mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 09:26:06 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1234 lines
31 KiB
C
1234 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/perf_event.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/perf_event.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/insn.h>
|
|
|
|
#include "../perf_event.h"
|
|
|
|
enum {
|
|
LBR_FORMAT_32 = 0x00,
|
|
LBR_FORMAT_LIP = 0x01,
|
|
LBR_FORMAT_EIP = 0x02,
|
|
LBR_FORMAT_EIP_FLAGS = 0x03,
|
|
LBR_FORMAT_EIP_FLAGS2 = 0x04,
|
|
LBR_FORMAT_INFO = 0x05,
|
|
LBR_FORMAT_TIME = 0x06,
|
|
LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME,
|
|
};
|
|
|
|
static const enum {
|
|
LBR_EIP_FLAGS = 1,
|
|
LBR_TSX = 2,
|
|
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
|
|
[LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
|
|
[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
|
|
};
|
|
|
|
/*
|
|
* Intel LBR_SELECT bits
|
|
* Intel Vol3a, April 2011, Section 16.7 Table 16-10
|
|
*
|
|
* Hardware branch filter (not available on all CPUs)
|
|
*/
|
|
#define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
|
|
#define LBR_USER_BIT 1 /* do not capture at ring > 0 */
|
|
#define LBR_JCC_BIT 2 /* do not capture conditional branches */
|
|
#define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
|
|
#define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
|
|
#define LBR_RETURN_BIT 5 /* do not capture near returns */
|
|
#define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
|
|
#define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
|
|
#define LBR_FAR_BIT 8 /* do not capture far branches */
|
|
#define LBR_CALL_STACK_BIT 9 /* enable call stack */
|
|
|
|
/*
|
|
* Following bit only exists in Linux; we mask it out before writing it to
|
|
* the actual MSR. But it helps the constraint perf code to understand
|
|
* that this is a separate configuration.
|
|
*/
|
|
#define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
|
|
|
|
#define LBR_KERNEL (1 << LBR_KERNEL_BIT)
|
|
#define LBR_USER (1 << LBR_USER_BIT)
|
|
#define LBR_JCC (1 << LBR_JCC_BIT)
|
|
#define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
|
|
#define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
|
|
#define LBR_RETURN (1 << LBR_RETURN_BIT)
|
|
#define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
|
|
#define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
|
|
#define LBR_FAR (1 << LBR_FAR_BIT)
|
|
#define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
|
|
#define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
|
|
|
|
#define LBR_PLM (LBR_KERNEL | LBR_USER)
|
|
|
|
#define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
|
|
#define LBR_NOT_SUPP -1 /* LBR filter not supported */
|
|
#define LBR_IGN 0 /* ignored */
|
|
|
|
#define LBR_ANY \
|
|
(LBR_JCC |\
|
|
LBR_REL_CALL |\
|
|
LBR_IND_CALL |\
|
|
LBR_RETURN |\
|
|
LBR_REL_JMP |\
|
|
LBR_IND_JMP |\
|
|
LBR_FAR)
|
|
|
|
#define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
|
|
#define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
|
|
#define LBR_FROM_FLAG_ABORT BIT_ULL(61)
|
|
|
|
#define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
|
|
|
|
/*
|
|
* x86control flow change classification
|
|
* x86control flow changes include branches, interrupts, traps, faults
|
|
*/
|
|
enum {
|
|
X86_BR_NONE = 0, /* unknown */
|
|
|
|
X86_BR_USER = 1 << 0, /* branch target is user */
|
|
X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
|
|
|
|
X86_BR_CALL = 1 << 2, /* call */
|
|
X86_BR_RET = 1 << 3, /* return */
|
|
X86_BR_SYSCALL = 1 << 4, /* syscall */
|
|
X86_BR_SYSRET = 1 << 5, /* syscall return */
|
|
X86_BR_INT = 1 << 6, /* sw interrupt */
|
|
X86_BR_IRET = 1 << 7, /* return from interrupt */
|
|
X86_BR_JCC = 1 << 8, /* conditional */
|
|
X86_BR_JMP = 1 << 9, /* jump */
|
|
X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
|
|
