linux_dsm_epyc7002/arch/sparc/include/asm/dma.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

145 lines
6.6 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_SPARC_DMA_H
#define _ASM_SPARC_DMA_H
/* These are irrelevant for Sparc DMA, but we leave it in so that
* things can compile.
*/
#define MAX_DMA_CHANNELS 8
#define DMA_MODE_READ 1
#define DMA_MODE_WRITE 2
#define MAX_DMA_ADDRESS (~0UL)
/* Useful constants */
#define SIZE_16MB (16*1024*1024)
#define SIZE_64K (64*1024)
/* SBUS DMA controller reg offsets */
#define DMA_CSR 0x00UL /* rw DMA control/status register 0x00 */
#define DMA_ADDR 0x04UL /* rw DMA transfer address register 0x04 */
#define DMA_COUNT 0x08UL /* rw DMA transfer count register 0x08 */
#define DMA_TEST 0x0cUL /* rw DMA test/debug register 0x0c */
/* Fields in the cond_reg register */
/* First, the version identification bits */
#define DMA_DEVICE_ID 0xf0000000 /* Device identification bits */
#define DMA_VERS0 0x00000000 /* Sunray DMA version */
#define DMA_ESCV1 0x40000000 /* DMA ESC Version 1 */
#define DMA_VERS1 0x80000000 /* DMA rev 1 */
#define DMA_VERS2 0xa0000000 /* DMA rev 2 */
#define DMA_VERHME 0xb0000000 /* DMA hme gate array */
#define DMA_VERSPLUS 0x90000000 /* DMA rev 1 PLUS */
#define DMA_HNDL_INTR 0x00000001 /* An IRQ needs to be handled */
#define DMA_HNDL_ERROR 0x00000002 /* We need to take an error */
#define DMA_FIFO_ISDRAIN 0x0000000c /* The DMA FIFO is draining */
#define DMA_INT_ENAB 0x00000010 /* Turn on interrupts */
#define DMA_FIFO_INV 0x00000020 /* Invalidate the FIFO */
#define DMA_ACC_SZ_ERR 0x00000040 /* The access size was bad */
#define DMA_FIFO_STDRAIN 0x00000040 /* DMA_VERS1 Drain the FIFO */
#define DMA_RST_SCSI 0x00000080 /* Reset the SCSI controller */
#define DMA_RST_ENET DMA_RST_SCSI /* Reset the ENET controller */
#define DMA_ST_WRITE 0x00000100 /* write from device to memory */
#define DMA_ENABLE 0x00000200 /* Fire up DMA, handle requests */
#define DMA_PEND_READ 0x00000400 /* DMA_VERS1/0/PLUS Pending Read */
#define DMA_ESC_BURST 0x00000800 /* 1=16byte 0=32byte */
#define DMA_READ_AHEAD 0x00001800 /* DMA read ahead partial longword */
#define DMA_DSBL_RD_DRN 0x00001000 /* No EC drain on slave reads */
#define DMA_BCNT_ENAB 0x00002000 /* If on, use the byte counter */
#define DMA_TERM_CNTR 0x00004000 /* Terminal counter */
#define DMA_SCSI_SBUS64 0x00008000 /* HME: Enable 64-bit SBUS mode. */
#define DMA_CSR_DISAB 0x00010000 /* No FIFO drains during csr */
#define DMA_SCSI_DISAB 0x00020000 /* No FIFO drains during reg */
#define DMA_DSBL_WR_INV 0x00020000 /* No EC inval. on slave writes */
#define DMA_ADD_ENABLE 0x00040000 /* Special ESC DVMA optimization */
#define DMA_E_BURSTS 0x000c0000 /* ENET: SBUS r/w burst mask */
#define DMA_E_BURST32 0x00040000 /* ENET: SBUS 32 byte r/w burst */
#define DMA_E_BURST16 0x00000000 /* ENET: SBUS 16 byte r/w burst */
#define DMA_BRST_SZ 0x000c0000 /* SCSI: SBUS r/w burst size */
#define DMA_BRST64 0x000c0000 /* SCSI: 64byte bursts (HME on UltraSparc only) */
#define DMA_BRST32 0x00040000 /* SCSI: 32byte bursts */
#define DMA_BRST16 0x00000000 /* SCSI: 16byte bursts */
