mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 07:05:08 +07:00
312434617c
This patch is to fix a data-race reported by syzbot:
BUG: KCSAN: data-race in sctp_assoc_migrate / sctp_hash_obj
write to 0xffff8880b67c0020 of 8 bytes by task 18908 on cpu 1:
sctp_assoc_migrate+0x1a6/0x290 net/sctp/associola.c:1091
sctp_sock_migrate+0x8aa/0x9b0 net/sctp/socket.c:9465
sctp_accept+0x3c8/0x470 net/sctp/socket.c:4916
inet_accept+0x7f/0x360 net/ipv4/af_inet.c:734
__sys_accept4+0x224/0x430 net/socket.c:1754
__do_sys_accept net/socket.c:1795 [inline]
__se_sys_accept net/socket.c:1792 [inline]
__x64_sys_accept+0x4e/0x60 net/socket.c:1792
do_syscall_64+0xcc/0x370 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x44/0xa9
read to 0xffff8880b67c0020 of 8 bytes by task 12003 on cpu 0:
sctp_hash_obj+0x4f/0x2d0 net/sctp/input.c:894
rht_key_get_hash include/linux/rhashtable.h:133 [inline]
rht_key_hashfn include/linux/rhashtable.h:159 [inline]
rht_head_hashfn include/linux/rhashtable.h:174 [inline]
head_hashfn lib/rhashtable.c:41 [inline]
rhashtable_rehash_one lib/rhashtable.c:245 [inline]
rhashtable_rehash_chain lib/rhashtable.c:276 [inline]
rhashtable_rehash_table lib/rhashtable.c:316 [inline]
rht_deferred_worker+0x468/0xab0 lib/rhashtable.c:420
process_one_work+0x3d4/0x890 kernel/workqueue.c:2269
worker_thread+0xa0/0x800 kernel/workqueue.c:2415
kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352
It was caused by rhashtable access asoc->base.sk when sctp_assoc_migrate
is changing its value. However, what rhashtable wants is netns from asoc
base.sk, and for an asoc, its netns won't change once set. So we can
simply fix it by caching netns since created.
Fixes: d6c0256a60
("sctp: add the rhashtable apis for sctp global transport hashtable")
Reported-by: syzbot+e3b35fe7918ff0ee474e@syzkaller.appspotmail.com
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
1324 lines
35 KiB
C
1324 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* SCTP kernel implementation
|
|
* Copyright (c) 1999-2000 Cisco, Inc.
|
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
|
* Copyright (c) 2001-2003 International Business Machines, Corp.
|
|
* Copyright (c) 2001 Intel Corp.
|
|
* Copyright (c) 2001 Nokia, Inc.
|
|
* Copyright (c) 2001 La Monte H.P. Yarroll
|
|
*
|
|
* This file is part of the SCTP kernel implementation
|
|
*
|
|
* These functions handle all input from the IP layer into SCTP.
|
|
*
|
|
* Please send any bug reports or fixes you make to the
|
|
* email address(es):
|
|
* lksctp developers <linux-sctp@vger.kernel.org>
|
|
*
|
|
* Written or modified by:
|
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
|
* Karl Knutson <karl@athena.chicago.il.us>
|
|
* Xingang Guo <xingang.guo@intel.com>
|
|
* Jon Grimm <jgrimm@us.ibm.com>
|
|
* Hui Huang <hui.huang@nokia.com>
|
|
* Daisy Chang <daisyc@us.ibm.com>
|
|
* Sridhar Samudrala <sri@us.ibm.com>
|
|
* Ardelle Fan <ardelle.fan@intel.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/list.h> /* For struct list_head */
|
|
#include <linux/socket.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/time.h> /* For struct timeval */
|
|
#include <linux/slab.h>
|
|
#include <net/ip.h>
|
|
#include <net/icmp.h>
|
|
#include <net/snmp.h>
|
|
#include <net/sock.h>
|
|
#include <net/xfrm.h>
|
|
#include <net/sctp/sctp.h>
|
|
#include <net/sctp/sm.h>
|
|
#include <net/sctp/checksum.h>
|
|
#include <net/net_namespace.h>
|
|
#include <linux/rhashtable.h>
|
|
#include <net/sock_reuseport.h>
|
|
|
|
/* Forward declarations for internal helpers. */
|
|
static int sctp_rcv_ootb(struct sk_buff *);
|
|
static struct sctp_association *__sctp_rcv_lookup(struct net *net,
|
|
struct sk_buff *skb,
|
|
const union sctp_addr *paddr,
|
|
const union sctp_addr *laddr,
|
|
struct sctp_transport **transportp);
|
|
static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
|
|
struct net *net, struct sk_buff *skb,
|
|
const union sctp_addr *laddr,
|
|
const union sctp_addr *daddr);
|
|
static struct sctp_association *__sctp_lookup_association(
|
|
struct net *net,
|
|
const union sctp_addr *local,
|
|
const union sctp_addr *peer,
|
|
struct sctp_transport **pt);
|
|
|
|
static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
|
|
|
|
|
|
/* Calculate the SCTP checksum of an SCTP packet. */
|
|
static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
|
|
{
|
|
struct sctphdr *sh = sctp_hdr(skb);
|
|
__le32 cmp = sh->checksum;
|
|
__le32 val = sctp_compute_cksum(skb, 0);
|
|
|
|
if (val != cmp) {
|
|
/* CRC failure, dump it. */
|
|
__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is the routine which IP calls when receiving an SCTP packet.
|
|
*/
|
|
int sctp_rcv(struct sk_buff *skb)
|
|
{
|
|
struct sock *sk;
|
|
struct sctp_association *asoc;
|
|
struct sctp_endpoint *ep = NULL;
|
|
struct sctp_ep_common *rcvr;
|
|
struct sctp_transport *transport = NULL;
|
|
struct sctp_chunk *chunk;
|
|
union sctp_addr src;
|
|
union sctp_addr dest;
|
|
int family;
|
|
struct sctp_af *af;
|
|
struct net *net = dev_net(skb->dev);
|
|
bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
|
|
|
|
if (skb->pkt_type != PACKET_HOST)
|
|
goto discard_it;
|
|
|
|
__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
|
|
|
|
/* If packet is too small to contain a single chunk, let's not
|
|
* waste time on it anymore.
