mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 08:36:40 +07:00
25985edced
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
1737 lines
44 KiB
C
1737 lines
44 KiB
C
/* drivers/net/ks8851.c
|
|
*
|
|
* Copyright 2009 Simtec Electronics
|
|
* http://www.simtec.co.uk/
|
|
* Ben Dooks <ben@simtec.co.uk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#define DEBUG
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/mii.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
|
|
#include "ks8851.h"
|
|
|
|
/**
|
|
* struct ks8851_rxctrl - KS8851 driver rx control
|
|
* @mchash: Multicast hash-table data.
|
|
* @rxcr1: KS_RXCR1 register setting
|
|
* @rxcr2: KS_RXCR2 register setting
|
|
*
|
|
* Representation of the settings needs to control the receive filtering
|
|
* such as the multicast hash-filter and the receive register settings. This
|
|
* is used to make the job of working out if the receive settings change and
|
|
* then issuing the new settings to the worker that will send the necessary
|
|
* commands.
|
|
*/
|
|
struct ks8851_rxctrl {
|
|
u16 mchash[4];
|
|
u16 rxcr1;
|
|
u16 rxcr2;
|
|
};
|
|
|
|
/**
|
|
* union ks8851_tx_hdr - tx header data
|
|
* @txb: The header as bytes
|
|
* @txw: The header as 16bit, little-endian words
|
|
*
|
|
* A dual representation of the tx header data to allow
|
|
* access to individual bytes, and to allow 16bit accesses
|
|
* with 16bit alignment.
|
|
*/
|
|
union ks8851_tx_hdr {
|
|
u8 txb[6];
|
|
__le16 txw[3];
|
|
};
|
|
|
|
/**
|
|
* struct ks8851_net - KS8851 driver private data
|
|
* @netdev: The network device we're bound to
|
|
* @spidev: The spi device we're bound to.
|
|
* @lock: Lock to ensure that the device is not accessed when busy.
|
|
* @statelock: Lock on this structure for tx list.
|
|
* @mii: The MII state information for the mii calls.
|
|
* @rxctrl: RX settings for @rxctrl_work.
|
|
* @tx_work: Work queue for tx packets
|
|
* @irq_work: Work queue for servicing interrupts
|
|
* @rxctrl_work: Work queue for updating RX mode and multicast lists
|
|
* @txq: Queue of packets for transmission.
|
|
* @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
|
|
* @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
|
|
* @txh: Space for generating packet TX header in DMA-able data
|
|
* @rxd: Space for receiving SPI data, in DMA-able space.
|
|
* @txd: Space for transmitting SPI data, in DMA-able space.
|
|
* @msg_enable: The message flags controlling driver output (see ethtool).
|
|
* @fid: Incrementing frame id tag.
|
|
* @rc_ier: Cached copy of KS_IER.
|
|
* @rc_ccr: Cached copy of KS_CCR.
|
|
* @rc_rxqcr: Cached copy of KS_RXQCR.
|
|
* @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
|
|
*
|
|
* The @lock ensures that the chip is protected when certain operations are
|
|
* in progress. When the read or write packet transfer is in progress, most
|
|
* of the chip registers are not ccessible until the transfer is finished and
|
|
* the DMA has been de-asserted.
|
|
*
|
|
* The @statelock is used to protect information in the structure which may
|
|
* need to be accessed via several sources, such as the network driver layer
|
|
* or one of the work queues.
|
|
*
|
|
* We align the buffers we may use for rx/tx to ensure that if the SPI driver
|
|
* wants to DMA map them, it will not have any problems with data the driver
|
|
* modifies.
|
|
*/
|
|
struct ks8851_net {
|
|
struct net_device *netdev;
|
|
struct spi_device *spidev;
|
|
struct mutex lock;
|
|
spinlock_t statelock;
|
|
|
|
union ks8851_tx_hdr txh ____cacheline_aligned;
|
|
u8 rxd[8];
|
|
u8 txd[8];
|
|
|
|
u32 msg_enable ____cacheline_aligned;
|
|
u16 tx_space;
|
|
u8 fid;
|
|
|
|
u16 rc_ier;
|
|
u16 rc_rxqcr;
|
|
u16 rc_ccr;
|
|
u16 eeprom_size;
|
|
|
|
struct mii_if_info mii;
|
|
struct ks8851_rxctrl rxctrl;
|
|
|
|
struct work_struct tx_work;
|
|
struct work_struct irq_work;
|
|
struct work_struct rxctrl_work;
|
|
|
|
struct sk_buff_head txq;
|
|
|
|
struct spi_message spi_msg1;
|
|
struct spi_message spi_msg2;
|
|
struct spi_transfer spi_xfer1;
|
|
struct spi_transfer spi_xfer2[2];
|
|
};
|
|
|
|
static int msg_enable;
|
|
|
|
/* shift for byte-enable data */
|
|
#define BYTE_EN(_x) ((_x) << 2)
|
|
|
|
/* turn register number and byte-enable mask into data for start of packet */
|
|
#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
|
|
|
|
/* SPI register read/write calls.
|
|
*
|
|
* All these calls issue SPI transactions to access the chip's registers. They
|
|
* all require that the necessary lock is held to prevent accesses when the
|
|
* chip is busy transferring packet data (RX/TX FIFO accesses).