#define DMA_BRST0 0x00080000 /* SCSI: no bursts (non-HME gate arrays) */
#define DMA_ADDR_DISAB 0x00100000 /* No FIFO drains during addr */
#define DMA_2CLKS 0x00200000 /* Each transfer = 2 clock ticks */
#define DMA_3CLKS 0x00400000 /* Each transfer = 3 clock ticks */
#define DMA_EN_ENETAUI DMA_3CLKS /* Put lance into AUI-cable mode */
#define DMA_CNTR_DISAB 0x00800000 /* No IRQ when DMA_TERM_CNTR set */
#define DMA_AUTO_NADDR 0x01000000 /* Use "auto nxt addr" feature */
#define DMA_SCSI_ON 0x02000000 /* Enable SCSI dma */
#define DMA_PARITY_OFF 0x02000000 /* HME: disable parity checking */
#define DMA_LOADED_ADDR 0x04000000 /* Address has been loaded */
#define DMA_LOADED_NADDR 0x08000000 /* Next address has been loaded */
#define DMA_RESET_FAS366 0x08000000 /* HME: Assert RESET to FAS366 */
/* Values describing the burst-size property from the PROM */
#define DMA_BURST1 0x01
#define DMA_BURST2 0x02
#define DMA_BURST4 0x04
#define DMA_BURST8 0x08
#define DMA_BURST16 0x10
#define DMA_BURST32 0x20
#define DMA_BURST64 0x40
#define DMA_BURSTBITS 0x7f
/* From PCI */
#ifdef CONFIG_PCI
extern int isa_dma_bridge_buggy;
#else
#define isa_dma_bridge_buggy (0)
#endif
#ifdef CONFIG_SPARC32
/* Routines for data transfer buffers. */
struct device;
struct scatterlist;
struct sparc32_dma_ops {
__u32 (*get_scsi_one)(struct device *, char *, unsigned long);
void (*get_scsi_sgl)(struct device *, struct scatterlist *, int);
void (*release_scsi_one)(struct device *, __u32, unsigned long);
void (*release_scsi_sgl)(struct device *, struct scatterlist *,int);
#ifdef CONFIG_SBUS
int (*map_dma_area)(struct device *, dma_addr_t *, unsigned long, unsigned long, int);
void (*unmap_dma_area)(struct device *, unsigned long, int);
#endif
};
extern const struct sparc32_dma_ops *sparc32_dma_ops;
#define mmu_get_scsi_one(dev,vaddr,len) \
sparc32_dma_ops->get_scsi_one(dev, vaddr, len)
#define mmu_get_scsi_sgl(dev,sg,sz) \
sparc32_dma_ops->get_scsi_sgl(dev, sg, sz)
#define mmu_release_scsi_one(dev,vaddr,len) \
sparc32_dma_ops->release_scsi_one(dev, vaddr,len)
#define mmu_release_scsi_sgl(dev,sg,sz) \
sparc32_dma_ops->release_scsi_sgl(dev, sg, sz)
#ifdef CONFIG_SBUS
/*
* mmu_map/unmap are provided by iommu/iounit; Invalid to call on IIep.
*
* The mmu_map_dma_area establishes two mappings in one go.
* These mappings point to pages normally mapped at 'va' (linear address).
* First mapping is for CPU visible address at 'a', uncached.
* This is an alias, but it works because it is an uncached mapping.
* Second mapping is for device visible address, or "bus" address.
* The bus address is returned at '*pba'.
*
* These functions seem distinct, but are hard to split.
* On sun4m, page attributes depend on the CPU type, so we have to
* know if we are mapping RAM or I/O, so it has to be an additional argument
* to a separate mapping function for CPU visible mappings.
*/
#define sbus_map_dma_area(dev,pba,va,a,len) \
sparc32_dma_ops->map_dma_area(dev, pba, va, a, len)
#define sbus_unmap_dma_area(dev,ba,len) \
sparc32_dma_ops->unmap_dma_area(dev, ba, len)
#endif /* CONFIG_SBUS */
#endif
#endif /* !(_ASM_SPARC_DMA_H) */