|
|
*/
|
|
if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
|
|
skb_transport_offset(skb))
|
|
goto discard_it;
|
|
|
|
/* If the packet is fragmented and we need to do crc checking,
|
|
* it's better to just linearize it otherwise crc computing
|
|
* takes longer.
|
|
*/
|
|
if ((!is_gso && skb_linearize(skb)) ||
|
|
!pskb_may_pull(skb, sizeof(struct sctphdr)))
|
|
goto discard_it;
|
|
|
|
/* Pull up the IP header. */
|
|
__skb_pull(skb, skb_transport_offset(skb));
|
|
|
|
skb->csum_valid = 0; /* Previous value not applicable */
|
|
if (skb_csum_unnecessary(skb))
|
|
__skb_decr_checksum_unnecessary(skb);
|
|
else if (!sctp_checksum_disable &&
|
|
!is_gso &&
|
|
sctp_rcv_checksum(net, skb) < 0)
|
|
goto discard_it;
|
|
skb->csum_valid = 1;
|
|
|
|
__skb_pull(skb, sizeof(struct sctphdr));
|
|
|
|
family = ipver2af(ip_hdr(skb)->version);
|
|
af = sctp_get_af_specific(family);
|
|
if (unlikely(!af))
|
|
goto discard_it;
|
|
SCTP_INPUT_CB(skb)->af = af;
|
|
|
|
/* Initialize local addresses for lookups. */
|
|
af->from_skb(&src, skb, 1);
|
|
af->from_skb(&dest, skb, 0);
|
|
|
|
/* If the packet is to or from a non-unicast address,
|
|
* silently discard the packet.
|
|
*
|
|
* This is not clearly defined in the RFC except in section
|
|
* 8.4 - OOTB handling. However, based on the book "Stream Control
|
|
* Transmission Protocol" 2.1, "It is important to note that the
|
|
* IP address of an SCTP transport address must be a routable
|
|
* unicast address. In other words, IP multicast addresses and
|
|
* IP broadcast addresses cannot be used in an SCTP transport
|
|
* address."
|
|
*/
|
|
if (!af->addr_valid(&src, NULL, skb) ||
|
|
!af->addr_valid(&dest, NULL, skb))
|
|
goto discard_it;
|
|
|
|
asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
|
|
|
|
if (!asoc)
|
|
ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
|
|
|
|
/* Retrieve the common input handling substructure. */
|
|
rcvr = asoc ? &asoc->base : &ep->base;
|
|
sk = rcvr->sk;
|
|
|
|
/*
|
|
* If a frame arrives on an interface and the receiving socket is
|
|
* bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
|
|
*/
|
|
if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
|
|
if (transport) {
|
|
sctp_transport_put(transport);
|
|
asoc = NULL;
|
|
transport = NULL;
|
|
} else {
|
|
sctp_endpoint_put(ep);
|
|
ep = NULL;
|
|
}
|
|
sk = net->sctp.ctl_sock;
|
|
ep = sctp_sk(sk)->ep;
|
|
sctp_endpoint_hold(ep);
|
|
rcvr = &ep->base;
|
|
}
|
|
|
|
/*
|
|
* RFC 2960, 8.4 - Handle "Out of the blue" Packets.
|
|
* An SCTP packet is called an "out of the blue" (OOTB)
|
|
* packet if it is correctly formed, i.e., passed the
|
|
* receiver's checksum check, but the receiver is not
|
|
* able to identify the association to which this
|
|
* packet belongs.
|
|
*/
|
|
if (!asoc) {
|
|
if (sctp_rcv_ootb(skb)) {
|
|
__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
|
|
goto discard_release;
|
|
}
|
|
}
|
|
|
|
if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
|
|
goto discard_release;
|
|
nf_reset_ct(skb);
|
|
|
|
if (sk_filter(sk, skb))
|
|
goto discard_release;
|
|
|
|
/* Create an SCTP packet structure. */
|
|
chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
|
|
if (!chunk)
|
|
goto discard_release;
|
|
SCTP_INPUT_CB(skb)->chunk = chunk;
|
|
|
|
/* Remember what endpoint is to handle this packet. */
|
|
chunk->rcvr = rcvr;
|
|
|
|
/* Remember the SCTP header. */
|
|
chunk->sctp_hdr = sctp_hdr(skb);
|
|
|
|
/* Set the source and destination addresses of the incoming chunk. */
|
|
sctp_init_addrs(chunk, &src, &dest);
|
|
|
|
/* Remember where we came from. */
|
|
chunk->transport = transport;
|
|
|
|
/* Acquire access to the sock lock. Note: We are safe from other
|
|
* bottom halves on this lock, but a user may be in the lock too,
|
|
* so check if it is busy.
|
|
*/
|
|
bh_lock_sock(sk);
|
|
|
|
if (sk != rcvr->sk) {
|
|
/* Our cached sk is different from the rcvr->sk. This is
|
|
* because migrate()/accept() may have moved the association
|
|
* to a new socket and released all the sockets. So now we
|
|
* are holding a lock on the old socket while the user may
|
|
* be doing something with the new socket. Switch our veiw
|
|
* of the current sk.
