linux_dsm_epyc7002/drivers/md/bcache/bset.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

1334 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Code for working with individual keys, and sorted sets of keys with in a
* btree node
*
* Copyright 2012 Google, Inc.
*/
#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
#include "util.h"
#include "bset.h"
#include <linux/console.h>
#include <linux/sched/clock.h>
#include <linux/random.h>
#include <linux/prefetch.h>
#ifdef CONFIG_BCACHE_DEBUG
void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned set)
{
struct bkey *k, *next;
for (k = i->start; k < bset_bkey_last(i); k = next) {
next = bkey_next(k);
printk(KERN_ERR "block %u key %u/%u: ", set,
(unsigned) ((u64 *) k - i->d), i->keys);
if (b->ops->key_dump)
b->ops->key_dump(b, k);
else
printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
if (next < bset_bkey_last(i) &&
bkey_cmp(k, b->ops->is_extents ?
&START_KEY(next) : next) > 0)
printk(KERN_ERR "Key skipped backwards\n");
}
}
void bch_dump_bucket(struct btree_keys *b)
{
unsigned i;
console_lock();
for (i = 0; i <= b->nsets; i++)
bch_dump_bset(b, b->set[i].data,
bset_sector_offset(b, b->set[i].data));
console_unlock();
}
int __bch_count_data(struct btree_keys *b)
{
unsigned ret = 0;
struct btree_iter iter;
struct bkey *k;
if (b->ops->is_extents)
for_each_key(b, k, &iter)
ret += KEY_SIZE(k);
return ret;
}
void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
{
va_list args;
struct bkey *k, *p = NULL;
struct btree_iter iter;
const char *err;
for_each_key(b, k, &iter) {
if (b->ops->is_extents) {
err = "Keys out of order";
if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
goto bug;
if (bch_ptr_invalid(b, k))
continue;
err = "Overlapping keys";
if (p && bkey_cmp(p, &START_KEY(k)) > 0)
goto bug;
} else {
if (bch_ptr_bad(b, k))
continue;
err = "Duplicate keys";
if (p && !bkey_cmp(p, k))
goto bug;
}
p = k;
}
#if 0
err = "Key larger than btree node key";
if (p && bkey_cmp(p, &b->key) > 0)
goto bug;
#endif
return;
bug:
bch_dump_bucket(b);
va_start(args, fmt);
vprintk(fmt, args);
va_end(args);
panic("bch_check_keys error: %s:\n", err);
}
static void bch_btree_iter_next_check(struct btree_iter *iter)
{
struct bkey *k = iter->data->k, *next = bkey_next(k);
if (next < iter->data->end &&
bkey_cmp(k, iter->b->ops->is_extents ?
&START_KEY(next) : next) > 0) {
bch_dump_bucket(iter->b);
panic("Key skipped backwards\n");
}
}
#else
static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
#endif
/* Keylists */
int __bch_keylist_realloc(struct keylist *l, unsigned u64s)
{
size_t oldsize = bch_keylist_nkeys(l);
size_t newsize = oldsize + u64s;
uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
uint64_t *new_keys;
newsize = roundup_pow_of_two(newsize);
if (newsize <= KEYLIST_INLINE ||
roundup_pow_of_two(oldsize) == newsize)
return 0;
new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
if (!new_keys)
return -ENOMEM;
if (!old_keys)
memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
l->keys_p = new_keys;
l->top_p = new_keys + oldsize;
return 0;
}
struct bkey *bch_keylist_pop(struct keylist *l)
{
struct bkey *k = l->keys;
if (k == l->top)
return NULL;
while (bkey_next(k) != l->top)
k = bkey_next(k);
return l->top = k;
}
void bch_keylist_pop_front(struct keylist *l)
{
l->top_p -= bkey_u64s(l->keys);
memmove(l->keys,
bkey_next(l->keys),
bch_keylist_bytes(l));
}
/* Key/pointer manipulation */
void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
