mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
b229cf92ee
Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
650 lines
18 KiB
C
650 lines
18 KiB
C
/******************************************************************************
|
|
*
|
|
* Module Name: tbxfroot - Find the root ACPI table (RSDT)
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* Copyright (C) 2000 - 2006, R. Byron Moore
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
* including a substantially similar Disclaimer requirement for further
|
|
* binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <acpi/acpi.h>
|
|
#include <acpi/actables.h>
|
|
|
|
#define _COMPONENT ACPI_TABLES
|
|
ACPI_MODULE_NAME("tbxfroot")
|
|
|
|
/* Local prototypes */
|
|
static acpi_status
|
|
acpi_tb_find_rsdp(struct acpi_table_desc *table_info, u32 flags);
|
|
|
|
static u8 *acpi_tb_scan_memory_for_rsdp(u8 * start_address, u32 length);
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_tb_validate_rsdp
|
|
*
|
|
* PARAMETERS: Rsdp - Pointer to unvalidated RSDP
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Validate the RSDP (ptr)
|
|
*
|
|
******************************************************************************/
|
|
|
|
acpi_status acpi_tb_validate_rsdp(struct rsdp_descriptor *rsdp)
|
|
{
|
|
ACPI_FUNCTION_ENTRY();
|
|
|
|
/*
|
|
* The signature and checksum must both be correct
|
|
*/
|
|
if (ACPI_STRNCMP((char *)rsdp, RSDP_SIG, sizeof(RSDP_SIG) - 1) != 0) {
|
|
|
|
/* Nope, BAD Signature */
|
|
|
|
return (AE_BAD_SIGNATURE);
|
|
}
|
|
|
|
/* Check the standard checksum */
|
|
|
|
if (acpi_tb_sum_table(rsdp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) {
|
|
return (AE_BAD_CHECKSUM);
|
|
}
|
|
|
|
/* Check extended checksum if table version >= 2 */
|
|
|
|
if ((rsdp->revision >= 2) &&
|
|
(acpi_tb_sum_table(rsdp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)) {
|
|
return (AE_BAD_CHECKSUM);
|
|
}
|
|
|
|
return (AE_OK);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_tb_find_table
|
|
*
|
|
* PARAMETERS: Signature - String with ACPI table signature
|
|
* oem_id - String with the table OEM ID
|
|
* oem_table_id - String with the OEM Table ID
|
|
* table_ptr - Where the table pointer is returned
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Find an ACPI table (in the RSDT/XSDT) that matches the
|
|
* Signature, OEM ID and OEM Table ID.
|
|
*
|
|
******************************************************************************/
|
|
|
|
acpi_status
|
|
acpi_tb_find_table(char *signature,
|
|
char *oem_id,
|
|
char *oem_table_id, struct acpi_table_header ** table_ptr)
|
|
{
|
|
acpi_status status;
|
|
struct acpi_table_header *table;
|
|
|
|
ACPI_FUNCTION_TRACE(tb_find_table);
|
|
|
|
/* Validate string lengths */
|
|
|
|
if ((ACPI_STRLEN(signature) > ACPI_NAME_SIZE) ||
|
|
(ACPI_STRLEN(oem_id) > sizeof(table->oem_id)) ||
|
|
(ACPI_STRLEN(oem_table_id) > sizeof(table->oem_table_id))) {
|
|
return_ACPI_STATUS(AE_AML_STRING_LIMIT);
|
|
}
|
|
|
|
if (ACPI_COMPARE_NAME(signature, DSDT_SIG)) {
|
|
/*
|
|
* The DSDT pointer is contained in the FADT, not the RSDT.
|
|
* This code should suffice, because the only code that would perform
|
|
* a "find" on the DSDT is the data_table_region() AML opcode -- in
|
|
* which case, the DSDT is guaranteed to be already loaded.
|
|
* If this becomes insufficient, the FADT will have to be found first.