|
|
*/
|
|
bh_unlock_sock(sk);
|
|
sk = rcvr->sk;
|
|
bh_lock_sock(sk);
|
|
}
|
|
|
|
if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
|
|
if (sctp_add_backlog(sk, skb)) {
|
|
bh_unlock_sock(sk);
|
|
sctp_chunk_free(chunk);
|
|
skb = NULL; /* sctp_chunk_free already freed the skb */
|
|
goto discard_release;
|
|
}
|
|
__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
|
|
} else {
|
|
__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
|
|
sctp_inq_push(&chunk->rcvr->inqueue, chunk);
|
|
}
|
|
|
|
bh_unlock_sock(sk);
|
|
|
|
/* Release the asoc/ep ref we took in the lookup calls. */
|
|
if (transport)
|
|
sctp_transport_put(transport);
|
|
else
|
|
sctp_endpoint_put(ep);
|
|
|
|
return 0;
|
|
|
|
discard_it:
|
|
__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
|
|
kfree_skb(skb);
|
|
return 0;
|
|
|
|
discard_release:
|
|
/* Release the asoc/ep ref we took in the lookup calls. */
|
|
if (transport)
|
|
sctp_transport_put(transport);
|
|
else
|
|
sctp_endpoint_put(ep);
|
|
|
|
goto discard_it;
|
|
}
|
|
|
|
/* Process the backlog queue of the socket. Every skb on
|
|
* the backlog holds a ref on an association or endpoint.
|
|
* We hold this ref throughout the state machine to make
|
|
* sure that the structure we need is still around.
|
|
*/
|
|
int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
|
|
struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
|
|
struct sctp_transport *t = chunk->transport;
|
|
struct sctp_ep_common *rcvr = NULL;
|
|
int backloged = 0;
|
|
|
|
rcvr = chunk->rcvr;
|
|
|
|
/* If the rcvr is dead then the association or endpoint
|
|
* has been deleted and we can safely drop the chunk
|
|
* and refs that we are holding.
|
|
*/
|
|
if (rcvr->dead) {
|
|
sctp_chunk_free(chunk);
|
|
goto done;
|
|
}
|
|
|
|
if (unlikely(rcvr->sk != sk)) {
|
|
/* In this case, the association moved from one socket to
|
|
* another. We are currently sitting on the backlog of the
|
|
* old socket, so we need to move.
|
|
* However, since we are here in the process context we
|
|
* need to take make sure that the user doesn't own
|
|
* the new socket when we process the packet.
|
|
* If the new socket is user-owned, queue the chunk to the
|
|
* backlog of the new socket without dropping any refs.
|
|
* Otherwise, we can safely push the chunk on the inqueue.
|
|
*/
|
|
|
|
sk = rcvr->sk;
|
|
local_bh_disable();
|
|
bh_lock_sock(sk);
|
|
|
|
if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
|
|
if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
|
|
sctp_chunk_free(chunk);
|
|
else
|
|
backloged = 1;
|
|
} else
|
|
sctp_inq_push(inqueue, chunk);
|
|
|
|
bh_unlock_sock(sk);
|
|
local_bh_enable();
|
|
|
|
/* If the chunk was backloged again, don't drop refs */
|
|
if (backloged)
|
|
return 0;
|
|
} else {
|
|
if (!sctp_newsk_ready(sk)) {
|
|
if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
|
|
return 0;
|
|
sctp_chunk_free(chunk);
|
|
} else {
|
|
sctp_inq_push(inqueue, chunk);
|
|
}
|
|
}
|
|
|
|
done:
|
|
/* Release the refs we took in sctp_add_backlog */
|
|
if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
|
|
sctp_transport_put(t);
|
|
else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
|
|
sctp_endpoint_put(sctp_ep(rcvr));
|
|
else
|
|
BUG();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
|
|
struct sctp_transport *t = chunk->transport;
|
|
struct sctp_ep_common *rcvr = chunk->rcvr;
|
|
int ret;
|
|
|
|
ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
|
|
if (!ret) {
|
|
/* Hold the assoc/ep while hanging on the backlog queue.
|
|
* This way, we know structures we need will not disappear
|
|
* from us
|
|
*/
|
|
if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
|
|
sctp_transport_hold(t);
|
|
else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
|
|
sctp_endpoint_hold(sctp_ep(rcvr));
|
|
else
|
|
BUG();
|
|
}
|
|
return ret;
|
|
|
|
}
|
|
|
|
/* Handle icmp frag needed error. */
|
|
void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
|
|
struct sctp_transport *t, __u32 pmtu)
|
|
{
|
|
if (!t || (t->pathmtu <= pmtu))
|
|
return;
|
|
|
|
if (sock_owned_by_user(sk)) {
|
|
atomic_set(&t->mtu_info, pmtu);
|
|
asoc->pmtu_pending = 1;
|
|
t->pmtu_pending = 1;
|
|
return;
|
|
}
|
|
|
|
if (!(t->param_flags & SPP_PMTUD_ENABLE))
|
|
/* We can't allow retransmitting in such case, as the
|
|
* retransmission would be sized just as before, and thus we
|
|
* would get another icmp, and retransmit again.
|
|
*/
|
|
return;
|
|
|
|
/* Update transports view of the MTU. Return if no update was needed.
|
|
* If an update wasn't needed/possible, it also doesn't make sense to
|
|
* try to retransmit now.
|
|
*/
|
|
if (!sctp_transport_update_pmtu(t, pmtu))
|
|
return;
|
|
|
|
/* Update association pmtu. */
|
|
sctp_assoc_sync_pmtu(asoc);
|
|
|
|
/* Retransmit with the new pmtu setting. */
|
|
sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
|
|
}
|
|
|
|
void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct dst_entry *dst;
|
|
|
|
if (sock_owned_by_user(sk) || !t)
|
|
return;
|
|
dst = sctp_transport_dst_check(t);
|
|
if (dst)
|
|
dst->ops->redirect(dst, sk, skb);
|
|
}
|
|
|
|
/*
|
|
* SCTP Implementer's Guide, 2.37 ICMP handling procedures
|
|
*
|
|
* ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
|
|
* or a "Protocol Unreachable" treat this message as an abort
|
|
* with the T bit set.
|
|
*
|
|
* This function sends an event to the state machine, which will abort the
|
|
* association.