|
|
*/
|
|
|
|
/**
|
|
* ks8851_wrreg16 - write 16bit register value to chip
|
|
* @ks: The chip state
|
|
* @reg: The register address
|
|
* @val: The value to write
|
|
*
|
|
* Issue a write to put the value @val into the register specified in @reg.
|
|
*/
|
|
static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
|
|
{
|
|
struct spi_transfer *xfer = &ks->spi_xfer1;
|
|
struct spi_message *msg = &ks->spi_msg1;
|
|
__le16 txb[2];
|
|
int ret;
|
|
|
|
txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
|
|
txb[1] = cpu_to_le16(val);
|
|
|
|
xfer->tx_buf = txb;
|
|
xfer->rx_buf = NULL;
|
|
xfer->len = 4;
|
|
|
|
ret = spi_sync(ks->spidev, msg);
|
|
if (ret < 0)
|
|
netdev_err(ks->netdev, "spi_sync() failed\n");
|
|
}
|
|
|
|
/**
|
|
* ks8851_wrreg8 - write 8bit register value to chip
|
|
* @ks: The chip state
|
|
* @reg: The register address
|
|
* @val: The value to write
|
|
*
|
|
* Issue a write to put the value @val into the register specified in @reg.
|
|
*/
|
|
static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
|
|
{
|
|
struct spi_transfer *xfer = &ks->spi_xfer1;
|
|
struct spi_message *msg = &ks->spi_msg1;
|
|
__le16 txb[2];
|
|
int ret;
|
|
int bit;
|
|
|
|
bit = 1 << (reg & 3);
|
|
|
|
txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
|
|
txb[1] = val;
|
|
|
|
xfer->tx_buf = txb;
|
|
xfer->rx_buf = NULL;
|
|
xfer->len = 3;
|
|
|
|
ret = spi_sync(ks->spidev, msg);
|
|
if (ret < 0)
|
|
netdev_err(ks->netdev, "spi_sync() failed\n");
|
|
}
|
|
|
|
/**
|
|
* ks8851_rx_1msg - select whether to use one or two messages for spi read
|
|
* @ks: The device structure
|
|
*
|
|
* Return whether to generate a single message with a tx and rx buffer
|
|
* supplied to spi_sync(), or alternatively send the tx and rx buffers
|
|
* as separate messages.
|
|
*
|
|
* Depending on the hardware in use, a single message may be more efficient
|
|
* on interrupts or work done by the driver.
|
|
*
|
|
* This currently always returns true until we add some per-device data passed
|
|
* from the platform code to specify which mode is better.
|
|
*/
|
|
static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ks8851_rdreg - issue read register command and return the data
|
|
* @ks: The device state
|
|
* @op: The register address and byte enables in message format.
|
|
* @rxb: The RX buffer to return the result into
|
|
* @rxl: The length of data expected.
|
|
*
|
|
* This is the low level read call that issues the necessary spi message(s)
|
|
* to read data from the register specified in @op.
|
|
*/
|
|
static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
|
|
u8 *rxb, unsigned rxl)
|
|
{
|
|
struct spi_transfer *xfer;
|
|
struct spi_message *msg;
|
|
__le16 *txb = (__le16 *)ks->txd;
|
|
u8 *trx = ks->rxd;
|
|
int ret;
|
|
|
|
txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
|
|
|
|
if (ks8851_rx_1msg(ks)) {
|
|
msg = &ks->spi_msg1;
|
|
xfer = &ks->spi_xfer1;
|
|
|
|
xfer->tx_buf = txb;
|
|
xfer->rx_buf = trx;
|
|
xfer->len = rxl + 2;
|
|
} else {
|
|
msg = &ks->spi_msg2;
|
|
xfer = ks->spi_xfer2;
|
|
|
|
xfer->tx_buf = txb;
|
|
xfer->rx_buf = NULL;
|
|
xfer->len = 2;
|
|
|
|
xfer++;
|
|
xfer->tx_buf = NULL;
|
|
xfer->rx_buf = trx;
|
|
xfer->len = rxl;
|
|
}
|
|
|
|
ret = spi_sync(ks->spidev, msg);
|
|
if (ret < 0)
|
|
netdev_err(ks->netdev, "read: spi_sync() failed\n");
|
|
else if (ks8851_rx_1msg(ks))
|
|
memcpy(rxb, trx + 2, rxl);
|
|
else
|
|
memcpy(rxb, trx, rxl);
|
|
}
|
|
|
|
/**
|
|
* ks8851_rdreg8 - read 8 bit register from device
|
|
* @ks: The chip information
|
|
* @reg: The register address
|
|
*
|
|
* Read a 8bit register from the chip, returning the result
|
|
*/
|
|
static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
|
|
{
|
|
u8 rxb[1];
|
|
|
|
ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
|
|
return rxb[0];
|
|
}
|
|
|
|
/**
|
|
* ks8851_rdreg16 - read 16 bit register from device
|
|
* @ks: The chip information
|
|
* @reg: The register address
|
|
*
|
|
* Read a 16bit register from the chip, returning the result
|
|
*/
|
|
static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
|
|
{
|
|
__le16 rx = 0;
|
|
|
|
ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
|
|
return le16_to_cpu(rx);
|
|
}
|
|
|
|
/**
|
|
* ks8851_rdreg32 - read 32 bit register from device
|
|
* @ks: The chip information
|
|
* @reg: The register address
|
|
*
|
|
* Read a 32bit register from the chip.