|
|
*/
|
|
if (!acpi_gbl_DSDT) {
|
|
return_ACPI_STATUS(AE_NO_ACPI_TABLES);
|
|
}
|
|
table = acpi_gbl_DSDT;
|
|
} else {
|
|
/* Find the table */
|
|
|
|
status = acpi_get_firmware_table(signature, 1,
|
|
ACPI_LOGICAL_ADDRESSING,
|
|
&table);
|
|
if (ACPI_FAILURE(status)) {
|
|
return_ACPI_STATUS(status);
|
|
}
|
|
}
|
|
|
|
/* Check oem_id and oem_table_id */
|
|
|
|
if ((oem_id[0] &&
|
|
ACPI_STRNCMP(oem_id, table->oem_id,
|
|
sizeof(table->oem_id))) ||
|
|
(oem_table_id[0] &&
|
|
ACPI_STRNCMP(oem_table_id, table->oem_table_id,
|
|
sizeof(table->oem_table_id)))) {
|
|
return_ACPI_STATUS(AE_AML_NAME_NOT_FOUND);
|
|
}
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_TABLES, "Found table [%4.4s]\n",
|
|
table->signature));
|
|
|
|
*table_ptr = table;
|
|
return_ACPI_STATUS(AE_OK);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_get_firmware_table
|
|
*
|
|
* PARAMETERS: Signature - Any ACPI table signature
|
|
* Instance - the non zero instance of the table, allows
|
|
* support for multiple tables of the same type
|
|
* Flags - Physical/Virtual support
|
|
* table_pointer - Where a buffer containing the table is
|
|
* returned
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: This function is called to get an ACPI table. A buffer is
|
|
* allocated for the table and returned in table_pointer.
|
|
* This table will be a complete table including the header.
|
|
*
|
|
******************************************************************************/
|
|
|
|
acpi_status
|
|
acpi_get_firmware_table(acpi_string signature,
|
|
u32 instance,
|
|
u32 flags, struct acpi_table_header **table_pointer)
|
|
{
|
|
acpi_status status;
|
|
struct acpi_pointer address;
|
|
struct acpi_table_header *header = NULL;
|
|
struct acpi_table_desc *table_info = NULL;
|
|
struct acpi_table_desc *rsdt_info;
|
|
u32 table_count;
|
|
u32 i;
|
|
u32 j;
|
|
|
|
ACPI_FUNCTION_TRACE(acpi_get_firmware_table);
|
|
|
|
/*
|
|
* Ensure that at least the table manager is initialized. We don't
|
|
* require that the entire ACPI subsystem is up for this interface.
|
|
* If we have a buffer, we must have a length too
|
|
*/
|
|
if ((instance == 0) || (!signature) || (!table_pointer)) {
|
|
return_ACPI_STATUS(AE_BAD_PARAMETER);
|
|
}
|
|
|
|
/* Ensure that we have a RSDP */
|
|
|
|
if (!acpi_gbl_RSDP) {
|
|
|
|
/* Get the RSDP */
|
|
|
|
status = acpi_os_get_root_pointer(flags, &address);
|
|
if (ACPI_FAILURE(status)) {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "RSDP not found\n"));
|
|
return_ACPI_STATUS(AE_NO_ACPI_TABLES);
|
|
}
|
|
|
|
/* Map and validate the RSDP */
|
|
|
|
if ((flags & ACPI_MEMORY_MODE) == ACPI_LOGICAL_ADDRESSING) {
|
|
status = acpi_os_map_memory(address.pointer.physical,
|
|
sizeof(struct
|
|
rsdp_descriptor),
|
|
(void *)&acpi_gbl_RSDP);
|
|
if (ACPI_FAILURE(status)) {
|
|
return_ACPI_STATUS(status);
|
|
}
|
|
} else {
|
|
acpi_gbl_RSDP = address.pointer.logical;
|
|
}
|
|
|
|
/* The RDSP signature and checksum must both be correct */
|
|
|
|
status = acpi_tb_validate_rsdp(acpi_gbl_RSDP);
|
|
if (ACPI_FAILURE(status)) {
|
|
return_ACPI_STATUS(status);
|
|
}
|
|
}
|
|
|
|
/* Get the RSDT address via the RSDP */
|
|
|
|
acpi_tb_get_rsdt_address(&address);
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"RSDP located at %p, RSDT physical=%8.8X%8.8X\n",
|
|
acpi_gbl_RSDP,
|
|
ACPI_FORMAT_UINT64(address.pointer.value)));
|
|
|
|
/* Insert processor_mode flags */
|
|
|
|
address.pointer_type |= flags;
|
|
|
|
/* Get and validate the RSDT */
|
|
|
|
rsdt_info = ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_table_desc));
|
|
if (!rsdt_info) {
|
|
return_ACPI_STATUS(AE_NO_MEMORY);
|
|
}
|
|
|
|
status = acpi_tb_get_table(&address, rsdt_info);
|
|
if (ACPI_FAILURE(status)) {
|
|
goto cleanup;
|
|