|
|
*
|
|
*/
|
|
void sctp_icmp_proto_unreachable(struct sock *sk,
|
|
struct sctp_association *asoc,
|
|
struct sctp_transport *t)
|
|
{
|
|
if (sock_owned_by_user(sk)) {
|
|
if (timer_pending(&t->proto_unreach_timer))
|
|
return;
|
|
else {
|
|
if (!mod_timer(&t->proto_unreach_timer,
|
|
jiffies + (HZ/20)))
|
|
sctp_association_hold(asoc);
|
|
}
|
|
} else {
|
|
struct net *net = sock_net(sk);
|
|
|
|
pr_debug("%s: unrecognized next header type "
|
|
"encountered!\n", __func__);
|
|
|
|
if (del_timer(&t->proto_unreach_timer))
|
|
sctp_association_put(asoc);
|
|
|
|
sctp_do_sm(net, SCTP_EVENT_T_OTHER,
|
|
SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
|
|
asoc->state, asoc->ep, asoc, t,
|
|
GFP_ATOMIC);
|
|
}
|
|
}
|
|
|
|
/* Common lookup code for icmp/icmpv6 error handler. */
|
|
struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
|
|
struct sctphdr *sctphdr,
|
|
struct sctp_association **app,
|
|
struct sctp_transport **tpp)
|
|
{
|
|
struct sctp_init_chunk *chunkhdr, _chunkhdr;
|
|
union sctp_addr saddr;
|
|
union sctp_addr daddr;
|
|
struct sctp_af *af;
|
|
struct sock *sk = NULL;
|
|
struct sctp_association *asoc;
|
|
struct sctp_transport *transport = NULL;
|
|
__u32 vtag = ntohl(sctphdr->vtag);
|
|
|
|
*app = NULL; *tpp = NULL;
|
|
|
|
af = sctp_get_af_specific(family);
|
|
if (unlikely(!af)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialize local addresses for lookups. */
|
|
af->from_skb(&saddr, skb, 1);
|
|
af->from_skb(&daddr, skb, 0);
|
|
|
|
/* Look for an association that matches the incoming ICMP error
|
|
* packet.
|
|
*/
|
|
asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
|
|
if (!asoc)
|
|
return NULL;
|
|
|
|
sk = asoc->base.sk;
|
|
|
|
/* RFC 4960, Appendix C. ICMP Handling
|
|
*
|
|
* ICMP6) An implementation MUST validate that the Verification Tag
|
|
* contained in the ICMP message matches the Verification Tag of
|
|
* the peer. If the Verification Tag is not 0 and does NOT
|
|
* match, discard the ICMP message. If it is 0 and the ICMP
|
|
* message contains enough bytes to verify that the chunk type is
|
|
* an INIT chunk and that the Initiate Tag matches the tag of the
|
|
* peer, continue with ICMP7. If the ICMP message is too short
|
|
* or the chunk type or the Initiate Tag does not match, silently
|
|
* discard the packet.
|
|
*/
|
|
if (vtag == 0) {
|
|
/* chunk header + first 4 octects of init header */
|
|
chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
|
|
sizeof(struct sctphdr),
|
|
sizeof(struct sctp_chunkhdr) +
|
|
sizeof(__be32), &_chunkhdr);
|
|
if (!chunkhdr ||
|
|
chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
|
|
ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
|
|
goto out;
|
|
|
|
} else if (vtag != asoc->c.peer_vtag) {
|
|
goto out;
|
|
}
|
|
|
|
bh_lock_sock(sk);
|
|
|
|
/* If too many ICMPs get dropped on busy
|
|
* servers this needs to be solved differently.
|
|
*/
|
|
if (sock_owned_by_user(sk))
|
|
__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
|
|
|
|
*app = asoc;
|
|
*tpp = transport;
|
|
return sk;
|
|
|
|
out:
|
|
sctp_transport_put(transport);
|
|
return NULL;
|
|
}
|
|
|
|
/* Common cleanup code for icmp/icmpv6 error handler. */
|
|
void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
|
|
{
|
|
bh_unlock_sock(sk);
|
|
sctp_transport_put(t);
|
|
}
|
|
|
|
/*
|
|
* This routine is called by the ICMP module when it gets some
|
|
* sort of error condition. If err < 0 then the socket should
|
|
* be closed and the error returned to the user. If err > 0
|
|
* it's just the icmp type << 8 | icmp code. After adjustment
|
|
* header points to the first 8 bytes of the sctp header. We need
|
|
* to find the appropriate port.
|
|
*
|
|
* The locking strategy used here is very "optimistic". When
|
|
* someone else accesses the socket the ICMP is just dropped
|
|
* and for some paths there is no check at all.
|
|
* A more general error queue to queue errors for later handling
|
|
* is probably better.
|
|
*
|
|
*/
|
|
int sctp_v4_err(struct sk_buff *skb, __u32 info)
|
|
{
|
|
const struct iphdr *iph = (const struct iphdr *)skb->data;
|
|
const int ihlen = iph->ihl * 4;
|
|
const int type = icmp_hdr(skb)->type;
|
|
const int code = icmp_hdr(skb)->code;
|
|
struct sock *sk;
|
|
struct sctp_association *asoc = NULL;
|
|
struct sctp_transport *transport;
|
|
struct inet_sock *inet;
|
|
__u16 saveip, savesctp;
|
|
int err;
|
|
struct net *net = dev_net(skb->dev);
|
|
|
|
/* Fix up skb to look at the embedded net header. */
|
|
saveip = skb->network_header;
|
|
savesctp = skb->transport_header;
|
|
skb_reset_network_header(skb);
|
|
skb_set_transport_header(skb, ihlen);
|
|
sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
|
|
/* Put back, the original values. */
|
|
skb->network_header = saveip;
|
|
skb->transport_header = savesctp;
|
|
if (!sk) {
|
|
__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
|
|
return -ENOENT;
|
|
}
|
|
/* Warning: The sock lock is held. Remember to call
|
|
* sctp_err_finish!