unsigned i)
{
BUG_ON(i > KEY_PTRS(src));
/* Only copy the header, key, and one pointer. */
memcpy(dest, src, 2 * sizeof(uint64_t));
dest->ptr[0] = src->ptr[i];
SET_KEY_PTRS(dest, 1);
/* We didn't copy the checksum so clear that bit. */
SET_KEY_CSUM(dest, 0);
}
bool __bch_cut_front(const struct bkey *where, struct bkey *k)
{
unsigned i, len = 0;
if (bkey_cmp(where, &START_KEY(k)) <= 0)
return false;
if (bkey_cmp(where, k) < 0)
len = KEY_OFFSET(k) - KEY_OFFSET(where);
else
bkey_copy_key(k, where);
for (i = 0; i < KEY_PTRS(k); i++)
SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
BUG_ON(len > KEY_SIZE(k));
SET_KEY_SIZE(k, len);
return true;
}
bool __bch_cut_back(const struct bkey *where, struct bkey *k)
{
unsigned len = 0;
if (bkey_cmp(where, k) >= 0)
return false;
BUG_ON(KEY_INODE(where) != KEY_INODE(k));
if (bkey_cmp(where, &START_KEY(k)) > 0)
len = KEY_OFFSET(where) - KEY_START(k);
bkey_copy_key(k, where);
BUG_ON(len > KEY_SIZE(k));
SET_KEY_SIZE(k, len);
return true;
}
/* Auxiliary search trees */
/* 32 bits total: */
#define BKEY_MID_BITS 3
#define BKEY_EXPONENT_BITS 7
#define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
#define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
struct bkey_float {
unsigned exponent:BKEY_EXPONENT_BITS;
unsigned m:BKEY_MID_BITS;
unsigned mantissa:BKEY_MANTISSA_BITS;
} __packed;
/*
* BSET_CACHELINE was originally intended to match the hardware cacheline size -
* it used to be 64, but I realized the lookup code would touch slightly less
* memory if it was 128.
*
* It definites the number of bytes (in struct bset) per struct bkey_float in
* the auxiliar search tree - when we're done searching the bset_float tree we
* have this many bytes left that we do a linear search over.
*
* Since (after level 5) every level of the bset_tree is on a new cacheline,
* we're touching one fewer cacheline in the bset tree in exchange for one more
* cacheline in the linear search - but the linear search might stop before it
* gets to the second cacheline.
*/
#define BSET_CACHELINE 128
/* Space required for the btree node keys */
static inline size_t btree_keys_bytes(struct btree_keys *b)
{
return PAGE_SIZE << b->page_order;
}
static inline size_t btree_keys_cachelines(struct btree_keys *b)
{
return btree_keys_bytes(b) / BSET_CACHELINE;
}
/* Space required for the auxiliary search trees */
static inline size_t bset_tree_bytes(struct btree_keys *b)
{
return btree_keys_cachelines(b) * sizeof(struct bkey_float);
}
/* Space required for the prev pointers */
static inline size_t bset_prev_bytes(struct btree_keys *b)
{
return btree_keys_cachelines(b) * sizeof(uint8_t);
}
/* Memory allocation */
void bch_btree_keys_free(struct btree_keys *b)
{
struct bset_tree *t = b->set;
if (bset_prev_bytes(b) < PAGE_SIZE)
kfree(t->prev);
else
free_pages((unsigned long) t->prev,
get_order(bset_prev_bytes(b)));
if (bset_tree_bytes(b) < PAGE_SIZE)
kfree(t->tree);
else
free_pages((unsigned long) t->tree,
get_order(bset_tree_bytes(b)));
free_pages((unsigned long) t->data, b->page_order);
t->prev = NULL;
t->tree = NULL;
t->data = NULL;
}
EXPORT_SYMBOL(bch_btree_keys_free);
int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp)
{
struct bset_tree *t = b->set;
BUG_ON(t->data);
b->page_order = page_order;
t->data = (void *) __get_free_pages(gfp, b->page_order);
if (!t->data)
goto err;
t->tree = bset_tree_bytes(b) < PAGE_SIZE
? kmalloc(bset_tree_bytes(b), gfp)
: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