|
|
*
|
|
* Note, this read requires the address be aligned to 4 bytes.
|
|
*/
|
|
static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
|
|
{
|
|
__le32 rx = 0;
|
|
|
|
WARN_ON(reg & 3);
|
|
|
|
ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
|
|
return le32_to_cpu(rx);
|
|
}
|
|
|
|
/**
|
|
* ks8851_soft_reset - issue one of the soft reset to the device
|
|
* @ks: The device state.
|
|
* @op: The bit(s) to set in the GRR
|
|
*
|
|
* Issue the relevant soft-reset command to the device's GRR register
|
|
* specified by @op.
|
|
*
|
|
* Note, the delays are in there as a caution to ensure that the reset
|
|
* has time to take effect and then complete. Since the datasheet does
|
|
* not currently specify the exact sequence, we have chosen something
|
|
* that seems to work with our device.
|
|
*/
|
|
static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
|
|
{
|
|
ks8851_wrreg16(ks, KS_GRR, op);
|
|
mdelay(1); /* wait a short time to effect reset */
|
|
ks8851_wrreg16(ks, KS_GRR, 0);
|
|
mdelay(1); /* wait for condition to clear */
|
|
}
|
|
|
|
/**
|
|
* ks8851_write_mac_addr - write mac address to device registers
|
|
* @dev: The network device
|
|
*
|
|
* Update the KS8851 MAC address registers from the address in @dev.
|
|
*
|
|
* This call assumes that the chip is not running, so there is no need to
|
|
* shutdown the RXQ process whilst setting this.
|
|
*/
|
|
static int ks8851_write_mac_addr(struct net_device *dev)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
int i;
|
|
|
|
mutex_lock(&ks->lock);
|
|
|
|
for (i = 0; i < ETH_ALEN; i++)
|
|
ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
|
|
|
|
mutex_unlock(&ks->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ks8851_init_mac - initialise the mac address
|
|
* @ks: The device structure
|
|
*
|
|
* Get or create the initial mac address for the device and then set that
|
|
* into the station address register. Currently we assume that the device
|
|
* does not have a valid mac address in it, and so we use random_ether_addr()
|
|
* to create a new one.
|
|
*
|
|
* In future, the driver should check to see if the device has an EEPROM
|
|
* attached and whether that has a valid ethernet address in it.
|
|
*/
|
|
static void ks8851_init_mac(struct ks8851_net *ks)
|
|
{
|
|
struct net_device *dev = ks->netdev;
|
|
|
|
random_ether_addr(dev->dev_addr);
|
|
ks8851_write_mac_addr(dev);
|
|
}
|
|
|
|
/**
|
|
* ks8851_irq - device interrupt handler
|
|
* @irq: Interrupt number passed from the IRQ hnalder.
|
|
* @pw: The private word passed to register_irq(), our struct ks8851_net.
|
|
*
|
|
* Disable the interrupt from happening again until we've processed the
|
|
* current status by scheduling ks8851_irq_work().
|
|
*/
|
|
static irqreturn_t ks8851_irq(int irq, void *pw)
|
|
{
|
|
struct ks8851_net *ks = pw;
|
|
|
|
disable_irq_nosync(irq);
|
|
schedule_work(&ks->irq_work);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* ks8851_rdfifo - read data from the receive fifo
|
|
* @ks: The device state.
|
|
* @buff: The buffer address
|
|
* @len: The length of the data to read
|
|
*
|
|
* Issue an RXQ FIFO read command and read the @len amount of data from
|
|
* the FIFO into the buffer specified by @buff.
|
|
*/
|
|
static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
|
|
{
|
|
struct spi_transfer *xfer = ks->spi_xfer2;
|
|
struct spi_message *msg = &ks->spi_msg2;
|
|
u8 txb[1];
|
|
int ret;
|
|
|
|
netif_dbg(ks, rx_status, ks->netdev,
|
|
"%s: %d@%p\n", __func__, len, buff);
|
|
|
|
/* set the operation we're issuing */
|
|
txb[0] = KS_SPIOP_RXFIFO;
|
|
|
|
xfer->tx_buf = txb;
|
|
xfer->rx_buf = NULL;
|
|
xfer->len = 1;
|
|
|
|
xfer++;
|
|
xfer->rx_buf = buff;
|
|
xfer->tx_buf = NULL;
|
|
xfer->len = len;
|
|
|
|
ret = spi_sync(ks->spidev, msg);
|
|
if (ret < 0)
|
|
netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
|
|
}
|
|
|
|
/**
|
|
* ks8851_dbg_dumpkkt - dump initial packet contents to debug
|
|
* @ks: The device state
|
|
* @rxpkt: The data for the received packet
|
|
*
|
|
* Dump the initial data from the packet to dev_dbg().