X86_BR_IND_CALL = 1 << 11,/* indirect calls */
|
|
X86_BR_ABORT = 1 << 12,/* transaction abort */
|
|
X86_BR_IN_TX = 1 << 13,/* in transaction */
|
|
X86_BR_NO_TX = 1 << 14,/* not in transaction */
|
|
X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
|
|
X86_BR_CALL_STACK = 1 << 16,/* call stack */
|
|
X86_BR_IND_JMP = 1 << 17,/* indirect jump */
|
|
|
|
X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */
|
|
|
|
};
|
|
|
|
#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
|
|
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
|
|
|
|
#define X86_BR_ANY \
|
|
(X86_BR_CALL |\
|
|
X86_BR_RET |\
|
|
X86_BR_SYSCALL |\
|
|
X86_BR_SYSRET |\
|
|
X86_BR_INT |\
|
|
X86_BR_IRET |\
|
|
X86_BR_JCC |\
|
|
X86_BR_JMP |\
|
|
X86_BR_IRQ |\
|
|
X86_BR_ABORT |\
|
|
X86_BR_IND_CALL |\
|
|
X86_BR_IND_JMP |\
|
|
X86_BR_ZERO_CALL)
|
|
|
|
#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
|
|
|
|
#define X86_BR_ANY_CALL \
|
|
(X86_BR_CALL |\
|
|
X86_BR_IND_CALL |\
|
|
X86_BR_ZERO_CALL |\
|
|
X86_BR_SYSCALL |\
|
|
X86_BR_IRQ |\
|
|
X86_BR_INT)
|
|
|
|
static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
|
|
|
|
/*
|
|
* We only support LBR implementations that have FREEZE_LBRS_ON_PMI
|
|
* otherwise it becomes near impossible to get a reliable stack.
|
|
*/
|
|
|
|
static void __intel_pmu_lbr_enable(bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
u64 debugctl, lbr_select = 0, orig_debugctl;
|
|
|
|
/*
|
|
* No need to unfreeze manually, as v4 can do that as part
|
|
* of the GLOBAL_STATUS ack.
|
|
*/
|
|
if (pmi && x86_pmu.version >= 4)
|
|
return;
|
|
|
|
/*
|
|
* No need to reprogram LBR_SELECT in a PMI, as it
|
|
* did not change.
|
|
*/
|
|
if (cpuc->lbr_sel)
|
|
lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
|
|
if (!pmi && cpuc->lbr_sel)
|
|
wrmsrl(MSR_LBR_SELECT, lbr_select);
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
orig_debugctl = debugctl;
|
|
debugctl |= DEBUGCTLMSR_LBR;
|
|
/*
|
|
* LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
|
|
* If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
|
|
* may cause superfluous increase/decrease of LBR_TOS.
|
|
*/
|
|
if (!(lbr_select & LBR_CALL_STACK))
|
|
debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
|
|
if (orig_debugctl != debugctl)
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
}
|
|
|
|
static void __intel_pmu_lbr_disable(void)
|
|
{
|
|
u64 debugctl;
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
}
|
|
|
|
static void intel_pmu_lbr_reset_32(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++)
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
}
|
|
|
|
static void intel_pmu_lbr_reset_64(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
wrmsrl(x86_pmu.lbr_to + i, 0);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
wrmsrl(MSR_LBR_INFO_0 + i, 0);
|
|
}
|
|
}
|
|
|
|
void intel_pmu_lbr_reset(void)
|
|
{
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
|
|
intel_pmu_lbr_reset_32();
|
|
else
|
|
intel_pmu_lbr_reset_64();
|
|
}
|
|
|
|
/*
|
|
* TOS = most recently recorded branch
|
|
*/
|
|
static inline u64 intel_pmu_lbr_tos(void)
|
|
{
|
|
u64 tos;
|
|
|
|
rdmsrl(x86_pmu.lbr_tos, tos);
|
|
return tos;
|
|
}
|
|
|
|
enum {
|
|
LBR_NONE,
|
|
LBR_VALID,
|
|
};
|
|
|
|
/*
|
|
* For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
|
|
* MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
|
|
* TSX is not supported they have no consistent behavior:
|
|
*
|
|
* - For wrmsr(), bits 61:62 are considered part of the sign extension.
|
|
* - For HW updates (branch captures) bits 61:62 are always OFF and are not
|
|
* part of the sign extension.
|
|
*
|
|
* Therefore, if:
|
|
*
|
|
* 1) LBR has TSX format
|
|
* 2) CPU has no TSX support enabled
|
|
*
|
|
* ... then any value passed to wrmsr() must be sign extended to 63 bits and any
|
|
* value from rdmsr() must be converted to have a 61 bits sign extension,
|
|
* ignoring the TSX flags.