if (!t->tree)
goto err;
t->prev = bset_prev_bytes(b) < PAGE_SIZE
? kmalloc(bset_prev_bytes(b), gfp)
: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
if (!t->prev)
goto err;
return 0;
err:
bch_btree_keys_free(b);
return -ENOMEM;
}
EXPORT_SYMBOL(bch_btree_keys_alloc);
void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
bool *expensive_debug_checks)
{
unsigned i;
b->ops = ops;
b->expensive_debug_checks = expensive_debug_checks;
b->nsets = 0;
b->last_set_unwritten = 0;
/* XXX: shouldn't be needed */
for (i = 0; i < MAX_BSETS; i++)
b->set[i].size = 0;
/*
* Second loop starts at 1 because b->keys[0]->data is the memory we
* allocated
*/
for (i = 1; i < MAX_BSETS; i++)
b->set[i].data = NULL;
}
EXPORT_SYMBOL(bch_btree_keys_init);
/* Binary tree stuff for auxiliary search trees */
static unsigned inorder_next(unsigned j, unsigned size)
{
if (j * 2 + 1 < size) {
j = j * 2 + 1;
while (j * 2 < size)
j *= 2;
} else
j >>= ffz(j) + 1;
return j;
}
static unsigned inorder_prev(unsigned j, unsigned size)
{
if (j * 2 < size) {
j = j * 2;
while (j * 2 + 1 < size)
j = j * 2 + 1;
} else
j >>= ffs(j);
return j;
}
/* I have no idea why this code works... and I'm the one who wrote it
*
* However, I do know what it does:
* Given a binary tree constructed in an array (i.e. how you normally implement
* a heap), it converts a node in the tree - referenced by array index - to the
* index it would have if you did an inorder traversal.
*
* Also tested for every j, size up to size somewhere around 6 million.
*
* The binary tree starts at array index 1, not 0
* extra is a function of size:
* extra = (size - rounddown_pow_of_two(size - 1)) << 1;
*/
static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
{
unsigned b = fls(j);
unsigned shift = fls(size - 1) - b;
j ^= 1U << (b - 1);
j <<= 1;
j |= 1;
j <<= shift;
if (j > extra)
j -= (j - extra) >> 1;
return j;
}
static unsigned to_inorder(unsigned j, struct bset_tree *t)
{
return __to_inorder(j, t->size, t->extra);
}
static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
{
unsigned shift;
if (j > extra)
j += j - extra;
shift = ffs(j);
j >>= shift;
j |= roundup_pow_of_two(size) >> shift;
return j;
}
static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
{
return __inorder_to_tree(j, t->size, t->extra);
}
#if 0
void inorder_test(void)
{
unsigned long done = 0;
ktime_t start = ktime_get();
for (unsigned size = 2;
size < 65536000;
size++) {
unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
unsigned i = 1, j = rounddown_pow_of_two(size - 1);
if (!(size % 4096))
printk(KERN_NOTICE "loop %u, %llu per us\n", size,
done / ktime_us_delta(ktime_get(), start));
while (1) {
if (__inorder_to_tree(i, size, extra) != j)
panic("size %10u j %10u i %10u", size, j, i);
if (__to_inorder(j, size, extra) != i)
panic("size %10u j %10u i %10u", size, j, i);
if (j == rounddown_pow_of_two(size) - 1)
break;
BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
j = inorder_next(j, size);
i++;
}
done += size - 1;
}
}
#endif
/*
* Cacheline/offset <-> bkey pointer arithmetic:
*
* t->tree is a binary search tree in an array; each node corresponds to a key
* in one cacheline in t->set (BSET_CACHELINE bytes).
*
* This means we don't have to store the full index of the key that a node in
* the binary tree points to; to_inorder() gives us the cacheline, and then
* bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
*
* cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
* make this work.