|
|
*/
|
|
static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
|
|
{
|
|
netdev_dbg(ks->netdev,
|
|
"pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
|
|
rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
|
|
rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
|
|
rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
|
|
}
|
|
|
|
/**
|
|
* ks8851_rx_pkts - receive packets from the host
|
|
* @ks: The device information.
|
|
*
|
|
* This is called from the IRQ work queue when the system detects that there
|
|
* are packets in the receive queue. Find out how many packets there are and
|
|
* read them from the FIFO.
|
|
*/
|
|
static void ks8851_rx_pkts(struct ks8851_net *ks)
|
|
{
|
|
struct sk_buff *skb;
|
|
unsigned rxfc;
|
|
unsigned rxlen;
|
|
unsigned rxstat;
|
|
u32 rxh;
|
|
u8 *rxpkt;
|
|
|
|
rxfc = ks8851_rdreg8(ks, KS_RXFC);
|
|
|
|
netif_dbg(ks, rx_status, ks->netdev,
|
|
"%s: %d packets\n", __func__, rxfc);
|
|
|
|
/* Currently we're issuing a read per packet, but we could possibly
|
|
* improve the code by issuing a single read, getting the receive
|
|
* header, allocating the packet and then reading the packet data
|
|
* out in one go.
|
|
*
|
|
* This form of operation would require us to hold the SPI bus'
|
|
* chipselect low during the entie transaction to avoid any
|
|
* reset to the data stream coming from the chip.
|
|
*/
|
|
|
|
for (; rxfc != 0; rxfc--) {
|
|
rxh = ks8851_rdreg32(ks, KS_RXFHSR);
|
|
rxstat = rxh & 0xffff;
|
|
rxlen = rxh >> 16;
|
|
|
|
netif_dbg(ks, rx_status, ks->netdev,
|
|
"rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
|
|
|
|
/* the length of the packet includes the 32bit CRC */
|
|
|
|
/* set dma read address */
|
|
ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
|
|
|
|
/* start the packet dma process, and set auto-dequeue rx */
|
|
ks8851_wrreg16(ks, KS_RXQCR,
|
|
ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
|
|
|
|
if (rxlen > 4) {
|
|
unsigned int rxalign;
|
|
|
|
rxlen -= 4;
|
|
rxalign = ALIGN(rxlen, 4);
|
|
skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
|
|
if (skb) {
|
|
|
|
/* 4 bytes of status header + 4 bytes of
|
|
* garbage: we put them before ethernet
|
|
* header, so that they are copied,
|
|
* but ignored.
|
|
*/
|
|
|
|
rxpkt = skb_put(skb, rxlen) - 8;
|
|
|
|
ks8851_rdfifo(ks, rxpkt, rxalign + 8);
|
|
|
|
if (netif_msg_pktdata(ks))
|
|
ks8851_dbg_dumpkkt(ks, rxpkt);
|
|
|
|
skb->protocol = eth_type_trans(skb, ks->netdev);
|
|
netif_rx(skb);
|
|
|
|
ks->netdev->stats.rx_packets++;
|
|
ks->netdev->stats.rx_bytes += rxlen;
|
|
}
|
|
}
|
|
|
|
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ks8851_irq_work - work queue handler for dealing with interrupt requests
|
|
* @work: The work structure that was scheduled by schedule_work()
|
|
*
|
|
* This is the handler invoked when the ks8851_irq() is called to find out
|
|
* what happened, as we cannot allow ourselves to sleep whilst waiting for
|
|
* anything other process has the chip's lock.
|
|
*
|
|
* Read the interrupt status, work out what needs to be done and then clear
|
|
* any of the interrupts that are not needed.
|
|
*/
|
|
static void ks8851_irq_work(struct work_struct *work)
|
|
{
|
|
struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
|
|
unsigned status;
|
|
unsigned handled = 0;
|
|
|
|
mutex_lock(&ks->lock);
|
|
|
|
status = ks8851_rdreg16(ks, KS_ISR);
|
|
|
|
netif_dbg(ks, intr, ks->netdev,
|
|
"%s: status 0x%04x\n", __func__, status);
|
|
|
|
if (status & IRQ_LCI) {
|
|
/* should do something about checking link status */
|
|
handled |= IRQ_LCI;
|
|
}
|
|
|
|
if (status & IRQ_LDI) {
|
|
u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
|
|
pmecr &= ~PMECR_WKEVT_MASK;
|
|
ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
|
|
|
|
handled |= IRQ_LDI;
|
|
}
|
|
|
|
if (status & IRQ_RXPSI)
|
|
handled |= IRQ_RXPSI;
|
|
|
|
if (status & IRQ_TXI) {
|
|
handled |= IRQ_TXI;
|
|
|
|
/* no lock here, tx queue should have been stopped */
|
|
|
|
/* update our idea of how much tx space is available to the
|
|
* system */
|
|
ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
|
|
|
|
netif_dbg(ks, intr, ks->netdev,
|
|
"%s: txspace %d\n", __func__, ks->tx_space);
|
|
}
|
|
|
|
if (status & IRQ_RXI)
|
|
handled |= IRQ_RXI;
|
|
|
|
if (status & IRQ_SPIBEI) {
|
|
dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
|
|
handled |= IRQ_SPIBEI;
|
|
}
|
|
|
|
ks8851_wrreg16(ks, KS_ISR, handled);
|
|
|
|
if (status & IRQ_RXI) {
|
|
/* the datasheet says to disable the rx interrupt during
|
|
* packet read-out, however we're masking the interrupt
|
|
* from the device so do not bother masking just the RX
|
|
* from the device. */
|
|
|
|
ks8851_rx_pkts(ks);
|
|
}
|
|
|
|
/* if something stopped the rx process, probably due to wanting
|
|
* to change the rx settings, then do something about restarting
|
|
* it. */
|
|
if (status & IRQ_RXPSI) {
|
|
struct ks8851_rxctrl *rxc = &ks->rxctrl;
|
|
|
|
/* update the multicast hash table */
|
|
ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
|
|
ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
|
|
ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
|
|
ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
|
|
|
|
ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
|
|
ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
|
|
}
|
|
|
|
mutex_unlock(&ks->lock);
|
|
|
|
if (status & IRQ_TXI)
|
|
netif_wake_queue(ks->netdev);
|
|
|
|
enable_irq(ks->netdev->irq);
|
|
}
|
|
|
|
/**
|
|
* calc_txlen - calculate size of message to send packet
|
|
* @len: Length of data
|
|
*
|
|
* Returns the size of the TXFIFO message needed to send
|
|
* this packet.