|
|
*/
|
|
static inline bool lbr_from_signext_quirk_needed(void)
|
|
{
|
|
int lbr_format = x86_pmu.intel_cap.lbr_format;
|
|
bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
|
|
boot_cpu_has(X86_FEATURE_RTM);
|
|
|
|
return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
|
|
}
|
|
|
|
DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
|
|
|
|
/* If quirk is enabled, ensure sign extension is 63 bits: */
|
|
inline u64 lbr_from_signext_quirk_wr(u64 val)
|
|
{
|
|
if (static_branch_unlikely(&lbr_from_quirk_key)) {
|
|
/*
|
|
* Sign extend into bits 61:62 while preserving bit 63.
|
|
*
|
|
* Quirk is enabled when TSX is disabled. Therefore TSX bits
|
|
* in val are always OFF and must be changed to be sign
|
|
* extension bits. Since bits 59:60 are guaranteed to be
|
|
* part of the sign extension bits, we can just copy them
|
|
* to 61:62.
|
|
*/
|
|
val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* If quirk is needed, ensure sign extension is 61 bits:
|
|
*/
|
|
static u64 lbr_from_signext_quirk_rd(u64 val)
|
|
{
|
|
if (static_branch_unlikely(&lbr_from_quirk_key)) {
|
|
/*
|
|
* Quirk is on when TSX is not enabled. Therefore TSX
|
|
* flags must be read as OFF.
|
|
*/
|
|
val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static inline void wrlbr_from(unsigned int idx, u64 val)
|
|
{
|
|
val = lbr_from_signext_quirk_wr(val);
|
|
wrmsrl(x86_pmu.lbr_from + idx, val);
|
|
}
|
|
|
|
static inline void wrlbr_to(unsigned int idx, u64 val)
|
|
{
|
|
wrmsrl(x86_pmu.lbr_to + idx, val);
|
|
}
|
|
|
|
static inline u64 rdlbr_from(unsigned int idx)
|
|
{
|
|
u64 val;
|
|
|
|
rdmsrl(x86_pmu.lbr_from + idx, val);
|
|
|
|
return lbr_from_signext_quirk_rd(val);
|
|
}
|
|
|
|
static inline u64 rdlbr_to(unsigned int idx)
|
|
{
|
|
u64 val;
|
|
|
|
rdmsrl(x86_pmu.lbr_to + idx, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
|
|
{
|
|
int i;
|
|
unsigned lbr_idx, mask;
|
|
u64 tos;
|
|
|
|
if (task_ctx->lbr_callstack_users == 0 ||
|
|
task_ctx->lbr_stack_state == LBR_NONE) {
|
|
intel_pmu_lbr_reset();
|
|
return;
|
|
}
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
|
tos = task_ctx->tos;
|
|
for (i = 0; i < tos; i++) {
|
|
lbr_idx = (tos - i) & mask;
|
|
wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
|
|
wrlbr_to (lbr_idx, task_ctx->lbr_to[i]);
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
|
|
}
|
|
wrmsrl(x86_pmu.lbr_tos, tos);
|
|
task_ctx->lbr_stack_state = LBR_NONE;
|
|
}
|
|
|
|
static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
|
|
{
|
|
unsigned lbr_idx, mask;
|
|
u64 tos;
|
|
int i;
|
|
|
|
if (task_ctx->lbr_callstack_users == 0) {
|
|
task_ctx->lbr_stack_state = LBR_NONE;
|
|
return;
|
|
}
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
|
tos = intel_pmu_lbr_tos();
|
|
for (i = 0; i < tos; i++) {
|
|
lbr_idx = (tos - i) & mask;
|
|
task_ctx->lbr_from[i] = rdlbr_from(lbr_idx);
|
|
task_ctx->lbr_to[i] = rdlbr_to(lbr_idx);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
|
|
}
|
|
task_ctx->tos = tos;
|
|
task_ctx->lbr_stack_state = LBR_VALID;
|
|
}
|
|
|
|
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx;
|
|
|
|
if (!cpuc->lbr_users)
|
|
return;
|
|
|
|
/*
|
|
* If LBR callstack feature is enabled and the stack was saved when
|
|
* the task was scheduled out, restore the stack. Otherwise flush
|
|
* the LBR stack.
|
|
*/
|
|
task_ctx = ctx ? ctx->task_ctx_data : NULL;
|
|
if (task_ctx) {
|
|
if (sched_in)
|
|
__intel_pmu_lbr_restore(task_ctx);
|
|
else
|
|
__intel_pmu_lbr_save(task_ctx);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Since a context switch can flip the address space and LBR entries
|
|
* are not tagged with an identifier, we need to wipe the LBR, even for
|
|
* per-cpu events. You simply cannot resolve the branches from the old
|
|
* address space.
