system_supports_sve() &&
likely(__this_cpu_read(efi_sve_state_used))) {
char const *sve_state = this_cpu_ptr(efi_sve_state);
sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
&this_cpu_ptr(&efi_fpsimd_state)->fpsr,
sve_vq_from_vl(sve_get_vl()) - 1);
__this_cpu_write(efi_sve_state_used, false);
} else {
fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
}
}
}
#endif /* CONFIG_EFI */
#endif /* CONFIG_KERNEL_MODE_NEON */
#ifdef CONFIG_CPU_PM
static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
switch (cmd) {
case CPU_PM_ENTER:
fpsimd_save();
fpsimd_flush_cpu_state();
break;
case CPU_PM_EXIT:
break;
case CPU_PM_ENTER_FAILED:
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static struct notifier_block fpsimd_cpu_pm_notifier_block = {
.notifier_call = fpsimd_cpu_pm_notifier,
};
static void __init fpsimd_pm_init(void)
{
cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
}
#else
static inline void fpsimd_pm_init(void) { }
#endif /* CONFIG_CPU_PM */
#ifdef CONFIG_HOTPLUG_CPU
static int fpsimd_cpu_dead(unsigned int cpu)
{
per_cpu(fpsimd_last_state.st, cpu) = NULL;
return 0;
}
static inline void fpsimd_hotplug_init(void)
{
cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
NULL, fpsimd_cpu_dead);
}
#else
static inline void fpsimd_hotplug_init(void) { }
#endif
/*
* FP/SIMD support code initialisation.
*/
static int __init fpsimd_init(void)
{
if (elf_hwcap & HWCAP_FP) {
fpsimd_pm_init();
fpsimd_hotplug_init();
} else {
pr_notice("Floating-point is not implemented\n");
}
if (!(elf_hwcap & HWCAP_ASIMD))
pr_notice("Advanced SIMD is not implemented\n");
return sve_sysctl_init();
}
core_initcall(fpsimd_init);