mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 13:46:13 +07:00
cd84579112
Some minor nouveau dmem and other fixes. Signed-off-by: Dave Airlie <airlied@redhat.com> From: Ben Skeggs <bskeggs@redhat.com> Link: https://patchwork.freedesktop.org/patch/msgid/CABDvA==kMkD6n-cS9KpQBcTU1E8p7Wc+H1ZuOhSfD7yTFJVvkw@mail.gmail.com
878 lines
21 KiB
C
878 lines
21 KiB
C
/*
|
|
* Copyright 2018 Red Hat Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
#include "nouveau_dmem.h"
|
|
#include "nouveau_drv.h"
|
|
#include "nouveau_chan.h"
|
|
#include "nouveau_dma.h"
|
|
#include "nouveau_mem.h"
|
|
#include "nouveau_bo.h"
|
|
|
|
#include <nvif/class.h>
|
|
#include <nvif/object.h>
|
|
#include <nvif/if500b.h>
|
|
#include <nvif/if900b.h>
|
|
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/hmm.h>
|
|
|
|
/*
|
|
* FIXME: this is ugly right now we are using TTM to allocate vram and we pin
|
|
* it in vram while in use. We likely want to overhaul memory management for
|
|
* nouveau to be more page like (not necessarily with system page size but a
|
|
* bigger page size) at lowest level and have some shim layer on top that would
|
|
* provide the same functionality as TTM.
|
|
*/
|
|
#define DMEM_CHUNK_SIZE (2UL << 20)
|
|
#define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
|
|
|
|
struct nouveau_migrate;
|
|
|
|
enum nouveau_aper {
|
|
NOUVEAU_APER_VIRT,
|
|
NOUVEAU_APER_VRAM,
|
|
NOUVEAU_APER_HOST,
|
|
};
|
|
|
|
typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
|
|
enum nouveau_aper, u64 dst_addr,
|
|
enum nouveau_aper, u64 src_addr);
|
|
|
|
struct nouveau_dmem_chunk {
|
|
struct list_head list;
|
|
struct nouveau_bo *bo;
|
|
struct nouveau_drm *drm;
|
|
unsigned long pfn_first;
|
|
unsigned long callocated;
|
|
unsigned long bitmap[BITS_TO_LONGS(DMEM_CHUNK_NPAGES)];
|
|
spinlock_t lock;
|
|
};
|
|
|
|
struct nouveau_dmem_migrate {
|
|
nouveau_migrate_copy_t copy_func;
|
|
struct nouveau_channel *chan;
|
|
};
|
|
|
|
struct nouveau_dmem {
|
|
struct hmm_devmem *devmem;
|
|
struct nouveau_dmem_migrate migrate;
|
|
struct list_head chunk_free;
|
|
struct list_head chunk_full;
|
|
struct list_head chunk_empty;
|
|
struct mutex mutex;
|
|
};
|
|
|
|
struct nouveau_dmem_fault {
|
|
struct nouveau_drm *drm;
|
|
struct nouveau_fence *fence;
|
|
dma_addr_t *dma;
|
|
unsigned long npages;
|
|
};
|
|
|
|
struct nouveau_migrate {
|
|
struct vm_area_struct *vma;
|
|
struct nouveau_drm *drm;
|
|
struct nouveau_fence *fence;
|
|
unsigned long npages;
|
|
dma_addr_t *dma;
|
|
unsigned long dma_nr;
|
|
};
|
|
|
|
static void
|
|
nouveau_dmem_free(struct hmm_devmem *devmem, struct page *page)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
unsigned long idx;
|
|
|
|
chunk = (void *)hmm_devmem_page_get_drvdata(page);
|
|
idx = page_to_pfn(page) - chunk->pfn_first;
|
|
|
|
/*
|
|
* FIXME:
|
|
*
|
|
* This is really a bad example, we need to overhaul nouveau memory
|
|
* management to be more page focus and allow lighter locking scheme
|
|
* to be use in the process.