|
|
*/
|
|
if (sched_in)
|
|
intel_pmu_lbr_reset();
|
|
}
|
|
|
|
static inline bool branch_user_callstack(unsigned br_sel)
|
|
{
|
|
return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
|
|
}
|
|
|
|
void intel_pmu_lbr_add(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx;
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
cpuc->br_sel = event->hw.branch_reg.reg;
|
|
|
|
if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
|
|
task_ctx = event->ctx->task_ctx_data;
|
|
task_ctx->lbr_callstack_users++;
|
|
}
|
|
|
|
/*
|
|
* Request pmu::sched_task() callback, which will fire inside the
|
|
* regular perf event scheduling, so that call will:
|
|
*
|
|
* - restore or wipe; when LBR-callstack,
|
|
* - wipe; otherwise,
|
|
*
|
|
* when this is from __perf_event_task_sched_in().
|
|
*
|
|
* However, if this is from perf_install_in_context(), no such callback
|
|
* will follow and we'll need to reset the LBR here if this is the
|
|
* first LBR event.
|
|
*
|
|
* The problem is, we cannot tell these cases apart... but we can
|
|
* exclude the biggest chunk of cases by looking at
|
|
* event->total_time_running. An event that has accrued runtime cannot
|
|
* be 'new'. Conversely, a new event can get installed through the
|
|
* context switch path for the first time.
|
|
*/
|
|
perf_sched_cb_inc(event->ctx->pmu);
|
|
if (!cpuc->lbr_users++ && !event->total_time_running)
|
|
intel_pmu_lbr_reset();
|
|
}
|
|
|
|
void intel_pmu_lbr_del(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx;
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
if (branch_user_callstack(cpuc->br_sel) &&
|
|
event->ctx->task_ctx_data) {
|
|
task_ctx = event->ctx->task_ctx_data;
|
|
task_ctx->lbr_callstack_users--;
|
|
}
|
|
|
|
cpuc->lbr_users--;
|
|
WARN_ON_ONCE(cpuc->lbr_users < 0);
|
|
perf_sched_cb_dec(event->ctx->pmu);
|
|
}
|
|
|
|
void intel_pmu_lbr_enable_all(bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->lbr_users)
|
|
__intel_pmu_lbr_enable(pmi);
|
|
}
|
|
|
|
void intel_pmu_lbr_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->lbr_users)
|
|
__intel_pmu_lbr_disable();
|
|
}
|
|
|
|
static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
|
|
{
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
|
union {
|
|
struct {
|
|
u32 from;
|
|
u32 to;
|
|
};
|
|
u64 lbr;
|
|
} msr_lastbranch;
|
|
|
|
rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
|
|
|
|
cpuc->lbr_entries[i].from = msr_lastbranch.from;
|
|
cpuc->lbr_entries[i].to = msr_lastbranch.to;
|
|
cpuc->lbr_entries[i].mispred = 0;
|
|
cpuc->lbr_entries[i].predicted = 0;
|
|
cpuc->lbr_entries[i].in_tx = 0;
|
|
cpuc->lbr_entries[i].abort = 0;
|
|
cpuc->lbr_entries[i].cycles = 0;
|
|
cpuc->lbr_entries[i].type = 0;
|
|
cpuc->lbr_entries[i].reserved = 0;
|
|
}
|
|
cpuc->lbr_stack.nr = i;
|
|
}
|
|
|
|
/*
|
|
* Due to lack of segmentation in Linux the effective address (offset)
|
|
* is the same as the linear address, allowing us to merge the LIP and EIP
|
|
* LBR formats.