}
|
|
|
|
status = acpi_tb_validate_rsdt(rsdt_info->pointer);
|
|
if (ACPI_FAILURE(status)) {
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Allocate a scratch table header and table descriptor */
|
|
|
|
header = ACPI_ALLOCATE(sizeof(struct acpi_table_header));
|
|
if (!header) {
|
|
status = AE_NO_MEMORY;
|
|
goto cleanup;
|
|
}
|
|
|
|
table_info = ACPI_ALLOCATE(sizeof(struct acpi_table_desc));
|
|
if (!table_info) {
|
|
status = AE_NO_MEMORY;
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Get the number of table pointers within the RSDT */
|
|
|
|
table_count =
|
|
acpi_tb_get_table_count(acpi_gbl_RSDP, rsdt_info->pointer);
|
|
address.pointer_type = acpi_gbl_table_flags | flags;
|
|
|
|
/*
|
|
* Search the RSDT/XSDT for the correct instance of the
|
|
* requested table
|
|
*/
|
|
for (i = 0, j = 0; i < table_count; i++) {
|
|
/*
|
|
* Get the next table pointer, handle RSDT vs. XSDT
|
|
* RSDT pointers are 32 bits, XSDT pointers are 64 bits
|
|
*/
|
|
if (acpi_gbl_root_table_type == ACPI_TABLE_TYPE_RSDT) {
|
|
address.pointer.value =
|
|
(ACPI_CAST_PTR
|
|
(struct rsdt_descriptor,
|
|
rsdt_info->pointer))->table_offset_entry[i];
|
|
} else {
|
|
address.pointer.value =
|
|
(ACPI_CAST_PTR
|
|
(struct xsdt_descriptor,
|
|
rsdt_info->pointer))->table_offset_entry[i];
|
|
}
|
|
|
|
/* Get the table header */
|
|
|
|
status = acpi_tb_get_table_header(&address, header);
|
|
if (ACPI_FAILURE(status)) {
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Compare table signatures and table instance */
|
|
|
|
if (ACPI_COMPARE_NAME(header->signature, signature)) {
|
|
|
|
/* An instance of the table was found */
|
|
|
|
j++;
|
|
if (j >= instance) {
|
|
|
|
/* Found the correct instance, get the entire table */
|
|
|
|
status =
|
|
acpi_tb_get_table_body(&address, header,
|
|
table_info);
|
|
if (ACPI_FAILURE(status)) {
|
|
goto cleanup;
|
|
}
|
|
|
|
*table_pointer = table_info->pointer;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Did not find the table */
|
|
|
|
status = AE_NOT_EXIST;
|
|
|
|
cleanup:
|
|
if (rsdt_info->pointer) {
|
|
acpi_os_unmap_memory(rsdt_info->pointer,
|
|
(acpi_size) rsdt_info->pointer->length);
|
|
}
|
|
ACPI_FREE(rsdt_info);
|
|
|
|
if (header) {
|
|
ACPI_FREE(header);
|
|
}
|
|
if (table_info) {
|
|
ACPI_FREE(table_info);
|
|
}
|
|
return_ACPI_STATUS(status);
|
|
}
|
|
|
|
ACPI_EXPORT_SYMBOL(acpi_get_firmware_table)
|
|
|
|
/* TBD: Move to a new file */
|
|
#if ACPI_MACHINE_WIDTH != 16
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_find_root_pointer
|
|
*
|
|
* PARAMETERS: Flags - Logical/Physical addressing
|
|
* rsdp_address - Where to place the RSDP address
|
|
*
|
|
* RETURN: Status, Physical address of the RSDP
|
|
*
|
|
* DESCRIPTION: Find the RSDP
|
|
*
|
|
******************************************************************************/
|
|
acpi_status acpi_find_root_pointer(u32 flags, struct acpi_pointer *rsdp_address)
|
|
{
|
|
struct acpi_table_desc table_info;
|
|
acpi_status status;
|
|
|
|
ACPI_FUNCTION_TRACE(acpi_find_root_pointer);
|
|
|
|
/* Get the RSDP */
|
|
|
|
status = acpi_tb_find_rsdp(&table_info, flags);
|
|
if (ACPI_FAILURE(status)) {
|
|
ACPI_EXCEPTION((AE_INFO, status,
|
|
"RSDP structure not found - Flags=%X", flags));
|
|
|
|
return_ACPI_STATUS(AE_NO_ACPI_TABLES);
|
|
}
|
|
|
|
rsdp_address->pointer_type = ACPI_PHYSICAL_POINTER;
|
|
rsdp_address->pointer.physical = table_info.physical_address;
|
|
return_ACPI_STATUS(AE_OK);
|
|
}
|
|
|
|
ACPI_EXPORT_SYMBOL(acpi_find_root_pointer)
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_tb_scan_memory_for_rsdp
|
|
*
|
|
* PARAMETERS: start_address - Starting pointer for search
|
|
* Length - Maximum length to search
|
|
*
|
|
* RETURN: Pointer to the RSDP if found, otherwise NULL.