|
|
*/
|
|
static inline unsigned calc_txlen(unsigned len)
|
|
{
|
|
return ALIGN(len + 4, 4);
|
|
}
|
|
|
|
/**
|
|
* ks8851_wrpkt - write packet to TX FIFO
|
|
* @ks: The device state.
|
|
* @txp: The sk_buff to transmit.
|
|
* @irq: IRQ on completion of the packet.
|
|
*
|
|
* Send the @txp to the chip. This means creating the relevant packet header
|
|
* specifying the length of the packet and the other information the chip
|
|
* needs, such as IRQ on completion. Send the header and the packet data to
|
|
* the device.
|
|
*/
|
|
static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
|
|
{
|
|
struct spi_transfer *xfer = ks->spi_xfer2;
|
|
struct spi_message *msg = &ks->spi_msg2;
|
|
unsigned fid = 0;
|
|
int ret;
|
|
|
|
netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
|
|
__func__, txp, txp->len, txp->data, irq);
|
|
|
|
fid = ks->fid++;
|
|
fid &= TXFR_TXFID_MASK;
|
|
|
|
if (irq)
|
|
fid |= TXFR_TXIC; /* irq on completion */
|
|
|
|
/* start header at txb[1] to align txw entries */
|
|
ks->txh.txb[1] = KS_SPIOP_TXFIFO;
|
|
ks->txh.txw[1] = cpu_to_le16(fid);
|
|
ks->txh.txw[2] = cpu_to_le16(txp->len);
|
|
|
|
xfer->tx_buf = &ks->txh.txb[1];
|
|
xfer->rx_buf = NULL;
|
|
xfer->len = 5;
|
|
|
|
xfer++;
|
|
xfer->tx_buf = txp->data;
|
|
xfer->rx_buf = NULL;
|
|
xfer->len = ALIGN(txp->len, 4);
|
|
|
|
ret = spi_sync(ks->spidev, msg);
|
|
if (ret < 0)
|
|
netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
|
|
}
|
|
|
|
/**
|
|
* ks8851_done_tx - update and then free skbuff after transmitting
|
|
* @ks: The device state
|
|
* @txb: The buffer transmitted
|
|
*/
|
|
static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
|
|
{
|
|
struct net_device *dev = ks->netdev;
|
|
|
|
dev->stats.tx_bytes += txb->len;
|
|
dev->stats.tx_packets++;
|
|
|
|
dev_kfree_skb(txb);
|
|
}
|
|
|
|
/**
|
|
* ks8851_tx_work - process tx packet(s)
|
|
* @work: The work strucutre what was scheduled.
|
|
*
|
|
* This is called when a number of packets have been scheduled for
|
|
* transmission and need to be sent to the device.
|
|
*/
|
|
static void ks8851_tx_work(struct work_struct *work)
|
|
{
|
|
struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
|
|
struct sk_buff *txb;
|
|
bool last = skb_queue_empty(&ks->txq);
|
|
|
|
mutex_lock(&ks->lock);
|
|
|
|
while (!last) {
|
|
txb = skb_dequeue(&ks->txq);
|
|
last = skb_queue_empty(&ks->txq);
|
|
|
|
if (txb != NULL) {
|
|
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
|
|
ks8851_wrpkt(ks, txb, last);
|
|
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
|
|
ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
|
|
|
|
ks8851_done_tx(ks, txb);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&ks->lock);
|
|
}
|
|
|
|
/**
|
|
* ks8851_set_powermode - set power mode of the device
|
|
* @ks: The device state
|
|
* @pwrmode: The power mode value to write to KS_PMECR.
|
|
*
|
|
* Change the power mode of the chip.