*
* To construct the bfloat for an arbitrary key we need to know what the key
* immediately preceding it is: we have to check if the two keys differ in the
* bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
* of the previous key so we can walk backwards to it from t->tree[j]'s key.
*/
static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
unsigned offset)
{
return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
}
static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
{
return ((void *) k - (void *) t->data) / BSET_CACHELINE;
}
static unsigned bkey_to_cacheline_offset(struct bset_tree *t,
unsigned cacheline,
struct bkey *k)
{
return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
}
static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
{
return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
}
static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
{
return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
}
/*
* For the write set - the one we're currently inserting keys into - we don't
* maintain a full search tree, we just keep a simple lookup table in t->prev.
*/
static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
{
return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
}
static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
{
low >>= shift;
low |= (high << 1) << (63U - shift);
return low;
}
static inline unsigned bfloat_mantissa(const struct bkey *k,
struct bkey_float *f)
{
const uint64_t *p = &k->low - (f->exponent >> 6);
return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
}
static void make_bfloat(struct bset_tree *t, unsigned j)
{
struct bkey_float *f = &t->tree[j];
struct bkey *m = tree_to_bkey(t, j);
struct bkey *p = tree_to_prev_bkey(t, j);
struct bkey *l = is_power_of_2(j)
? t->data->start
: tree_to_prev_bkey(t, j >> ffs(j));
struct bkey *r = is_power_of_2(j + 1)
? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
: tree_to_bkey(t, j >> (ffz(j) + 1));
BUG_ON(m < l || m > r);
BUG_ON(bkey_next(p) != m);
if (KEY_INODE(l) != KEY_INODE(r))
f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
else
f->exponent = fls64(r->low ^ l->low);
f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
/*
* Setting f->exponent = 127 flags this node as failed, and causes the
* lookup code to fall back to comparing against the original key.
*/
if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
f->mantissa = bfloat_mantissa(m, f) - 1;
else
f->exponent = 127;
}
static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
{
if (t != b->set) {
unsigned j = roundup(t[-1].size,
64 / sizeof(struct bkey_float));
t->tree = t[-1].tree + j;
t->prev = t[-1].prev + j;
}
while (t < b->set + MAX_BSETS)
t++->size = 0;
}
static void bch_bset_build_unwritten_tree(struct btree_keys *b)
{
struct bset_tree *t = bset_tree_last(b);
BUG_ON(b->last_set_unwritten);
b->last_set_unwritten = 1;
bset_alloc_tree(b, t);
if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
t->size = 1;
}
}
void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
{
if (i != b->set->data) {
b->set[++b->nsets].data = i;
i->seq = b->set->data->seq;
} else
get_random_bytes(&i->seq, sizeof(uint64_t));
i->magic = magic;
i->version = 0;
i->keys = 0;
bch_bset_build_unwritten_tree(b);
}
EXPORT_SYMBOL(bch_bset_init_next);
void bch_bset_build_written_tree(struct btree_keys *b)
{
struct bset_tree *t = bset_tree_last(b);
struct bkey *prev = NULL, *k = t->data->start;
unsigned j, cacheline = 1;
b->last_set_unwritten = 0;
bset_alloc_tree(b, t);
t->size = min_t(unsigned,