|
|
*/
|
|
|
|
switch (type) {
|
|
case ICMP_PARAMETERPROB:
|
|
err = EPROTO;
|
|
break;
|
|
case ICMP_DEST_UNREACH:
|
|
if (code > NR_ICMP_UNREACH)
|
|
goto out_unlock;
|
|
|
|
/* PMTU discovery (RFC1191) */
|
|
if (ICMP_FRAG_NEEDED == code) {
|
|
sctp_icmp_frag_needed(sk, asoc, transport,
|
|
SCTP_TRUNC4(info));
|
|
goto out_unlock;
|
|
} else {
|
|
if (ICMP_PROT_UNREACH == code) {
|
|
sctp_icmp_proto_unreachable(sk, asoc,
|
|
transport);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
err = icmp_err_convert[code].errno;
|
|
break;
|
|
case ICMP_TIME_EXCEEDED:
|
|
/* Ignore any time exceeded errors due to fragment reassembly
|
|
* timeouts.
|
|
*/
|
|
if (ICMP_EXC_FRAGTIME == code)
|
|
goto out_unlock;
|
|
|
|
err = EHOSTUNREACH;
|
|
break;
|
|
case ICMP_REDIRECT:
|
|
sctp_icmp_redirect(sk, transport, skb);
|
|
/* Fall through to out_unlock. */
|
|
default:
|
|
goto out_unlock;
|
|
}
|
|
|
|
inet = inet_sk(sk);
|
|
if (!sock_owned_by_user(sk) && inet->recverr) {
|
|
sk->sk_err = err;
|
|
sk->sk_error_report(sk);
|
|
} else { /* Only an error on timeout */
|
|
sk->sk_err_soft = err;
|
|
}
|
|
|
|
out_unlock:
|
|
sctp_err_finish(sk, transport);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* RFC 2960, 8.4 - Handle "Out of the blue" Packets.
|
|
*
|
|
* This function scans all the chunks in the OOTB packet to determine if
|
|
* the packet should be discarded right away. If a response might be needed
|
|
* for this packet, or, if further processing is possible, the packet will
|
|
* be queued to a proper inqueue for the next phase of handling.
|
|
*
|
|
* Output:
|
|
* Return 0 - If further processing is needed.
|
|
* Return 1 - If the packet can be discarded right away.
|
|
*/
|
|
static int sctp_rcv_ootb(struct sk_buff *skb)
|
|
{
|
|
struct sctp_chunkhdr *ch, _ch;
|
|
int ch_end, offset = 0;
|
|
|
|
/* Scan through all the chunks in the packet. */
|
|
do {
|
|
/* Make sure we have at least the header there */
|
|
if (offset + sizeof(_ch) > skb->len)
|
|
break;
|
|
|
|
ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
|
|
|
|
/* Break out if chunk length is less then minimal. */
|
|
if (ntohs(ch->length) < sizeof(_ch))
|
|
break;
|
|
|
|
ch_end = offset + SCTP_PAD4(ntohs(ch->length));
|
|
if (ch_end > skb->len)
|
|
break;
|
|
|
|
/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
|
|
* receiver MUST silently discard the OOTB packet and take no
|
|
* further action.
|
|
*/
|
|
if (SCTP_CID_ABORT == ch->type)
|
|
goto discard;
|
|
|
|
/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
|
|
* chunk, the receiver should silently discard the packet
|
|
* and take no further action.
|
|
*/
|
|
if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
|
|
goto discard;
|
|
|
|
/* RFC 4460, 2.11.2
|
|
* This will discard packets with INIT chunk bundled as
|
|
* subsequent chunks in the packet. When INIT is first,
|
|
* the normal INIT processing will discard the chunk.
|
|
*/
|
|
if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
|
|
goto discard;
|
|
|
|
offset = ch_end;
|
|
} while (ch_end < skb->len);
|
|
|
|
return 0;
|
|
|
|
discard:
|
|
return 1;
|
|
}
|
|
|
|
/* Insert endpoint into the hash table. */
|
|
static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
|
|
{
|
|
struct sock *sk = ep->base.sk;
|
|
struct net *net = sock_net(sk);
|
|
struct sctp_hashbucket *head;
|
|
struct sctp_ep_common *epb;
|
|
|
|
epb = &ep->base;
|
|
epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
|
|
head = &sctp_ep_hashtable[epb->hashent];
|
|
|
|
if (sk->sk_reuseport) {
|
|
bool any = sctp_is_ep_boundall(sk);
|
|
struct sctp_ep_common *epb2;
|
|
struct list_head *list;
|
|
int cnt = 0, err = 1;
|
|
|
|
list_for_each(list, &ep->base.bind_addr.address_list)
|
|
cnt++;
|
|
|
|
sctp_for_each_hentry(epb2, &head->chain) {
|
|
struct sock *sk2 = epb2->sk;
|
|
|
|
if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
|
|
!uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
|
|
!sk2->sk_reuseport)
|
|
continue;
|
|
|
|
err = sctp_bind_addrs_check(sctp_sk(sk2),
|
|
sctp_sk(sk), cnt);
|
|
if (!err) {
|
|
err = reuseport_add_sock(sk, sk2, any);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
} else if (err < 0) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
err = reuseport_alloc(sk, any);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
write_lock(&head->lock);
|
|
hlist_add_head(&epb->node, &head->chain);
|
|
write_unlock(&head->lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Add an endpoint to the hash. Local BH-safe. */
|
|
int sctp_hash_endpoint(struct sctp_endpoint *ep)
|
|
{
|
|
int err;
|
|
|
|
local_bh_disable();
|
|
err = __sctp_hash_endpoint(ep);
|
|
local_bh_enable();
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Remove endpoint from the hash table. */
|
|
static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
|
|
{
|
|
struct sock *sk = ep->base.sk;
|
|
struct sctp_hashbucket *head;
|
|
struct sctp_ep_common *epb;
|
|
|
|