|
|
*/
|
|
spin_lock(&chunk->lock);
|
|
clear_bit(idx, chunk->bitmap);
|
|
WARN_ON(!chunk->callocated);
|
|
chunk->callocated--;
|
|
/*
|
|
* FIXME when chunk->callocated reach 0 we should add the chunk to
|
|
* a reclaim list so that it can be freed in case of memory pressure.
|
|
*/
|
|
spin_unlock(&chunk->lock);
|
|
}
|
|
|
|
static void
|
|
nouveau_dmem_fault_alloc_and_copy(struct vm_area_struct *vma,
|
|
const unsigned long *src_pfns,
|
|
unsigned long *dst_pfns,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
void *private)
|
|
{
|
|
struct nouveau_dmem_fault *fault = private;
|
|
struct nouveau_drm *drm = fault->drm;
|
|
struct device *dev = drm->dev->dev;
|
|
unsigned long addr, i, npages = 0;
|
|
nouveau_migrate_copy_t copy;
|
|
int ret;
|
|
|
|
|
|
/* First allocate new memory */
|
|
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
|
|
struct page *dpage, *spage;
|
|
|
|
dst_pfns[i] = 0;
|
|
spage = migrate_pfn_to_page(src_pfns[i]);
|
|
if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
|
|
continue;
|
|
|
|
dpage = hmm_vma_alloc_locked_page(vma, addr);
|
|
if (!dpage) {
|
|
dst_pfns[i] = MIGRATE_PFN_ERROR;
|
|
continue;
|
|
}
|
|
|
|
dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
|
|
MIGRATE_PFN_LOCKED;
|
|
npages++;
|
|
}
|
|
|
|
/* Allocate storage for DMA addresses, so we can unmap later. */
|
|
fault->dma = kmalloc(sizeof(*fault->dma) * npages, GFP_KERNEL);
|
|
if (!fault->dma)
|
|
goto error;
|
|
|
|
/* Copy things over */
|
|
copy = drm->dmem->migrate.copy_func;
|
|
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
|
|
struct nouveau_dmem_chunk *chunk;
|
|
struct page *spage, *dpage;
|
|
u64 src_addr, dst_addr;
|
|
|
|
dpage = migrate_pfn_to_page(dst_pfns[i]);
|
|
if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
|
|
continue;
|
|
|
|
spage = migrate_pfn_to_page(src_pfns[i]);
|
|
if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
|
|
dst_pfns[i] = MIGRATE_PFN_ERROR;
|
|
__free_page(dpage);
|
|
continue;
|
|
}
|
|
|
|
fault->dma[fault->npages] =
|
|
dma_map_page_attrs(dev, dpage, 0, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL,
|
|
DMA_ATTR_SKIP_CPU_SYNC);
|
|
if (dma_mapping_error(dev, fault->dma[fault->npages])) {
|
|
dst_pfns[i] = MIGRATE_PFN_ERROR;
|
|
__free_page(dpage);
|
|
continue;
|
|
}
|
|
|
|
dst_addr = fault->dma[fault->npages++];
|
|
|
|
chunk = (void *)hmm_devmem_page_get_drvdata(spage);
|
|
src_addr = page_to_pfn(spage) - chunk->pfn_first;
|
|
src_addr = (src_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
|
|
|
|
ret = copy(drm, 1, NOUVEAU_APER_HOST, dst_addr,
|
|
NOUVEAU_APER_VRAM, src_addr);
|
|
if (ret) {
|
|
dst_pfns[i] = MIGRATE_PFN_ERROR;
|
|
__free_page(dpage);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
nouveau_fence_new(drm->dmem->migrate.chan, false, &fault->fence);
|
|
|
|
return;
|
|
|
|
error:
|
|
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
|
|
struct page *page;
|
|
|
|
if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
|
|
continue;
|
|
|
|
page = migrate_pfn_to_page(dst_pfns[i]);
|
|
dst_pfns[i] = MIGRATE_PFN_ERROR;
|
|
if (page == NULL)
|
|
continue;
|
|
|
|
__free_page(page);
|
|
}
|
|
}
|
|
|
|
void nouveau_dmem_fault_finalize_and_map(struct vm_area_struct *vma,
|
|
const unsigned long *src_pfns,
|
|
const unsigned long *dst_pfns,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
void *private)
|
|
{
|
|
struct nouveau_dmem_fault *fault = private;
|
|
struct nouveau_drm *drm = fault->drm;
|
|
|
|
if (fault->fence) {
|
|
nouveau_fence_wait(fault->fence, true, false);
|
|
nouveau_fence_unref(&fault->fence);
|
|
} else {
|
|
/*
|
|
* FIXME wait for channel to be IDLE before calling finalizing
|
|
* the hmem object below (nouveau_migrate_hmem_fini()).