bkey_to_cacheline(t, bset_bkey_last(t->data)),
b->set->tree + btree_keys_cachelines(b) - t->tree);
if (t->size < 2) {
t->size = 0;
return;
}
t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
/* First we figure out where the first key in each cacheline is */
for (j = inorder_next(0, t->size);
j;
j = inorder_next(j, t->size)) {
while (bkey_to_cacheline(t, k) < cacheline)
prev = k, k = bkey_next(k);
t->prev[j] = bkey_u64s(prev);
t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
}
while (bkey_next(k) != bset_bkey_last(t->data))
k = bkey_next(k);
t->end = *k;
/* Then we build the tree */
for (j = inorder_next(0, t->size);
j;
j = inorder_next(j, t->size))
make_bfloat(t, j);
}
EXPORT_SYMBOL(bch_bset_build_written_tree);
/* Insert */
void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
{
struct bset_tree *t;
unsigned inorder, j = 1;
for (t = b->set; t <= bset_tree_last(b); t++)
if (k < bset_bkey_last(t->data))
goto found_set;
BUG();
found_set:
if (!t->size || !bset_written(b, t))
return;
inorder = bkey_to_cacheline(t, k);
if (k == t->data->start)
goto fix_left;
if (bkey_next(k) == bset_bkey_last(t->data)) {
t->end = *k;
goto fix_right;
}
j = inorder_to_tree(inorder, t);
if (j &&
j < t->size &&
k == tree_to_bkey(t, j))
fix_left: do {
make_bfloat(t, j);
j = j * 2;
} while (j < t->size);
j = inorder_to_tree(inorder + 1, t);
if (j &&
j < t->size &&
k == tree_to_prev_bkey(t, j))
fix_right: do {
make_bfloat(t, j);
j = j * 2 + 1;
} while (j < t->size);
}
EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
static void bch_bset_fix_lookup_table(struct btree_keys *b,
struct bset_tree *t,
struct bkey *k)
{
unsigned shift = bkey_u64s(k);
unsigned j = bkey_to_cacheline(t, k);
/* We're getting called from btree_split() or btree_gc, just bail out */
if (!t->size)
return;
/* k is the key we just inserted; we need to find the entry in the
* lookup table for the first key that is strictly greater than k:
* it's either k's cacheline or the next one
*/
while (j < t->size &&
table_to_bkey(t, j) <= k)
j++;
/* Adjust all the lookup table entries, and find a new key for any that
* have gotten too big
*/
for (; j < t->size; j++) {
t->prev[j] += shift;
if (t->prev[j] > 7) {
k = table_to_bkey(t, j - 1);
while (k < cacheline_to_bkey(t, j, 0))
k = bkey_next(k);
t->prev[j] = bkey_to_cacheline_offset(t, j, k);
}
}
if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
return;
/* Possibly add a new entry to the end of the lookup table */
for (k = table_to_bkey(t, t->size - 1);
k != bset_bkey_last(t->data);
k = bkey_next(k))
if (t->size == bkey_to_cacheline(t, k)) {
t->prev[t->size] = bkey_to_cacheline_offset(t, t->size, k);
t->size++;
}
}
/*
* Tries to merge l and r: l should be lower than r
* Returns true if we were able to merge. If we did merge, l will be the merged
* key, r will be untouched.
*/
bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
{
if (!b->ops->key_merge)
return false;
/*
* Generic header checks
* Assumes left and right are in order
* Left and right must be exactly aligned
*/
if (!bch_bkey_equal_header(l, r) ||
bkey_cmp(l, &START_KEY(r)))
return false;
return b->ops->key_merge(b, l, r);
}
EXPORT_SYMBOL(bch_bkey_try_merge);
void bch_bset_insert(struct btree_keys *b, struct bkey *where,
struct bkey *insert)
{
struct bset_tree *t = bset_tree_last(b);
BUG_ON(!b->last_set_unwritten);
BUG_ON(bset_byte_offset(b, t->data) +
__set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
PAGE_SIZE << b->page_order);
memmove((uint64_t *) where + bkey_u64s(insert),
where,
(void *) bset_bkey_last(t->data) - (void *) where);