|
|
*
|
|
* DESCRIPTION: Search a block of memory for the RSDP signature
|
|
*
|
|
******************************************************************************/
|
|
static u8 *acpi_tb_scan_memory_for_rsdp(u8 * start_address, u32 length)
|
|
{
|
|
acpi_status status;
|
|
u8 *mem_rover;
|
|
u8 *end_address;
|
|
|
|
ACPI_FUNCTION_TRACE(tb_scan_memory_for_rsdp);
|
|
|
|
end_address = start_address + length;
|
|
|
|
/* Search from given start address for the requested length */
|
|
|
|
for (mem_rover = start_address; mem_rover < end_address;
|
|
mem_rover += ACPI_RSDP_SCAN_STEP) {
|
|
|
|
/* The RSDP signature and checksum must both be correct */
|
|
|
|
status =
|
|
acpi_tb_validate_rsdp(ACPI_CAST_PTR
|
|
(struct rsdp_descriptor, mem_rover));
|
|
if (ACPI_SUCCESS(status)) {
|
|
|
|
/* Sig and checksum valid, we have found a real RSDP */
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"RSDP located at physical address %p\n",
|
|
mem_rover));
|
|
return_PTR(mem_rover);
|
|
}
|
|
|
|
/* No sig match or bad checksum, keep searching */
|
|
}
|
|
|
|
/* Searched entire block, no RSDP was found */
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"Searched entire block from %p, valid RSDP was not found\n",
|
|
start_address));
|
|
return_PTR(NULL);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_tb_find_rsdp
|
|
*
|
|
* PARAMETERS: table_info - Where the table info is returned
|
|
* Flags - Current memory mode (logical vs.
|
|
* physical addressing)
|
|
*
|
|
* RETURN: Status, RSDP physical address
|
|
*
|
|
* DESCRIPTION: search lower 1_mbyte of memory for the root system descriptor
|
|
* pointer structure. If it is found, set *RSDP to point to it.
|
|
*
|
|
* NOTE1: The RSDp must be either in the first 1_k of the Extended
|
|
* BIOS Data Area or between E0000 and FFFFF (From ACPI Spec.)
|
|
* Only a 32-bit physical address is necessary.
|
|
*
|
|
* NOTE2: This function is always available, regardless of the
|
|
* initialization state of the rest of ACPI.
|
|
*
|
|
******************************************************************************/
|
|
|
|
static acpi_status
|
|
acpi_tb_find_rsdp(struct acpi_table_desc *table_info, u32 flags)
|
|
{
|
|
u8 *table_ptr;
|
|
u8 *mem_rover;
|
|
u32 physical_address;
|
|
acpi_status status;
|
|
|
|
ACPI_FUNCTION_TRACE(tb_find_rsdp);
|
|
|
|
/*
|
|
* Scan supports either logical addressing or physical addressing
|
|
*/
|
|
if ((flags & ACPI_MEMORY_MODE) == ACPI_LOGICAL_ADDRESSING) {
|
|
|
|
/* 1a) Get the location of the Extended BIOS Data Area (EBDA) */
|
|
|
|
status = acpi_os_map_memory((acpi_physical_address)
|
|
ACPI_EBDA_PTR_LOCATION,
|
|
ACPI_EBDA_PTR_LENGTH,
|
|
(void *)&table_ptr);
|
|
if (ACPI_FAILURE(status)) {
|
|
ACPI_ERROR((AE_INFO,
|
|
"Could not map memory at %8.8X for length %X",
|
|
ACPI_EBDA_PTR_LOCATION,
|
|
ACPI_EBDA_PTR_LENGTH));
|
|
|
|
return_ACPI_STATUS(status);
|
|
}
|
|
|
|
ACPI_MOVE_16_TO_32(&physical_address, table_ptr);
|
|
|
|
/* Convert segment part to physical address */
|
|
|
|
physical_address <<= 4;
|
|
acpi_os_unmap_memory(table_ptr, ACPI_EBDA_PTR_LENGTH);
|
|
|
|