|
|
*/
|
|
}
|
|
|
|
while (fault->npages--) {
|
|
dma_unmap_page(drm->dev->dev, fault->dma[fault->npages],
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
kfree(fault->dma);
|
|
}
|
|
|
|
static const struct migrate_vma_ops nouveau_dmem_fault_migrate_ops = {
|
|
.alloc_and_copy = nouveau_dmem_fault_alloc_and_copy,
|
|
.finalize_and_map = nouveau_dmem_fault_finalize_and_map,
|
|
};
|
|
|
|
static vm_fault_t
|
|
nouveau_dmem_fault(struct hmm_devmem *devmem,
|
|
struct vm_area_struct *vma,
|
|
unsigned long addr,
|
|
const struct page *page,
|
|
unsigned int flags,
|
|
pmd_t *pmdp)
|
|
{
|
|
struct drm_device *drm_dev = dev_get_drvdata(devmem->device);
|
|
unsigned long src[1] = {0}, dst[1] = {0};
|
|
struct nouveau_dmem_fault fault = {0};
|
|
int ret;
|
|
|
|
|
|
|
|
/*
|
|
* FIXME what we really want is to find some heuristic to migrate more
|
|
* than just one page on CPU fault. When such fault happens it is very
|
|
* likely that more surrounding page will CPU fault too.
|
|
*/
|
|
fault.drm = nouveau_drm(drm_dev);
|
|
ret = migrate_vma(&nouveau_dmem_fault_migrate_ops, vma, addr,
|
|
addr + PAGE_SIZE, src, dst, &fault);
|
|
if (ret)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
if (dst[0] == MIGRATE_PFN_ERROR)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct hmm_devmem_ops
|
|
nouveau_dmem_devmem_ops = {
|
|
.free = nouveau_dmem_free,
|
|
.fault = nouveau_dmem_fault,
|
|
};
|
|
|
|
static int
|
|
nouveau_dmem_chunk_alloc(struct nouveau_drm *drm)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
int ret;
|
|
|
|
if (drm->dmem == NULL)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&drm->dmem->mutex);
|
|
chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
|
|
struct nouveau_dmem_chunk,
|
|
list);
|
|
if (chunk == NULL) {
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
list_del(&chunk->list);
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
|
|
ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
|
|
TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL,
|
|
&chunk->bo);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
|
|
if (ret) {
|
|
nouveau_bo_ref(NULL, &chunk->bo);
|
|
goto out;
|
|
}
|
|
|
|
bitmap_zero(chunk->bitmap, DMEM_CHUNK_NPAGES);
|
|
spin_lock_init(&chunk->lock);
|
|
|
|
out:
|
|
mutex_lock(&drm->dmem->mutex);
|
|
if (chunk->bo)
|
|
list_add(&chunk->list, &drm->dmem->chunk_empty);
|
|
else
|
|
list_add_tail(&chunk->list, &drm->dmem->chunk_empty);
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct nouveau_dmem_chunk *
|
|
nouveau_dmem_chunk_first_free_locked(struct nouveau_drm *drm)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
|
|
chunk = list_first_entry_or_null(&drm->dmem->chunk_free,
|
|
struct nouveau_dmem_chunk,
|
|
list);
|
|
if (chunk)
|
|
return chunk;
|
|
|
|
chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
|
|
struct nouveau_dmem_chunk,
|
|
list);
|
|
if (chunk->bo)
|
|
return chunk;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
nouveau_dmem_pages_alloc(struct nouveau_drm *drm,
|
|