t->data->keys += bkey_u64s(insert);
bkey_copy(where, insert);
bch_bset_fix_lookup_table(b, t, where);
}
EXPORT_SYMBOL(bch_bset_insert);
unsigned bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
struct bkey *replace_key)
{
unsigned status = BTREE_INSERT_STATUS_NO_INSERT;
struct bset *i = bset_tree_last(b)->data;
struct bkey *m, *prev = NULL;
struct btree_iter iter;
BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
m = bch_btree_iter_init(b, &iter, b->ops->is_extents
? PRECEDING_KEY(&START_KEY(k))
: PRECEDING_KEY(k));
if (b->ops->insert_fixup(b, k, &iter, replace_key))
return status;
status = BTREE_INSERT_STATUS_INSERT;
while (m != bset_bkey_last(i) &&
bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
prev = m, m = bkey_next(m);
/* prev is in the tree, if we merge we're done */
status = BTREE_INSERT_STATUS_BACK_MERGE;
if (prev &&
bch_bkey_try_merge(b, prev, k))
goto merged;
#if 0
status = BTREE_INSERT_STATUS_OVERWROTE;
if (m != bset_bkey_last(i) &&
KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
goto copy;
#endif
status = BTREE_INSERT_STATUS_FRONT_MERGE;
if (m != bset_bkey_last(i) &&
bch_bkey_try_merge(b, k, m))
goto copy;
bch_bset_insert(b, m, k);
copy: bkey_copy(m, k);
merged:
return status;
}
EXPORT_SYMBOL(bch_btree_insert_key);
/* Lookup */
struct bset_search_iter {
struct bkey *l, *r;
};
static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
const struct bkey *search)
{
unsigned li = 0, ri = t->size;
while (li + 1 != ri) {
unsigned m = (li + ri) >> 1;
if (bkey_cmp(table_to_bkey(t, m), search) > 0)
ri = m;
else
li = m;
}
return (struct bset_search_iter) {
table_to_bkey(t, li),
ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
};
}
static struct bset_search_iter bset_search_tree(struct bset_tree *t,
const struct bkey *search)
{
struct bkey *l, *r;
struct bkey_float *f;
unsigned inorder, j, n = 1;
do {
unsigned p = n << 4;
p &= ((int) (p - t->size)) >> 31;
prefetch(&t->tree[p]);
j = n;
f = &t->tree[j];
/*
* n = (f->mantissa > bfloat_mantissa())
* ? j * 2
* : j * 2 + 1;
*
* We need to subtract 1 from f->mantissa for the sign bit trick
* to work - that's done in make_bfloat()
*/
if (likely(f->exponent != 127))
n = j * 2 + (((unsigned)
(f->mantissa -
bfloat_mantissa(search, f))) >> 31);
else
n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
? j * 2
: j * 2 + 1;
} while (n < t->size);
inorder = to_inorder(j, t);
/*
* n would have been the node we recursed to - the low bit tells us if
* we recursed left or recursed right.
*/
if (n & 1) {
l = cacheline_to_bkey(t, inorder, f->m);
if (++inorder != t->size) {
f = &t->tree[inorder_next(j, t->size)];
r = cacheline_to_bkey(t, inorder, f->m);
} else
r = bset_bkey_last(t->data);
} else {
r = cacheline_to_bkey(t, inorder, f->m);
if (--inorder) {
f = &t->tree[inorder_prev(j, t->size)];
l = cacheline_to_bkey(t, inorder, f->m);
} else
l = t->data->start;
}
return (struct bset_search_iter) {l, r};
}
struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
const struct bkey *search)
{
struct bset_search_iter i;
/*
* First, we search for a cacheline, then lastly we do a linear search
* within that cacheline.
*
* To search for the cacheline, there's three different possibilities:
* * The set is too small to have a search tree, so we just do a linear
* search over the whole set.
* * The set is the one we're currently inserting into; keeping a full
* auxiliary search tree up to date would be too expensive, so we
* use a much simpler lookup table to do a binary search -
* bset_search_write_set().