/* EBDA present? */
|
|
|
|
if (physical_address > 0x400) {
|
|
/*
|
|
* 1b) Search EBDA paragraphs (EBDa is required to be a
|
|
* minimum of 1_k length)
|
|
*/
|
|
status = acpi_os_map_memory((acpi_physical_address)
|
|
physical_address,
|
|
ACPI_EBDA_WINDOW_SIZE,
|
|
(void *)&table_ptr);
|
|
if (ACPI_FAILURE(status)) {
|
|
ACPI_ERROR((AE_INFO,
|
|
"Could not map memory at %8.8X for length %X",
|
|
physical_address,
|
|
ACPI_EBDA_WINDOW_SIZE));
|
|
|
|
return_ACPI_STATUS(status);
|
|
}
|
|
|
|
mem_rover = acpi_tb_scan_memory_for_rsdp(table_ptr,
|
|
ACPI_EBDA_WINDOW_SIZE);
|
|
acpi_os_unmap_memory(table_ptr, ACPI_EBDA_WINDOW_SIZE);
|
|
|
|
if (mem_rover) {
|
|
|
|
/* Return the physical address */
|
|
|
|
physical_address +=
|
|
ACPI_PTR_DIFF(mem_rover, table_ptr);
|
|
|
|
table_info->physical_address =
|
|
(acpi_physical_address) physical_address;
|
|
return_ACPI_STATUS(AE_OK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 2) Search upper memory: 16-byte boundaries in E0000h-FFFFFh
|
|
*/
|
|
status = acpi_os_map_memory((acpi_physical_address)
|
|
ACPI_HI_RSDP_WINDOW_BASE,
|
|
ACPI_HI_RSDP_WINDOW_SIZE,
|
|
(void *)&table_ptr);
|
|
|
|
if (ACPI_FAILURE(status)) {
|
|
ACPI_ERROR((AE_INFO,
|
|
"Could not map memory at %8.8X for length %X",
|
|
ACPI_HI_RSDP_WINDOW_BASE,
|
|
ACPI_HI_RSDP_WINDOW_SIZE));
|
|
|
|
return_ACPI_STATUS(status);
|
|
}
|
|
|
|
mem_rover =
|
|
acpi_tb_scan_memory_for_rsdp(table_ptr,
|
|
ACPI_HI_RSDP_WINDOW_SIZE);
|
|
acpi_os_unmap_memory(table_ptr, ACPI_HI_RSDP_WINDOW_SIZE);
|
|
|
|
if (mem_rover) {
|
|
|
|
/* Return the physical address */
|
|
|
|
physical_address =
|
|
ACPI_HI_RSDP_WINDOW_BASE + ACPI_PTR_DIFF(mem_rover,
|
|
table_ptr);
|
|
|
|
table_info->physical_address =
|
|
(acpi_physical_address) physical_address;
|
|
return_ACPI_STATUS(AE_OK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Physical addressing
|
|
*/
|
|
else {
|
|
/* 1a) Get the location of the EBDA */
|
|
|
|
ACPI_MOVE_16_TO_32(&physical_address, ACPI_EBDA_PTR_LOCATION);
|
|
physical_address <<= 4; /* Convert segment to physical address */
|
|
|
|
/* EBDA present? */
|
|
|
|
if (physical_address > 0x400) {
|
|
/*
|
|
* 1b) Search EBDA paragraphs (EBDa is required to be a minimum of
|
|
* 1_k length)
|
|
*/
|
|
mem_rover =
|
|
acpi_tb_scan_memory_for_rsdp(ACPI_PHYSADDR_TO_PTR
|
|
(physical_address),
|
|
ACPI_EBDA_WINDOW_SIZE);
|
|
if (mem_rover) {
|
|
|
|
/* Return the physical address */
|
|
|
|
table_info->physical_address =
|
|
ACPI_TO_INTEGER(mem_rover);
|
|
return_ACPI_STATUS(AE_OK);
|
|
}
|
|
}
|
|
|
|
/* 2) Search upper memory: 16-byte boundaries in E0000h-FFFFFh */
|
|
|
|
mem_rover =
|
|
acpi_tb_scan_memory_for_rsdp(ACPI_PHYSADDR_TO_PTR
|
|
(ACPI_HI_RSDP_WINDOW_BASE),
|
|
ACPI_HI_RSDP_WINDOW_SIZE);
|
|
if (mem_rover) {
|
|
|
|
/* Found it, return the physical address */
|
|
|
|
table_info->physical_address =
|
|
ACPI_TO_INTEGER(mem_rover);
|
|
return_ACPI_STATUS(AE_OK);
|
|
}
|
|
}
|
|
|
|
/* A valid RSDP was not found */
|
|
|
|
ACPI_ERROR((AE_INFO, "No valid RSDP was found"));
|
|
return_ACPI_STATUS(AE_NOT_FOUND);
|
|
}
|
|
|
|
#endif
|