unsigned long npages,
|
|
unsigned long *pages)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
unsigned long c;
|
|
int ret;
|
|
|
|
memset(pages, 0xff, npages * sizeof(*pages));
|
|
|
|
mutex_lock(&drm->dmem->mutex);
|
|
for (c = 0; c < npages;) {
|
|
unsigned long i;
|
|
|
|
chunk = nouveau_dmem_chunk_first_free_locked(drm);
|
|
if (chunk == NULL) {
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
ret = nouveau_dmem_chunk_alloc(drm);
|
|
if (ret) {
|
|
if (c)
|
|
break;
|
|
return ret;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
spin_lock(&chunk->lock);
|
|
i = find_first_zero_bit(chunk->bitmap, DMEM_CHUNK_NPAGES);
|
|
while (i < DMEM_CHUNK_NPAGES && c < npages) {
|
|
pages[c] = chunk->pfn_first + i;
|
|
set_bit(i, chunk->bitmap);
|
|
chunk->callocated++;
|
|
c++;
|
|
|
|
i = find_next_zero_bit(chunk->bitmap,
|
|
DMEM_CHUNK_NPAGES, i);
|
|
}
|
|
spin_unlock(&chunk->lock);
|
|
}
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct page *
|
|
nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
|
|
{
|
|
unsigned long pfns[1];
|
|
struct page *page;
|
|
int ret;
|
|
|
|
/* FIXME stop all the miss-match API ... */
|
|
ret = nouveau_dmem_pages_alloc(drm, 1, pfns);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
page = pfn_to_page(pfns[0]);
|
|
get_page(page);
|
|
lock_page(page);
|
|
return page;
|
|
}
|
|
|
|
static void
|
|
nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
|
|
{
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_resume(struct nouveau_drm *drm)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
int ret;
|
|
|
|
if (drm->dmem == NULL)
|
|
return;
|
|
|
|
mutex_lock(&drm->dmem->mutex);
|
|
list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
|
|
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
|
|
/* FIXME handle pin failure */
|
|
WARN_ON(ret);
|
|
}
|
|
list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
|
|
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
|
|
/* FIXME handle pin failure */
|
|
WARN_ON(ret);
|
|
}
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_suspend(struct nouveau_drm *drm)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk;
|
|
|
|
if (drm->dmem == NULL)
|
|
return;
|
|
|
|
mutex_lock(&drm->dmem->mutex);
|
|
list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
|
|
nouveau_bo_unpin(chunk->bo);
|
|
}
|
|
list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
|
|
nouveau_bo_unpin(chunk->bo);
|
|
}
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_fini(struct nouveau_drm *drm)
|
|
{
|
|
struct nouveau_dmem_chunk *chunk, *tmp;
|
|
|
|
if (drm->dmem == NULL)
|
|
return;
|
|
|
|
mutex_lock(&drm->dmem->mutex);
|
|
|
|
WARN_ON(!list_empty(&drm->dmem->chunk_free));
|
|
WARN_ON(!list_empty(&drm->dmem->chunk_full));
|
|
|
|
list_for_each_entry_safe (chunk, tmp, &drm->dmem->chunk_empty, list) {
|
|
if (chunk->bo) {
|
|
nouveau_bo_unpin(chunk->bo);
|
|
nouveau_bo_ref(NULL, &chunk->bo);
|
|
}
|
|
list_del(&chunk->list);
|
|
kfree(chunk);
|
|
}
|
|
|
|
mutex_unlock(&drm->dmem->mutex);
|
|
}
|
|