* * Or we use the auxiliary search tree we constructed earlier -
* bset_search_tree()
*/
if (unlikely(!t->size)) {
i.l = t->data->start;
i.r = bset_bkey_last(t->data);
} else if (bset_written(b, t)) {
/*
* Each node in the auxiliary search tree covers a certain range
* of bits, and keys above and below the set it covers might
* differ outside those bits - so we have to special case the
* start and end - handle that here:
*/
if (unlikely(bkey_cmp(search, &t->end) >= 0))
return bset_bkey_last(t->data);
if (unlikely(bkey_cmp(search, t->data->start) < 0))
return t->data->start;
i = bset_search_tree(t, search);
} else {
BUG_ON(!b->nsets &&
t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
i = bset_search_write_set(t, search);
}
if (btree_keys_expensive_checks(b)) {
BUG_ON(bset_written(b, t) &&
i.l != t->data->start &&
bkey_cmp(tree_to_prev_bkey(t,
inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
search) > 0);
BUG_ON(i.r != bset_bkey_last(t->data) &&
bkey_cmp(i.r, search) <= 0);
}
while (likely(i.l != i.r) &&
bkey_cmp(i.l, search) <= 0)
i.l = bkey_next(i.l);
return i.l;
}
EXPORT_SYMBOL(__bch_bset_search);
/* Btree iterator */
typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
struct btree_iter_set);
static inline bool btree_iter_cmp(struct btree_iter_set l,
struct btree_iter_set r)
{
return bkey_cmp(l.k, r.k) > 0;
}
static inline bool btree_iter_end(struct btree_iter *iter)
{
return !iter->used;
}
void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
struct bkey *end)
{
if (k != end)
BUG_ON(!heap_add(iter,
((struct btree_iter_set) { k, end }),
btree_iter_cmp));
}
static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
struct btree_iter *iter,
struct bkey *search,
struct bset_tree *start)
{
struct bkey *ret = NULL;
iter->size = ARRAY_SIZE(iter->data);
iter->used = 0;
#ifdef CONFIG_BCACHE_DEBUG
iter->b = b;
#endif
for (; start <= bset_tree_last(b); start++) {
ret = bch_bset_search(b, start, search);
bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
}
return ret;
}
struct bkey *bch_btree_iter_init(struct btree_keys *b,
struct btree_iter *iter,
struct bkey *search)
{
return __bch_btree_iter_init(b, iter, search, b->set);
}
EXPORT_SYMBOL(bch_btree_iter_init);
static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
btree_iter_cmp_fn *cmp)
{
struct btree_iter_set unused;
struct bkey *ret = NULL;
if (!btree_iter_end(iter)) {
bch_btree_iter_next_check(iter);
ret = iter->data->k;
iter->data->k = bkey_next(iter->data->k);
if (iter->data->k > iter->data->end) {
WARN_ONCE(1, "bset was corrupt!\n");
iter->data->k = iter->data->end;
}
if (iter->data->k == iter->data->end)
heap_pop(iter, unused, cmp);
else
heap_sift(iter, 0, cmp);
}
return ret;
}
struct bkey *bch_btree_iter_next(struct btree_iter *iter)
{
return __bch_btree_iter_next(iter, btree_iter_cmp);
}
EXPORT_SYMBOL(bch_btree_iter_next);
struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
struct btree_keys *b, ptr_filter_fn fn)
{
struct bkey *ret;
do {
ret = bch_btree_iter_next(iter);
} while (ret && fn(b, ret));
return ret;
}
/* Mergesort */
void bch_bset_sort_state_free(struct bset_sort_state *state)
{
if (state->pool)
mempool_destroy(state->pool);
}
int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order)
{
spin_lock_init(&state->time.lock);
state->page_order = page_order;
state->crit_factor = int_sqrt(1 << page_order);
state->pool = mempool_create_page_pool(1, page_order);
if (!state->pool)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(bch_bset_sort_state_init);
static void btree_mergesort(struct btree_keys *b, struct bset *out,
struct btree_iter *iter,
bool fixup, bool remove_stale)
{
int i;
struct bkey *k, *last = NULL;
BKEY_PADDED(k) tmp;
bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
? bch_ptr_bad
: bch_ptr_invalid;