|
|
*/
|
|
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
|
|
{
|
|
bool need_info = false;
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
|
int lbr_format = x86_pmu.intel_cap.lbr_format;
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
int i;
|
|
int out = 0;
|
|
int num = x86_pmu.lbr_nr;
|
|
|
|
if (cpuc->lbr_sel) {
|
|
need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
|
|
if (cpuc->lbr_sel->config & LBR_CALL_STACK)
|
|
num = tos;
|
|
}
|
|
|
|
for (i = 0; i < num; i++) {
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
|
u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
|
|
int skip = 0;
|
|
u16 cycles = 0;
|
|
int lbr_flags = lbr_desc[lbr_format];
|
|
|
|
from = rdlbr_from(lbr_idx);
|
|
to = rdlbr_to(lbr_idx);
|
|
|
|
if (lbr_format == LBR_FORMAT_INFO && need_info) {
|
|
u64 info;
|
|
|
|
rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
|
|
mis = !!(info & LBR_INFO_MISPRED);
|
|
pred = !mis;
|
|
in_tx = !!(info & LBR_INFO_IN_TX);
|
|
abort = !!(info & LBR_INFO_ABORT);
|
|
cycles = (info & LBR_INFO_CYCLES);
|
|
}
|
|
|
|
if (lbr_format == LBR_FORMAT_TIME) {
|
|
mis = !!(from & LBR_FROM_FLAG_MISPRED);
|
|
pred = !mis;
|
|
skip = 1;
|
|
cycles = ((to >> 48) & LBR_INFO_CYCLES);
|
|
|
|
to = (u64)((((s64)to) << 16) >> 16);
|
|
}
|
|
|
|
if (lbr_flags & LBR_EIP_FLAGS) {
|
|
mis = !!(from & LBR_FROM_FLAG_MISPRED);
|
|
pred = !mis;
|
|
skip = 1;
|
|
}
|
|
if (lbr_flags & LBR_TSX) {
|
|
in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
|
|
abort = !!(from & LBR_FROM_FLAG_ABORT);
|
|
skip = 3;
|
|
}
|
|
from = (u64)((((s64)from) << skip) >> skip);
|
|
|
|
/*
|
|
* Some CPUs report duplicated abort records,
|
|
* with the second entry not having an abort bit set.
|
|
* Skip them here. This loop runs backwards,
|
|
* so we need to undo the previous record.
|
|
* If the abort just happened outside the window
|
|
* the extra entry cannot be removed.
|
|
*/
|
|
if (abort && x86_pmu.lbr_double_abort && out > 0)
|
|
out--;
|
|
|
|
cpuc->lbr_entries[out].from = from;
|
|
cpuc->lbr_entries[out].to = to;
|
|
cpuc->lbr_entries[out].mispred = mis;
|
|
cpuc->lbr_entries[out].predicted = pred;
|
|
cpuc->lbr_entries[out].in_tx = in_tx;
|
|
cpuc->lbr_entries[out].abort = abort;
|
|
cpuc->lbr_entries[out].cycles = cycles;
|
|
cpuc->lbr_entries[out].type = 0;
|
|
cpuc->lbr_entries[out].reserved = 0;
|
|
out++;
|
|
}
|
|
cpuc->lbr_stack.nr = out;
|
|
}
|
|
|
|
void intel_pmu_lbr_read(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!cpuc->lbr_users)
|
|
return;
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
|
|
intel_pmu_lbr_read_32(cpuc);
|
|
else
|
|
intel_pmu_lbr_read_64(cpuc);
|
|
|
|
intel_pmu_lbr_filter(cpuc);
|
|
}
|
|
|
|
/*
|
|
* SW filter is used:
|
|
* - in case there is no HW filter
|
|
* - in case the HW filter has errata or limitations
|
|
*/
|
|
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
|
|
{
|
|
u64 br_type = event->attr.branch_sample_type;
|
|
int mask = 0;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_USER)
|
|
mask |= X86_BR_USER;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
|
|
mask |= X86_BR_KERNEL;
|
|
|
|
/* we ignore BRANCH_HV here */
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY)
|
|
mask |= X86_BR_ANY;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
|
|
mask |= X86_BR_ANY_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
|
|
mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
|
|
mask |= X86_BR_IND_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
|
|
mask |= X86_BR_ABORT;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
|
|
mask |= X86_BR_IN_TX;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
|
|
mask |= X86_BR_NO_TX;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_COND)
|
|
mask |= X86_BR_JCC;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
|
|
if (!x86_pmu_has_lbr_callstack())
|
|
return -EOPNOTSUPP;
|
|
if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
|
|
return -EINVAL;
|
|
mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
|
|
X86_BR_CALL_STACK;
|
|
}
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
|
|
mask |= X86_BR_IND_JMP;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_CALL)
|
|
mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
|
|
mask |= X86_BR_TYPE_SAVE;
|
|
|
|
/*
|
|
* stash actual user request into reg, it may
|
|
* be used by fixup code for some CPU
|
|
*/
|
|
event->hw.branch_reg.reg = mask;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* setup the HW LBR filter
|
|
* Used only when available, may not be enough to disambiguate
|
|
* all branches, may need the help of the SW filter
|
|
*/
|
|
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event_extra *reg;
|
|
u64 br_type = event->attr.branch_sample_type;
|
|
u64 mask = 0, v;
|
|
int i;
|
|
|
|
for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
|
|
if (!(br_type & (1ULL << i)))
|
|
continue;
|
|
|
|
v = x86_pmu.lbr_sel_map[i];
|
|
if (v == LBR_NOT_SUPP)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (v != LBR_IGN)
|
|
mask |= v;
|
|
}
|
|
|
|
reg = &event->hw.branch_reg;
|
|
reg->idx = EXTRA_REG_LBR;
|
|
|
|
/*
|
|
* The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
|
|
* in suppress mode. So LBR_SELECT should be set to
|
|
* (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
|
|
* But the 10th bit LBR_CALL_STACK does not operate
|
|
* in suppress mode.