|
|
*/
|
|
static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
|
|
{
|
|
unsigned pmecr;
|
|
|
|
netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
|
|
|
|
pmecr = ks8851_rdreg16(ks, KS_PMECR);
|
|
pmecr &= ~PMECR_PM_MASK;
|
|
pmecr |= pwrmode;
|
|
|
|
ks8851_wrreg16(ks, KS_PMECR, pmecr);
|
|
}
|
|
|
|
/**
|
|
* ks8851_net_open - open network device
|
|
* @dev: The network device being opened.
|
|
*
|
|
* Called when the network device is marked active, such as a user executing
|
|
* 'ifconfig up' on the device.
|
|
*/
|
|
static int ks8851_net_open(struct net_device *dev)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
|
|
/* lock the card, even if we may not actually be doing anything
|
|
* else at the moment */
|
|
mutex_lock(&ks->lock);
|
|
|
|
netif_dbg(ks, ifup, ks->netdev, "opening\n");
|
|
|
|
/* bring chip out of any power saving mode it was in */
|
|
ks8851_set_powermode(ks, PMECR_PM_NORMAL);
|
|
|
|
/* issue a soft reset to the RX/TX QMU to put it into a known
|
|
* state. */
|
|
ks8851_soft_reset(ks, GRR_QMU);
|
|
|
|
/* setup transmission parameters */
|
|
|
|
ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
|
|
TXCR_TXPE | /* pad to min length */
|
|
TXCR_TXCRC | /* add CRC */
|
|
TXCR_TXFCE)); /* enable flow control */
|
|
|
|
/* auto-increment tx data, reset tx pointer */
|
|
ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
|
|
|
|
/* setup receiver control */
|
|
|
|
ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
|
|
RXCR1_RXFCE | /* enable flow control */
|
|
RXCR1_RXBE | /* broadcast enable */
|
|
RXCR1_RXUE | /* unicast enable */
|
|
RXCR1_RXE)); /* enable rx block */
|
|
|
|
/* transfer entire frames out in one go */
|
|
ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
|
|
|
|
/* set receive counter timeouts */
|
|
ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
|
|
ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
|
|
ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
|
|
|
|
ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
|
|
RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
|
|
RXQCR_RXDTTE); /* IRQ on time exceeded */
|
|
|
|
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
|
|
|
|
/* clear then enable interrupts */
|
|
|
|
#define STD_IRQ (IRQ_LCI | /* Link Change */ \
|
|
IRQ_TXI | /* TX done */ \
|
|
IRQ_RXI | /* RX done */ \
|
|
IRQ_SPIBEI | /* SPI bus error */ \
|
|
IRQ_TXPSI | /* TX process stop */ \
|
|
IRQ_RXPSI) /* RX process stop */
|
|
|
|
ks->rc_ier = STD_IRQ;
|
|
ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
|
|
ks8851_wrreg16(ks, KS_IER, STD_IRQ);
|
|
|
|
netif_start_queue(ks->netdev);
|
|
|
|
netif_dbg(ks, ifup, ks->netdev, "network device up\n");
|
|
|
|
mutex_unlock(&ks->lock);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ks8851_net_stop - close network device
|
|
* @dev: The device being closed.
|
|
*
|
|
* Called to close down a network device which has been active. Cancell any
|
|
* work, shutdown the RX and TX process and then place the chip into a low
|
|
* power state whilst it is not being used.
|
|
*/
|
|
static int ks8851_net_stop(struct net_device *dev)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
|
|
netif_info(ks, ifdown, dev, "shutting down\n");
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
mutex_lock(&ks->lock);
|
|
|
|
/* stop any outstanding work */
|
|
flush_work(&ks->irq_work);
|
|
flush_work(&ks->tx_work);
|
|
flush_work(&ks->rxctrl_work);
|
|
|
|
/* turn off the IRQs and ack any outstanding */
|
|
ks8851_wrreg16(ks, KS_IER, 0x0000);
|
|
ks8851_wrreg16(ks, KS_ISR, 0xffff);
|
|
|
|
/* shutdown RX process */
|
|
ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
|
|
|
|
/* shutdown TX process */
|
|
ks8851_wrreg16(ks, KS_TXCR, 0x0000);
|
|
|
|
/* set powermode to soft power down to save power */
|
|
ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
|
|
|
|
/* ensure any queued tx buffers are dumped */
|
|
while (!skb_queue_empty(&ks->txq)) {
|
|
struct sk_buff *txb = skb_dequeue(&ks->txq);
|
|
|
|
netif_dbg(ks, ifdown, ks->netdev,
|
|
"%s: freeing txb %p\n", __func__, txb);
|
|
|
|
dev_kfree_skb(txb);
|
|
}
|
|
|
|
mutex_unlock(&ks->lock);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ks8851_start_xmit - transmit packet
|
|
* @skb: The buffer to transmit
|
|
* @dev: The device used to transmit the packet.
|
|
*
|
|
* Called by the network layer to transmit the @skb. Queue the packet for
|
|
* the device and schedule the necessary work to transmit the packet when
|
|
* it is free.
|
|
*
|
|
* We do this to firstly avoid sleeping with the network device locked,
|
|
* and secondly so we can round up more than one packet to transmit which
|
|
* means we can try and avoid generating too many transmit done interrupts.