|
|
static int
|
|
nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
|
|
enum nouveau_aper dst_aper, u64 dst_addr,
|
|
enum nouveau_aper src_aper, u64 src_addr)
|
|
{
|
|
struct nouveau_channel *chan = drm->dmem->migrate.chan;
|
|
u32 launch_dma = (1 << 9) /* MULTI_LINE_ENABLE. */ |
|
|
(1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ |
|
|
(1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ |
|
|
(1 << 2) /* FLUSH_ENABLE_TRUE. */ |
|
|
(2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */;
|
|
int ret;
|
|
|
|
ret = RING_SPACE(chan, 13);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (src_aper != NOUVEAU_APER_VIRT) {
|
|
switch (src_aper) {
|
|
case NOUVEAU_APER_VRAM:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0260, 0);
|
|
break;
|
|
case NOUVEAU_APER_HOST:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0260, 1);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
launch_dma |= 0x00001000; /* SRC_TYPE_PHYSICAL. */
|
|
}
|
|
|
|
if (dst_aper != NOUVEAU_APER_VIRT) {
|
|
switch (dst_aper) {
|
|
case NOUVEAU_APER_VRAM:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0);
|
|
break;
|
|
case NOUVEAU_APER_HOST:
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */
|
|
}
|
|
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
|
|
OUT_RING (chan, upper_32_bits(src_addr));
|
|
OUT_RING (chan, lower_32_bits(src_addr));
|
|
OUT_RING (chan, upper_32_bits(dst_addr));
|
|
OUT_RING (chan, lower_32_bits(dst_addr));
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, npages);
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
|
|
OUT_RING (chan, launch_dma);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nouveau_dmem_migrate_init(struct nouveau_drm *drm)
|
|
{
|
|
switch (drm->ttm.copy.oclass) {
|
|
case PASCAL_DMA_COPY_A:
|
|
case PASCAL_DMA_COPY_B:
|
|
case VOLTA_DMA_COPY_A:
|
|
case TURING_DMA_COPY_A:
|
|
drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
|
|
drm->dmem->migrate.chan = drm->ttm.chan;
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_init(struct nouveau_drm *drm)
|
|
{
|
|
struct device *device = drm->dev->dev;
|
|
unsigned long i, size;
|
|
int ret;
|
|
|
|
/* This only make sense on PASCAL or newer */
|
|
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
|
|
return;
|
|
|
|
if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
|
|
return;
|
|
|
|
mutex_init(&drm->dmem->mutex);
|
|
INIT_LIST_HEAD(&drm->dmem->chunk_free);
|
|
INIT_LIST_HEAD(&drm->dmem->chunk_full);
|
|
INIT_LIST_HEAD(&drm->dmem->chunk_empty);
|
|
|
|
size = ALIGN(drm->client.device.info.ram_user, DMEM_CHUNK_SIZE);
|
|
|
|
/* Initialize migration dma helpers before registering memory */
|
|
ret = nouveau_dmem_migrate_init(drm);
|
|
if (ret) {
|
|
kfree(drm->dmem);
|
|
drm->dmem = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* FIXME we need some kind of policy to decide how much VRAM we
|
|
* want to register with HMM. For now just register everything
|
|
* and latter if we want to do thing like over commit then we
|
|
* could revisit this.