|
|
*/
|
|
reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
|
|
|
|
if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
|
|
(br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
|
|
(x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
|
|
reg->config |= LBR_NO_INFO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_pmu_setup_lbr_filter(struct perf_event *event)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* no LBR on this PMU
|
|
*/
|
|
if (!x86_pmu.lbr_nr)
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* setup SW LBR filter
|
|
*/
|
|
ret = intel_pmu_setup_sw_lbr_filter(event);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* setup HW LBR filter, if any
|
|
*/
|
|
if (x86_pmu.lbr_sel_map)
|
|
ret = intel_pmu_setup_hw_lbr_filter(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return the type of control flow change at address "from"
|
|
* instruction is not necessarily a branch (in case of interrupt).
|
|
*
|
|
* The branch type returned also includes the priv level of the
|
|
* target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
|
|
*
|
|
* If a branch type is unknown OR the instruction cannot be
|
|
* decoded (e.g., text page not present), then X86_BR_NONE is
|
|
* returned.
|
|
*/
|
|
static int branch_type(unsigned long from, unsigned long to, int abort)
|
|
{
|
|
struct insn insn;
|
|
void *addr;
|
|
int bytes_read, bytes_left;
|
|
int ret = X86_BR_NONE;
|
|
int ext, to_plm, from_plm;
|
|
u8 buf[MAX_INSN_SIZE];
|
|
int is64 = 0;
|
|
|
|
to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
|
|
from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
|
|
|
|
/*
|
|
* maybe zero if lbr did not fill up after a reset by the time
|
|
* we get a PMU interrupt
|
|
*/
|
|
if (from == 0 || to == 0)
|
|
return X86_BR_NONE;
|
|
|
|
if (abort)
|
|
return X86_BR_ABORT | to_plm;
|
|
|
|
if (from_plm == X86_BR_USER) {
|
|
/*
|
|
* can happen if measuring at the user level only
|
|
* and we interrupt in a kernel thread, e.g., idle.
|
|
*/
|
|
if (!current->mm)
|
|
return X86_BR_NONE;
|
|
|
|
/* may fail if text not present */
|
|
bytes_left = copy_from_user_nmi(buf, (void __user *)from,
|
|
MAX_INSN_SIZE);
|
|
bytes_read = MAX_INSN_SIZE - bytes_left;
|
|
if (!bytes_read)
|
|
return X86_BR_NONE;
|
|
|
|
addr = buf;
|
|
} else {
|
|
/*
|
|
* The LBR logs any address in the IP, even if the IP just
|
|
* faulted. This means userspace can control the from address.
|
|
* Ensure we don't blindy read any address by validating it is
|
|
* a known text address.
|
|
*/
|
|
if (kernel_text_address(from)) {
|
|
addr = (void *)from;
|
|
/*
|
|
* Assume we can get the maximum possible size
|
|
* when grabbing kernel data. This is not
|
|
* _strictly_ true since we could possibly be
|
|
* executing up next to a memory hole, but
|
|
* it is very unlikely to be a problem.