epb = &ep->base;
|
|
|
|
epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
|
|
|
|
head = &sctp_ep_hashtable[epb->hashent];
|
|
|
|
if (rcu_access_pointer(sk->sk_reuseport_cb))
|
|
reuseport_detach_sock(sk);
|
|
|
|
write_lock(&head->lock);
|
|
hlist_del_init(&epb->node);
|
|
write_unlock(&head->lock);
|
|
}
|
|
|
|
/* Remove endpoint from the hash. Local BH-safe. */
|
|
void sctp_unhash_endpoint(struct sctp_endpoint *ep)
|
|
{
|
|
local_bh_disable();
|
|
__sctp_unhash_endpoint(ep);
|
|
local_bh_enable();
|
|
}
|
|
|
|
static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
|
|
const union sctp_addr *paddr, __u32 seed)
|
|
{
|
|
__u32 addr;
|
|
|
|
if (paddr->sa.sa_family == AF_INET6)
|
|
addr = jhash(&paddr->v6.sin6_addr, 16, seed);
|
|
else
|
|
addr = (__force __u32)paddr->v4.sin_addr.s_addr;
|
|
|
|
return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
|
|
(__force __u32)lport, net_hash_mix(net), seed);
|
|
}
|
|
|
|
/* Look up an endpoint. */
|
|
static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
|
|
struct net *net, struct sk_buff *skb,
|
|
const union sctp_addr *laddr,
|
|
const union sctp_addr *paddr)
|
|
{
|
|
struct sctp_hashbucket *head;
|
|
struct sctp_ep_common *epb;
|
|
struct sctp_endpoint *ep;
|
|
struct sock *sk;
|
|
__be16 lport;
|
|
int hash;
|
|
|
|
lport = laddr->v4.sin_port;
|
|
hash = sctp_ep_hashfn(net, ntohs(lport));
|
|
head = &sctp_ep_hashtable[hash];
|
|
read_lock(&head->lock);
|
|
sctp_for_each_hentry(epb, &head->chain) {
|
|
ep = sctp_ep(epb);
|
|
if (sctp_endpoint_is_match(ep, net, laddr))
|
|
goto hit;
|
|
}
|
|
|
|
ep = sctp_sk(net->sctp.ctl_sock)->ep;
|
|
|
|
hit:
|
|
sk = ep->base.sk;
|
|
if (sk->sk_reuseport) {
|
|
__u32 phash = sctp_hashfn(net, lport, paddr, 0);
|
|
|
|
sk = reuseport_select_sock(sk, phash, skb,
|
|
sizeof(struct sctphdr));
|
|
if (sk)
|
|
ep = sctp_sk(sk)->ep;
|
|
}
|
|
sctp_endpoint_hold(ep);
|
|
read_unlock(&head->lock);
|
|
return ep;
|
|
}
|
|
|
|
/* rhashtable for transport */
|
|
struct sctp_hash_cmp_arg {
|
|
const union sctp_addr *paddr;
|
|
const struct net *net;
|
|
__be16 lport;
|
|
};
|
|
|
|
static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
|
|
const void *ptr)
|
|
{
|
|
struct sctp_transport *t = (struct sctp_transport *)ptr;
|
|
const struct sctp_hash_cmp_arg *x = arg->key;
|
|
int err = 1;
|
|
|
|
if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
|
|
return err;
|
|
if (!sctp_transport_hold(t))
|
|
return err;
|
|
|
|
if (!net_eq(t->asoc->base.net, x->net))
|
|
goto out;
|
|
if (x->lport != htons(t->asoc->base.bind_addr.port))
|
|
goto out;
|
|
|
|
err = 0;
|
|
out:
|
|
sctp_transport_put(t);
|
|
return err;
|
|
}
|
|
|
|
static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
|
|
{
|
|
const struct sctp_transport *t = data;
|
|
|
|
return sctp_hashfn(t->asoc->base.net,
|
|
htons(t->asoc->base.bind_addr.port),
|
|
&t->ipaddr, seed);
|
|
}
|
|
|
|
static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
|
|
{
|
|
const struct sctp_hash_cmp_arg *x = data;
|
|
|
|
return sctp_hashfn(x->net, x->lport, x->paddr, seed);
|
|
}
|
|
|
|
static const struct rhashtable_params sctp_hash_params = {
|
|
.head_offset = offsetof(struct sctp_transport, node),
|
|
.hashfn = sctp_hash_key,
|
|
.obj_hashfn = sctp_hash_obj,
|
|
.obj_cmpfn = sctp_hash_cmp,
|
|
.automatic_shrinking = true,
|
|
};
|
|
|
|
int sctp_transport_hashtable_init(void)
|
|
{
|
|
return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
|
|
}
|
|
|
|
void sctp_transport_hashtable_destroy(void)
|
|
{
|
|
rhltable_destroy(&sctp_transport_hashtable);
|
|
}
|
|
|
|
int sctp_hash_transport(struct sctp_transport *t)
|
|
{
|
|
struct sctp_transport *transport;
|
|
struct rhlist_head *tmp, *list;
|
|
struct sctp_hash_cmp_arg arg;
|
|
int err;
|
|
|
|
if (t->asoc->temp)
|
|
return 0;
|
|
|
|
arg.net = sock_net(t->asoc->base.sk);
|
|
arg.paddr = &t->ipaddr;
|
|
arg.lport = htons(t->asoc->base.bind_addr.port);
|
|
|
|
rcu_read_lock();
|
|
list = rhltable_lookup(&sctp_transport_hashtable, &arg,
|
|
sctp_hash_params);
|
|
|
|
rhl_for_each_entry_rcu(transport, tmp, list, node)
|
|
if (transport->asoc->ep == t->asoc->ep) {
|
|
rcu_read_unlock();
|
|
return -EEXIST;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
|
|
&t->node, sctp_hash_params);
|
|
if (err)
|
|
pr_err_once("insert transport fail, errno %d\n", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
void sctp_unhash_transport(struct sctp_transport *t)
|
|
{
|
|
if (t->asoc->temp)
|
|
return;
|
|
|
|
rhltable_remove(&sctp_transport_hashtable, &t->node,
|
|
sctp_hash_params);
|
|
}
|
|
|
|
/* return a transport with holding it */
|
|
struct sctp_transport *sctp_addrs_lookup_transport(
|
|
struct net *net,
|
|
const union sctp_addr *laddr,
|
|
const union sctp_addr *paddr)
|
|
{
|
|
struct rhlist_head *tmp, *list;
|
|
struct sctp_transport *t;
|
|
struct sctp_hash_cmp_arg arg = {
|
|
.paddr = paddr,
|
|
.net = net,
|
|
.lport = laddr->v4.sin_port,
|
|
};
|
|
|
|