|
|
*/
|
|
static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
|
|
struct net_device *dev)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
unsigned needed = calc_txlen(skb->len);
|
|
netdev_tx_t ret = NETDEV_TX_OK;
|
|
|
|
netif_dbg(ks, tx_queued, ks->netdev,
|
|
"%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
|
|
|
|
spin_lock(&ks->statelock);
|
|
|
|
if (needed > ks->tx_space) {
|
|
netif_stop_queue(dev);
|
|
ret = NETDEV_TX_BUSY;
|
|
} else {
|
|
ks->tx_space -= needed;
|
|
skb_queue_tail(&ks->txq, skb);
|
|
}
|
|
|
|
spin_unlock(&ks->statelock);
|
|
schedule_work(&ks->tx_work);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ks8851_rxctrl_work - work handler to change rx mode
|
|
* @work: The work structure this belongs to.
|
|
*
|
|
* Lock the device and issue the necessary changes to the receive mode from
|
|
* the network device layer. This is done so that we can do this without
|
|
* having to sleep whilst holding the network device lock.
|
|
*
|
|
* Since the recommendation from Micrel is that the RXQ is shutdown whilst the
|
|
* receive parameters are programmed, we issue a write to disable the RXQ and
|
|
* then wait for the interrupt handler to be triggered once the RXQ shutdown is
|
|
* complete. The interrupt handler then writes the new values into the chip.
|
|
*/
|
|
static void ks8851_rxctrl_work(struct work_struct *work)
|
|
{
|
|
struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
|
|
|
|
mutex_lock(&ks->lock);
|
|
|
|
/* need to shutdown RXQ before modifying filter parameters */
|
|
ks8851_wrreg16(ks, KS_RXCR1, 0x00);
|
|
|
|
mutex_unlock(&ks->lock);
|
|
}
|
|
|
|
static void ks8851_set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
struct ks8851_rxctrl rxctrl;
|
|
|
|
memset(&rxctrl, 0, sizeof(rxctrl));
|
|
|
|
if (dev->flags & IFF_PROMISC) {
|
|
/* interface to receive everything */
|
|
|
|
rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
|
|
} else if (dev->flags & IFF_ALLMULTI) {
|
|
/* accept all multicast packets */
|
|
|
|
rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
|
|
RXCR1_RXPAFMA | RXCR1_RXMAFMA);
|
|
} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
|
|
struct netdev_hw_addr *ha;
|
|
u32 crc;
|
|
|
|
/* accept some multicast */
|
|
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
crc = ether_crc(ETH_ALEN, ha->addr);
|
|
crc >>= (32 - 6); /* get top six bits */
|
|
|
|
rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
|
|
}
|
|
|
|
rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
|
|
} else {
|
|
/* just accept broadcast / unicast */
|
|
rxctrl.rxcr1 = RXCR1_RXPAFMA;
|
|
}
|
|
|
|
rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
|
|
RXCR1_RXBE | /* broadcast enable */
|
|
RXCR1_RXE | /* RX process enable */
|
|
RXCR1_RXFCE); /* enable flow control */
|
|
|
|
rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
|
|
|
|
/* schedule work to do the actual set of the data if needed */
|
|
|
|
spin_lock(&ks->statelock);
|
|
|
|
if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
|
|
memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
|
|
schedule_work(&ks->rxctrl_work);
|
|
}
|
|
|
|
spin_unlock(&ks->statelock);
|
|
}
|
|
|
|
static int ks8851_set_mac_address(struct net_device *dev, void *addr)
|
|
{
|
|
struct sockaddr *sa = addr;
|
|
|
|
if (netif_running(dev))
|
|
return -EBUSY;
|
|
|
|
if (!is_valid_ether_addr(sa->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
|
|
return ks8851_write_mac_addr(dev);
|
|
}
|
|
|
|
static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
|
|
if (!netif_running(dev))
|
|
return -EINVAL;
|
|
|
|
return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
|
|
}
|
|
|
|
static const struct net_device_ops ks8851_netdev_ops = {
|
|
.ndo_open = ks8851_net_open,
|
|
.ndo_stop = ks8851_net_stop,
|
|
.ndo_do_ioctl = ks8851_net_ioctl,
|
|
.ndo_start_xmit = ks8851_start_xmit,
|
|
.ndo_set_mac_address = ks8851_set_mac_address,
|
|
.ndo_set_rx_mode = ks8851_set_rx_mode,
|
|
.ndo_change_mtu = eth_change_mtu,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
};
|
|
|
|
/* Companion eeprom access */
|
|
|
|
enum { /* EEPROM programming states */
|
|
EEPROM_CONTROL,
|
|
EEPROM_ADDRESS,
|
|
EEPROM_DATA,
|
|
EEPROM_COMPLETE
|
|
};
|
|
|
|
/**
|
|
* ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
|
|
* @dev: The network device the PHY is on.
|
|
* @addr: EEPROM address to read
|
|
*
|
|
* eeprom_size: used to define the data coding length. Can be changed
|
|
* through debug-fs.
|
|
*
|
|
* Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
|
|
* Warning: The READ feature is not supported on ks8851 revision 0.