|
|
*/
|
|
bytes_read = MAX_INSN_SIZE;
|
|
} else {
|
|
return X86_BR_NONE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* decoder needs to know the ABI especially
|
|
* on 64-bit systems running 32-bit apps
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
|
|
#endif
|
|
insn_init(&insn, addr, bytes_read, is64);
|
|
insn_get_opcode(&insn);
|
|
if (!insn.opcode.got)
|
|
return X86_BR_ABORT;
|
|
|
|
switch (insn.opcode.bytes[0]) {
|
|
case 0xf:
|
|
switch (insn.opcode.bytes[1]) {
|
|
case 0x05: /* syscall */
|
|
case 0x34: /* sysenter */
|
|
ret = X86_BR_SYSCALL;
|
|
break;
|
|
case 0x07: /* sysret */
|
|
case 0x35: /* sysexit */
|
|
ret = X86_BR_SYSRET;
|
|
break;
|
|
case 0x80 ... 0x8f: /* conditional */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
default:
|
|
ret = X86_BR_NONE;
|
|
}
|
|
break;
|
|
case 0x70 ... 0x7f: /* conditional */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
case 0xc2: /* near ret */
|
|
case 0xc3: /* near ret */
|
|
case 0xca: /* far ret */
|
|
case 0xcb: /* far ret */
|
|
ret = X86_BR_RET;
|
|
break;
|
|
case 0xcf: /* iret */
|
|
ret = X86_BR_IRET;
|
|
break;
|
|
case 0xcc ... 0xce: /* int */
|
|
ret = X86_BR_INT;
|
|
break;
|
|
case 0xe8: /* call near rel */
|
|
insn_get_immediate(&insn);
|
|
if (insn.immediate1.value == 0) {
|
|
/* zero length call */
|
|
ret = X86_BR_ZERO_CALL;
|
|
break;
|
|
}
|
|
case 0x9a: /* call far absolute */
|
|
ret = X86_BR_CALL;
|
|
break;
|
|
case 0xe0 ... 0xe3: /* loop jmp */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
case 0xe9 ... 0xeb: /* jmp */
|
|
ret = X86_BR_JMP;
|
|
break;
|
|
case 0xff: /* call near absolute, call far absolute ind */
|
|
insn_get_modrm(&insn);
|
|
ext = (insn.modrm.bytes[0] >> 3) & 0x7;
|
|
switch (ext) {
|
|
case 2: /* near ind call */
|
|
case 3: /* far ind call */
|
|
ret = X86_BR_IND_CALL;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
ret = X86_BR_IND_JMP;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ret = X86_BR_NONE;
|
|
}
|
|
/*
|
|
* interrupts, traps, faults (and thus ring transition) may
|
|
* occur on any instructions. Thus, to classify them correctly,
|
|
* we need to first look at the from and to priv levels. If they
|
|
* are different and to is in the kernel, then it indicates
|
|
* a ring transition. If the from instruction is not a ring
|
|
* transition instr (syscall, systenter, int), then it means
|
|
* it was a irq, trap or fault.
|
|
*
|
|
* we have no way of detecting kernel to kernel faults.
|
|
*/
|
|
if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
|
|
&& ret != X86_BR_SYSCALL && ret != X86_BR_INT)
|
|
ret = X86_BR_IRQ;
|
|
|
|
/*
|
|
* branch priv level determined by target as
|
|
* is done by HW when LBR_SELECT is implemented
|
|
*/
|
|
if (ret != X86_BR_NONE)
|
|
ret |= to_plm;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define X86_BR_TYPE_MAP_MAX 16
|
|
|
|
static int branch_map[X86_BR_TYPE_MAP_MAX] = {
|
|
PERF_BR_CALL, /* X86_BR_CALL */
|
|
PERF_BR_RET, /* X86_BR_RET */
|
|
PERF_BR_SYSCALL, /* X86_BR_SYSCALL */
|
|
PERF_BR_SYSRET, /* X86_BR_SYSRET */
|
|
PERF_BR_UNKNOWN, /* X86_BR_INT */
|
|
PERF_BR_UNKNOWN, /* X86_BR_IRET */
|
|
PERF_BR_COND, /* X86_BR_JCC */
|
|
PERF_BR_UNCOND, /* X86_BR_JMP */
|
|
PERF_BR_UNKNOWN, /* X86_BR_IRQ */
|
|
PERF_BR_IND_CALL, /* X86_BR_IND_CALL */
|
|
PERF_BR_UNKNOWN, /* X86_BR_ABORT */
|
|
PERF_BR_UNKNOWN, /* X86_BR_IN_TX */
|
|
PERF_BR_UNKNOWN, /* X86_BR_NO_TX */
|
|
PERF_BR_CALL, /* X86_BR_ZERO_CALL */
|
|
PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */
|
|
PERF_BR_IND, /* X86_BR_IND_JMP */
|
|
};
|
|
|
|
static int
|
|
common_branch_type(int type)
|
|
{
|
|
int i;
|
|
|
|
type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
|
|
|
|
if (type) {
|
|
i = __ffs(type);
|
|
if (i < X86_BR_TYPE_MAP_MAX)
|
|
return branch_map[i];
|
|
}
|
|
|
|
return PERF_BR_UNKNOWN;
|
|
}
|
|
|
|
/*
|
|
* implement actual branch filter based on user demand.