list = rhltable_lookup(&sctp_transport_hashtable, &arg,
|
|
sctp_hash_params);
|
|
|
|
rhl_for_each_entry_rcu(t, tmp, list, node) {
|
|
if (!sctp_transport_hold(t))
|
|
continue;
|
|
|
|
if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
|
|
laddr, sctp_sk(t->asoc->base.sk)))
|
|
return t;
|
|
sctp_transport_put(t);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* return a transport without holding it, as it's only used under sock lock */
|
|
struct sctp_transport *sctp_epaddr_lookup_transport(
|
|
const struct sctp_endpoint *ep,
|
|
const union sctp_addr *paddr)
|
|
{
|
|
struct net *net = sock_net(ep->base.sk);
|
|
struct rhlist_head *tmp, *list;
|
|
struct sctp_transport *t;
|
|
struct sctp_hash_cmp_arg arg = {
|
|
.paddr = paddr,
|
|
.net = net,
|
|
.lport = htons(ep->base.bind_addr.port),
|
|
};
|
|
|
|
list = rhltable_lookup(&sctp_transport_hashtable, &arg,
|
|
sctp_hash_params);
|
|
|
|
rhl_for_each_entry_rcu(t, tmp, list, node)
|
|
if (ep == t->asoc->ep)
|
|
return t;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Look up an association. */
|
|
static struct sctp_association *__sctp_lookup_association(
|
|
struct net *net,
|
|
const union sctp_addr *local,
|
|
const union sctp_addr *peer,
|
|
struct sctp_transport **pt)
|
|
{
|
|
struct sctp_transport *t;
|
|
struct sctp_association *asoc = NULL;
|
|
|
|
t = sctp_addrs_lookup_transport(net, local, peer);
|
|
if (!t)
|
|
goto out;
|
|
|
|
asoc = t->asoc;
|
|
*pt = t;
|
|
|
|
out:
|
|
return asoc;
|
|
}
|
|
|
|
/* Look up an association. protected by RCU read lock */
|
|
static
|
|
struct sctp_association *sctp_lookup_association(struct net *net,
|
|
const union sctp_addr *laddr,
|
|
const union sctp_addr *paddr,
|
|
struct sctp_transport **transportp)
|
|
{
|
|
struct sctp_association *asoc;
|
|
|
|
rcu_read_lock();
|
|
asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
|
|
rcu_read_unlock();
|
|
|
|
return asoc;
|
|
}
|
|
|
|
/* Is there an association matching the given local and peer addresses? */
|
|
bool sctp_has_association(struct net *net,
|
|
const union sctp_addr *laddr,
|
|
const union sctp_addr *paddr)
|
|
{
|
|
struct sctp_transport *transport;
|
|
|
|
if (sctp_lookup_association(net, laddr, paddr, &transport)) {
|
|
sctp_transport_put(transport);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* SCTP Implementors Guide, 2.18 Handling of address
|
|
* parameters within the INIT or INIT-ACK.
|
|
*
|
|
* D) When searching for a matching TCB upon reception of an INIT
|
|
* or INIT-ACK chunk the receiver SHOULD use not only the
|
|
* source address of the packet (containing the INIT or
|
|
* INIT-ACK) but the receiver SHOULD also use all valid
|
|
* address parameters contained within the chunk.
|
|
*
|
|
* 2.18.3 Solution description
|
|
*
|
|
* This new text clearly specifies to an implementor the need
|
|
* to look within the INIT or INIT-ACK. Any implementation that
|
|
* does not do this, may not be able to establish associations
|
|
* in certain circumstances.
|
|
*
|
|
*/
|
|
static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
|
|
struct sk_buff *skb,
|
|
const union sctp_addr *laddr, struct sctp_transport **transportp)
|
|
{
|
|
struct sctp_association *asoc;
|
|
union sctp_addr addr;
|
|
union sctp_addr *paddr = &addr;
|
|
struct sctphdr *sh = sctp_hdr(skb);
|
|
union sctp_params params;
|
|
struct sctp_init_chunk *init;
|
|
struct sctp_af *af;
|
|
|
|
/*
|
|
* This code will NOT touch anything inside the chunk--it is
|
|
* strictly READ-ONLY.
|
|
*
|
|
* RFC 2960 3 SCTP packet Format
|
|
*
|
|
* Multiple chunks can be bundled into one SCTP packet up to
|
|
* the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
|
|
* COMPLETE chunks. These chunks MUST NOT be bundled with any
|
|
* other chunk in a packet. See Section 6.10 for more details
|
|
* on chunk bundling.
|
|
*/
|
|
|
|
/* Find the start of the TLVs and the end of the chunk. This is
|
|
* the region we search for address parameters.
|
|
*/
|
|
init = (struct sctp_init_chunk *)skb->data;
|
|
|
|
/* Walk the parameters looking for embedded addresses. */
|
|
sctp_walk_params(params, init, init_hdr.params) {
|
|
|
|
/* Note: Ignoring hostname addresses. */
|
|
af = sctp_get_af_specific(param_type2af(params.p->type));
|
|
if (!af)
|
|
continue;
|
|
|
|
af->from_addr_param(paddr, params.addr, sh->source, 0);
|
|
|
|
asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
|
|
if (asoc)
|
|
return asoc;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* ADD-IP, Section 5.2
|
|
* When an endpoint receives an ASCONF Chunk from the remote peer
|
|
* special procedures may be needed to identify the association the
|
|
* ASCONF Chunk is associated with. To properly find the association
|
|
* the following procedures SHOULD be followed:
|
|
*
|
|
* D2) If the association is not found, use the address found in the
|
|
* Address Parameter TLV combined with the port number found in the
|
|
* SCTP common header. If found proceed to rule D4.