/* Heapify the iterator, using our comparison function */
for (i = iter->used / 2 - 1; i >= 0; --i)
heap_sift(iter, i, b->ops->sort_cmp);
while (!btree_iter_end(iter)) {
if (b->ops->sort_fixup && fixup)
k = b->ops->sort_fixup(iter, &tmp.k);
else
k = NULL;
if (!k)
k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
if (bad(b, k))
continue;
if (!last) {
last = out->start;
bkey_copy(last, k);
} else if (!bch_bkey_try_merge(b, last, k)) {
last = bkey_next(last);
bkey_copy(last, k);
}
}
out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
pr_debug("sorted %i keys", out->keys);
}
static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
unsigned start, unsigned order, bool fixup,
struct bset_sort_state *state)
{
uint64_t start_time;
bool used_mempool = false;
struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
order);
if (!out) {
struct page *outp;
BUG_ON(order > state->page_order);
outp = mempool_alloc(state->pool, GFP_NOIO);
out = page_address(outp);
used_mempool = true;
order = state->page_order;
}
start_time = local_clock();
btree_mergesort(b, out, iter, fixup, false);
b->nsets = start;
if (!start && order == b->page_order) {
/*
* Our temporary buffer is the same size as the btree node's
* buffer, we can just swap buffers instead of doing a big
* memcpy()
*/
out->magic = b->set->data->magic;
out->seq = b->set->data->seq;
out->version = b->set->data->version;
swap(out, b->set->data);
} else {
b->set[start].data->keys = out->keys;
memcpy(b->set[start].data->start, out->start,
(void *) bset_bkey_last(out) - (void *) out->start);
}
if (used_mempool)
mempool_free(virt_to_page(out), state->pool);
else
free_pages((unsigned long) out, order);
bch_bset_build_written_tree(b);
if (!start)
bch_time_stats_update(&state->time, start_time);
}
void bch_btree_sort_partial(struct btree_keys *b, unsigned start,
struct bset_sort_state *state)
{
size_t order = b->page_order, keys = 0;
struct btree_iter iter;
int oldsize = bch_count_data(b);
__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
if (start) {
unsigned i;
for (i = start; i <= b->nsets; i++)
keys += b->set[i].data->keys;
order = get_order(__set_bytes(b->set->data, keys));
}
__btree_sort(b, &iter, start, order, false, state);
EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
}
EXPORT_SYMBOL(bch_btree_sort_partial);
void bch_btree_sort_and_fix_extents(struct btree_keys *b,
struct btree_iter *iter,
struct bset_sort_state *state)
{
__btree_sort(b, iter, 0, b->page_order, true, state);
}
void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
struct bset_sort_state *state)
{
uint64_t start_time = local_clock();
struct btree_iter iter;
bch_btree_iter_init(b, &iter, NULL);
btree_mergesort(b, new->set->data, &iter, false, true);
bch_time_stats_update(&state->time, start_time);
new->set->size = 0; // XXX: why?
}
#define SORT_CRIT (4096 / sizeof(uint64_t))
void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
{
unsigned crit = SORT_CRIT;
int i;
/* Don't sort if nothing to do */
if (!b->nsets)
goto out;
for (i = b->nsets - 1; i >= 0; --i) {
crit *= state->crit_factor;
if (b->set[i].data->keys < crit) {
bch_btree_sort_partial(b, i, state);
return;
}
}
/* Sort if we'd overflow */
if (b->nsets + 1 == MAX_BSETS) {
bch_btree_sort(b, state);
return;
}
out:
bch_bset_build_written_tree(b);
}
EXPORT_SYMBOL(bch_btree_sort_lazy);
void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
{
unsigned i;
for (i = 0; i <= b->nsets; i++) {
struct bset_tree *t = &b->set[i];
size_t bytes = t->data->keys * sizeof(uint64_t);
size_t j;
if (bset_written(b, t)) {
stats->sets_written++;
stats->bytes_written += bytes;
stats->floats += t->size - 1;
for (j = 1; j < t->size; j++)
if (t->tree[j].exponent == 127)
stats->failed++;
} else {
stats->sets_unwritten++;
stats->bytes_unwritten += bytes;
}
}
}