|
|
* Hardware may not exactly satisfy that request, thus
|
|
* we need to inspect opcodes. Mismatched branches are
|
|
* discarded. Therefore, the number of branches returned
|
|
* in PERF_SAMPLE_BRANCH_STACK sample may vary.
|
|
*/
|
|
static void
|
|
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
|
|
{
|
|
u64 from, to;
|
|
int br_sel = cpuc->br_sel;
|
|
int i, j, type;
|
|
bool compress = false;
|
|
|
|
/* if sampling all branches, then nothing to filter */
|
|
if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
|
|
((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
|
|
return;
|
|
|
|
for (i = 0; i < cpuc->lbr_stack.nr; i++) {
|
|
|
|
from = cpuc->lbr_entries[i].from;
|
|
to = cpuc->lbr_entries[i].to;
|
|
|
|
type = branch_type(from, to, cpuc->lbr_entries[i].abort);
|
|
if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
|
|
if (cpuc->lbr_entries[i].in_tx)
|
|
type |= X86_BR_IN_TX;
|
|
else
|
|
type |= X86_BR_NO_TX;
|
|
}
|
|
|
|
/* if type does not correspond, then discard */
|
|
if (type == X86_BR_NONE || (br_sel & type) != type) {
|
|
cpuc->lbr_entries[i].from = 0;
|
|
compress = true;
|
|
}
|
|
|
|
if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
|
|
cpuc->lbr_entries[i].type = common_branch_type(type);
|
|
}
|
|
|
|
if (!compress)
|
|
return;
|
|
|
|
/* remove all entries with from=0 */
|
|
for (i = 0; i < cpuc->lbr_stack.nr; ) {
|
|
if (!cpuc->lbr_entries[i].from) {
|
|
j = i;
|
|
while (++j < cpuc->lbr_stack.nr)
|
|
cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
|
|
cpuc->lbr_stack.nr--;
|
|
if (!cpuc->lbr_entries[i].from)
|
|
continue;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map interface branch filters onto LBR filters
|
|
*/
|
|
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
|
|
| LBR_IND_JMP | LBR_FAR,
|
|
/*
|
|
* NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
|
|
*/
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
|
|
LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
|
|
/*
|
|
* NHM/WSM erratum: must include IND_JMP to capture IND_CALL
|
|
*/
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
};
|
|
|
|
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
|
|
};
|
|
|
|
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_RETURN | LBR_CALL_STACK,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
|
|
};
|
|
|
|
/* core */
|
|
void __init intel_pmu_lbr_init_core(void)
|
|
{
|
|
x86_pmu.lbr_nr = 4;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
}
|
|
|
|
/* nehalem/westmere */
|
|
void __init intel_pmu_lbr_init_nhm(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - workaround LBR_SEL errata (see above)
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
}
|
|
|
|
/* sandy bridge */
|
|
void __init intel_pmu_lbr_init_snb(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
}
|
|
|
|
/* haswell */
|
|
void intel_pmu_lbr_init_hsw(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
|
|
|
if (lbr_from_signext_quirk_needed())
|
|
static_branch_enable(&lbr_from_quirk_key);
|
|
}
|
|
|
|
/* skylake */
|
|
__init void intel_pmu_lbr_init_skl(void)
|
|
{
|
|
x86_pmu.lbr_nr = 32;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
}
|
|
|
|
/* atom */
|
|
void __init intel_pmu_lbr_init_atom(void)
|
|
{
|
|
/*
|
|
* only models starting at stepping 10 seems
|
|
* to have an operational LBR which can freeze
|
|
* on PMU interrupt
|
|
*/
|
|
if (boot_cpu_data.x86_model == 28
|
|
&& boot_cpu_data.x86_mask < 10) {
|
|
pr_cont("LBR disabled due to erratum");
|
|
return;
|
|
}
|
|
|
|
x86_pmu.lbr_nr = 8;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
}
|
|
|
|
/* slm */
|
|
void __init intel_pmu_lbr_init_slm(void)
|
|
{
|
|
x86_pmu.lbr_nr = 8;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
pr_cont("8-deep LBR, ");
|
|
}
|
|
|
|
/* Knights Landing */
|
|
void intel_pmu_lbr_init_knl(void)
|
|
{
|
|
x86_pmu.lbr_nr = 8;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
|
|
}
|