|
|
*
|
|
* D2-ext) If more than one ASCONF Chunks are packed together, use the
|
|
* address found in the ASCONF Address Parameter TLV of each of the
|
|
* subsequent ASCONF Chunks. If found, proceed to rule D4.
|
|
*/
|
|
static struct sctp_association *__sctp_rcv_asconf_lookup(
|
|
struct net *net,
|
|
struct sctp_chunkhdr *ch,
|
|
const union sctp_addr *laddr,
|
|
__be16 peer_port,
|
|
struct sctp_transport **transportp)
|
|
{
|
|
struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
|
|
struct sctp_af *af;
|
|
union sctp_addr_param *param;
|
|
union sctp_addr paddr;
|
|
|
|
/* Skip over the ADDIP header and find the Address parameter */
|
|
param = (union sctp_addr_param *)(asconf + 1);
|
|
|
|
af = sctp_get_af_specific(param_type2af(param->p.type));
|
|
if (unlikely(!af))
|
|
return NULL;
|
|
|
|
af->from_addr_param(&paddr, param, peer_port, 0);
|
|
|
|
return __sctp_lookup_association(net, laddr, &paddr, transportp);
|
|
}
|
|
|
|
|
|
/* SCTP-AUTH, Section 6.3:
|
|
* If the receiver does not find a STCB for a packet containing an AUTH
|
|
* chunk as the first chunk and not a COOKIE-ECHO chunk as the second
|
|
* chunk, it MUST use the chunks after the AUTH chunk to look up an existing
|
|
* association.
|
|
*
|
|
* This means that any chunks that can help us identify the association need
|
|
* to be looked at to find this association.
|
|
*/
|
|
static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
|
|
struct sk_buff *skb,
|
|
const union sctp_addr *laddr,
|
|
struct sctp_transport **transportp)
|
|
{
|
|
struct sctp_association *asoc = NULL;
|
|
struct sctp_chunkhdr *ch;
|
|
int have_auth = 0;
|
|
unsigned int chunk_num = 1;
|
|
__u8 *ch_end;
|
|
|
|
/* Walk through the chunks looking for AUTH or ASCONF chunks
|
|
* to help us find the association.
|
|
*/
|
|
ch = (struct sctp_chunkhdr *)skb->data;
|
|
do {
|
|
/* Break out if chunk length is less then minimal. */
|
|
if (ntohs(ch->length) < sizeof(*ch))
|
|
break;
|
|
|
|
ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
|
|
if (ch_end > skb_tail_pointer(skb))
|
|
break;
|
|
|
|
switch (ch->type) {
|
|
case SCTP_CID_AUTH:
|
|
have_auth = chunk_num;
|
|
break;
|
|
|
|
case SCTP_CID_COOKIE_ECHO:
|
|
/* If a packet arrives containing an AUTH chunk as
|
|
* a first chunk, a COOKIE-ECHO chunk as the second
|
|
* chunk, and possibly more chunks after them, and
|
|
* the receiver does not have an STCB for that
|
|
* packet, then authentication is based on
|
|
* the contents of the COOKIE- ECHO chunk.
|
|
*/
|
|
if (have_auth == 1 && chunk_num == 2)
|
|
return NULL;
|
|
break;
|
|
|
|
case SCTP_CID_ASCONF:
|
|
if (have_auth || net->sctp.addip_noauth)
|
|
asoc = __sctp_rcv_asconf_lookup(
|
|
net, ch, laddr,
|
|
sctp_hdr(skb)->source,
|
|
transportp);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (asoc)
|
|
break;
|
|
|
|
ch = (struct sctp_chunkhdr *)ch_end;
|
|
chunk_num++;
|
|
} while (ch_end < skb_tail_pointer(skb));
|
|
|
|
return asoc;
|
|
}
|
|
|
|
/*
|
|
* There are circumstances when we need to look inside the SCTP packet
|
|
* for information to help us find the association. Examples
|
|
* include looking inside of INIT/INIT-ACK chunks or after the AUTH
|
|
* chunks.
|
|
*/
|
|
static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
|
|
struct sk_buff *skb,
|
|
const union sctp_addr *laddr,
|
|
struct sctp_transport **transportp)
|
|
{
|
|
struct sctp_chunkhdr *ch;
|
|
|
|
/* We do not allow GSO frames here as we need to linearize and
|
|
* then cannot guarantee frame boundaries. This shouldn't be an
|
|
* issue as packets hitting this are mostly INIT or INIT-ACK and
|
|
* those cannot be on GSO-style anyway.
|
|
*/
|
|
if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
|
|
return NULL;
|
|
|
|
ch = (struct sctp_chunkhdr *)skb->data;
|
|
|
|
/* The code below will attempt to walk the chunk and extract
|
|
* parameter information. Before we do that, we need to verify
|
|
* that the chunk length doesn't cause overflow. Otherwise, we'll
|
|
* walk off the end.
|
|
*/
|
|
if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
|
|
return NULL;
|
|
|
|
/* If this is INIT/INIT-ACK look inside the chunk too. */
|
|
if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
|
|
return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
|
|
|
|
return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
|
|
}
|
|
|
|
/* Lookup an association for an inbound skb. */
|
|
static struct sctp_association *__sctp_rcv_lookup(struct net *net,
|
|
struct sk_buff *skb,
|
|
const union sctp_addr *paddr,
|
|
const union sctp_addr *laddr,
|
|
struct sctp_transport **transportp)
|
|
{
|
|
struct sctp_association *asoc;
|
|
|
|
asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
|
|
if (asoc)
|
|
goto out;
|
|
|
|
/* Further lookup for INIT/INIT-ACK packets.
|
|
* SCTP Implementors Guide, 2.18 Handling of address
|
|
* parameters within the INIT or INIT-ACK.
|
|
*/
|
|
asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
|
|
if (asoc)
|
|
goto out;
|
|
|
|
if (paddr->sa.sa_family == AF_INET)
|
|
pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
|
|
&laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
|
|
&paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
|
|
else
|
|
pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
|
|
&laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
|
|
&paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
|
|
|
|
out:
|
|
return asoc;
|
|
}
|