|
|
*/
|
|
drm->dmem->devmem = hmm_devmem_add(&nouveau_dmem_devmem_ops,
|
|
device, size);
|
|
if (IS_ERR(drm->dmem->devmem)) {
|
|
kfree(drm->dmem);
|
|
drm->dmem = NULL;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < (size / DMEM_CHUNK_SIZE); ++i) {
|
|
struct nouveau_dmem_chunk *chunk;
|
|
struct page *page;
|
|
unsigned long j;
|
|
|
|
chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
|
|
if (chunk == NULL) {
|
|
nouveau_dmem_fini(drm);
|
|
return;
|
|
}
|
|
|
|
chunk->drm = drm;
|
|
chunk->pfn_first = drm->dmem->devmem->pfn_first;
|
|
chunk->pfn_first += (i * DMEM_CHUNK_NPAGES);
|
|
list_add_tail(&chunk->list, &drm->dmem->chunk_empty);
|
|
|
|
page = pfn_to_page(chunk->pfn_first);
|
|
for (j = 0; j < DMEM_CHUNK_NPAGES; ++j, ++page) {
|
|
hmm_devmem_page_set_drvdata(page, (long)chunk);
|
|
}
|
|
}
|
|
|
|
NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", size >> 20);
|
|
}
|
|
|
|
static void
|
|
nouveau_dmem_migrate_alloc_and_copy(struct vm_area_struct *vma,
|
|
const unsigned long *src_pfns,
|
|
unsigned long *dst_pfns,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
void *private)
|
|
{
|
|
struct nouveau_migrate *migrate = private;
|
|
struct nouveau_drm *drm = migrate->drm;
|
|
struct device *dev = drm->dev->dev;
|
|
unsigned long addr, i, npages = 0;
|
|
nouveau_migrate_copy_t copy;
|
|
int ret;
|
|
|
|
/* First allocate new memory */
|
|
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
|
|
struct page *dpage, *spage;
|
|
|
|
dst_pfns[i] = 0;
|
|
spage = migrate_pfn_to_page(src_pfns[i]);
|
|
if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
|
|
continue;
|
|
|
|
dpage = nouveau_dmem_page_alloc_locked(drm);
|
|
if (!dpage)
|
|
continue;
|
|
|
|
dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
|
|
MIGRATE_PFN_LOCKED |
|
|
MIGRATE_PFN_DEVICE;
|
|
npages++;
|
|
}
|
|
|
|
if (!npages)
|
|
return;
|
|
|
|
/* Allocate storage for DMA addresses, so we can unmap later. */
|
|
migrate->dma = kmalloc(sizeof(*migrate->dma) * npages, GFP_KERNEL);
|
|
if (!migrate->dma)
|
|
goto error;
|
|
|
|
/* Copy things over */
|
|
copy = drm->dmem->migrate.copy_func;
|
|
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
|
|
struct nouveau_dmem_chunk *chunk;
|
|
struct page *spage, *dpage;
|
|
u64 src_addr, dst_addr;
|
|
|
|
dpage = migrate_pfn_to_page(dst_pfns[i]);
|
|
if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
|
|
continue;
|
|
|
|
chunk = (void *)hmm_devmem_page_get_drvdata(dpage);
|
|
dst_addr = page_to_pfn(dpage) - chunk->pfn_first;
|
|
dst_addr = (dst_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
|
|
|
|
spage = migrate_pfn_to_page(src_pfns[i]);
|
|
if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
|
|
nouveau_dmem_page_free_locked(drm, dpage);
|
|
dst_pfns[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
migrate->dma[migrate->dma_nr] =
|
|
dma_map_page_attrs(dev, spage, 0, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL,
|
|
DMA_ATTR_SKIP_CPU_SYNC);
|
|
if (dma_mapping_error(dev, migrate->dma[migrate->dma_nr])) {
|
|
nouveau_dmem_page_free_locked(drm, dpage);
|
|
dst_pfns[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
src_addr = migrate->dma[migrate->dma_nr++];
|
|
|
|
ret = copy(drm, 1, NOUVEAU_APER_VRAM, dst_addr,
|
|
NOUVEAU_APER_HOST, src_addr);
|
|
if (ret) {
|
|
nouveau_dmem_page_free_locked(drm, dpage);
|
|
dst_pfns[i] = 0;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
nouveau_fence_new(drm->dmem->migrate.chan, false, &migrate->fence);
|
|
|
|
return;
|
|
|
|
error:
|
|
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
|
|
struct page *page;
|
|
|
|
if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
|
|
continue;
|
|
|
|
page = migrate_pfn_to_page(dst_pfns[i]);
|
|
dst_pfns[i] = MIGRATE_PFN_ERROR;
|
|
if (page == NULL)
|
|
continue;
|
|
|
|
__free_page(page);
|
|
}
|
|
}
|
|
|
|
void nouveau_dmem_migrate_finalize_and_map(struct vm_area_struct *vma,
|
|
const unsigned long *src_pfns,
|
|
const unsigned long *dst_pfns,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
void *private)
|
|
{
|
|
struct nouveau_migrate *migrate = private;
|
|
struct nouveau_drm *drm = migrate->drm;
|
|
|
|
if (migrate->fence) {
|
|
nouveau_fence_wait(migrate->fence, true, false);
|
|
nouveau_fence_unref(&migrate->fence);
|
|
} else {
|
|
/*
|
|
* FIXME wait for channel to be IDLE before finalizing
|
|
* the hmem object below (nouveau_migrate_hmem_fini()) ?
|
|
*/
|
|
}
|
|
|
|
while (migrate->dma_nr--) {
|
|
dma_unmap_page(drm->dev->dev, migrate->dma[migrate->dma_nr],
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
kfree(migrate->dma);
|
|
|
|
/*
|
|
* FIXME optimization: update GPU page table to point to newly
|
|
* migrated memory.
|
|
*/
|
|
}
|
|
|
|
static const struct migrate_vma_ops nouveau_dmem_migrate_ops = {
|
|
.alloc_and_copy = nouveau_dmem_migrate_alloc_and_copy,
|
|
.finalize_and_map = nouveau_dmem_migrate_finalize_and_map,
|
|
};
|
|
|
|
int
|
|
nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long *src_pfns, *dst_pfns, npages;
|
|
struct nouveau_migrate migrate = {0};
|
|
unsigned long i, c, max;
|
|
int ret = 0;
|
|
|
|
npages = (end - start) >> PAGE_SHIFT;
|
|
max = min(SG_MAX_SINGLE_ALLOC, npages);
|
|
src_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
|
|
if (src_pfns == NULL)
|
|
return -ENOMEM;
|
|
dst_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
|
|
if (dst_pfns == NULL) {
|
|
kfree(src_pfns);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
migrate.drm = drm;
|
|
migrate.vma = vma;
|
|
migrate.npages = npages;
|
|
for (i = 0; i < npages; i += c) {
|
|
unsigned long next;
|
|
|
|
c = min(SG_MAX_SINGLE_ALLOC, npages);
|
|
next = start + (c << PAGE_SHIFT);
|
|
ret = migrate_vma(&nouveau_dmem_migrate_ops, vma, start,
|
|
next, src_pfns, dst_pfns, &migrate);
|
|
if (ret)
|
|
goto out;
|
|
start = next;
|
|
}
|
|
|
|
out:
|
|
kfree(dst_pfns);
|
|
kfree(src_pfns);
|
|
return ret;
|
|
}
|
|
|
|
static inline bool
|
|
nouveau_dmem_page(struct nouveau_drm *drm, struct page *page)
|
|
{
|
|
if (!is_device_private_page(page))
|
|
return false;
|
|
|
|
if (drm->dmem->devmem != page->pgmap->data)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
nouveau_dmem_convert_pfn(struct nouveau_drm *drm,
|
|
struct hmm_range *range)
|
|
{
|
|
unsigned long i, npages;
|
|
|
|
npages = (range->end - range->start) >> PAGE_SHIFT;
|
|
for (i = 0; i < npages; ++i) {
|
|
struct nouveau_dmem_chunk *chunk;
|
|
struct page *page;
|
|
uint64_t addr;
|
|
|
|
page = hmm_pfn_to_page(range, range->pfns[i]);
|
|
if (page == NULL)
|
|
continue;
|
|
|
|
if (!(range->pfns[i] & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
|
|
continue;
|
|
}
|
|
|
|
if (!nouveau_dmem_page(drm, page)) {
|
|
WARN(1, "Some unknown device memory !\n");
|
|
range->pfns[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
chunk = (void *)hmm_devmem_page_get_drvdata(page);
|
|
addr = page_to_pfn(page) - chunk->pfn_first;
|
|
addr = (addr + chunk->bo->bo.mem.start) << PAGE_SHIFT;
|
|
|
|
range->pfns[i] &= ((1UL << range->pfn_shift) - 1);
|
|
range->pfns[i] |= (addr >> PAGE_SHIFT) << range->pfn_shift;
|
|
}
|
|
}
|