|
|
*
|
|
* Rough programming model:
|
|
* - on period start: set clock high and read value on bus
|
|
* - on period / 2: set clock low and program value on bus
|
|
* - start on period / 2
|
|
*/
|
|
unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
int eepcr;
|
|
int ctrl = EEPROM_OP_READ;
|
|
int state = EEPROM_CONTROL;
|
|
int bit_count = EEPROM_OP_LEN - 1;
|
|
unsigned int data = 0;
|
|
int dummy;
|
|
unsigned int addr_len;
|
|
|
|
addr_len = (ks->eeprom_size == 128) ? 6 : 8;
|
|
|
|
/* start transaction: chip select high, authorize write */
|
|
mutex_lock(&ks->lock);
|
|
eepcr = EEPCR_EESA | EEPCR_EESRWA;
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
eepcr |= EEPCR_EECS;
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
mutex_unlock(&ks->lock);
|
|
|
|
while (state != EEPROM_COMPLETE) {
|
|
/* falling clock period starts... */
|
|
/* set EED_IO pin for control and address */
|
|
eepcr &= ~EEPCR_EEDO;
|
|
switch (state) {
|
|
case EEPROM_CONTROL:
|
|
eepcr |= ((ctrl >> bit_count) & 1) << 2;
|
|
if (bit_count-- <= 0) {
|
|
bit_count = addr_len - 1;
|
|
state = EEPROM_ADDRESS;
|
|
}
|
|
break;
|
|
case EEPROM_ADDRESS:
|
|
eepcr |= ((addr >> bit_count) & 1) << 2;
|
|
bit_count--;
|
|
break;
|
|
case EEPROM_DATA:
|
|
/* Change to receive mode */
|
|
eepcr &= ~EEPCR_EESRWA;
|
|
break;
|
|
}
|
|
|
|
/* lower clock */
|
|
eepcr &= ~EEPCR_EESCK;
|
|
|
|
mutex_lock(&ks->lock);
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
mutex_unlock(&ks->lock);
|
|
|
|
/* waitread period / 2 */
|
|
udelay(EEPROM_SK_PERIOD / 2);
|
|
|
|
/* rising clock period starts... */
|
|
|
|
/* raise clock */
|
|
mutex_lock(&ks->lock);
|
|
eepcr |= EEPCR_EESCK;
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
mutex_unlock(&ks->lock);
|
|
|
|
/* Manage read */
|
|
switch (state) {
|
|
case EEPROM_ADDRESS:
|
|
if (bit_count < 0) {
|
|
bit_count = EEPROM_DATA_LEN - 1;
|
|
state = EEPROM_DATA;
|
|
}
|
|
break;
|
|
case EEPROM_DATA:
|
|
mutex_lock(&ks->lock);
|
|
dummy = ks8851_rdreg16(ks, KS_EEPCR);
|
|
mutex_unlock(&ks->lock);
|
|
data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count;
|
|
if (bit_count-- <= 0)
|
|
state = EEPROM_COMPLETE;
|
|
break;
|
|
}
|
|
|
|
/* wait period / 2 */
|
|
udelay(EEPROM_SK_PERIOD / 2);
|
|
}
|
|
|
|
/* close transaction */
|
|
mutex_lock(&ks->lock);
|
|
eepcr &= ~EEPCR_EECS;
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
eepcr = 0;
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
mutex_unlock(&ks->lock);
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
|
|
* @dev: The network device the PHY is on.
|
|
* @op: operand (can be WRITE, EWEN, EWDS)
|
|
* @addr: EEPROM address to write
|
|
* @data: data to write
|
|
*
|
|
* eeprom_size: used to define the data coding length. Can be changed
|
|
* through debug-fs.
|
|
*
|
|
* Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
|
|
*
|
|
* Note that a write enable is required before writing data.
|
|
*
|
|
* Rough programming model:
|
|
* - on period start: set clock high
|
|
* - on period / 2: set clock low and program value on bus
|
|
* - start on period / 2
|
|
*/
|
|
void ks8851_eeprom_write(struct net_device *dev, unsigned int op,
|
|
unsigned int addr, unsigned int data)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
int eepcr;
|
|
int state = EEPROM_CONTROL;
|
|
int bit_count = EEPROM_OP_LEN - 1;
|
|
unsigned int addr_len;
|
|
|
|
addr_len = (ks->eeprom_size == 128) ? 6 : 8;
|
|
|
|
switch (op) {
|
|
case EEPROM_OP_EWEN:
|
|
addr = 0x30;
|
|
break;
|
|
case EEPROM_OP_EWDS:
|
|
addr = 0;
|
|
break;
|
|
}
|
|
|
|
/* start transaction: chip select high, authorize write */
|
|
mutex_lock(&ks->lock);
|
|
eepcr = EEPCR_EESA | EEPCR_EESRWA;
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
eepcr |= EEPCR_EECS;
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
mutex_unlock(&ks->lock);
|
|
|
|
while (state != EEPROM_COMPLETE) {
|
|
/* falling clock period starts... */
|
|
/* set EED_IO pin for control and address */
|
|
eepcr &= ~EEPCR_EEDO;
|
|
switch (state) {
|
|
case EEPROM_CONTROL:
|
|
eepcr |= ((op >> bit_count) & 1) << 2;
|
|
if (bit_count-- <= 0) {
|
|
bit_count = addr_len - 1;
|
|
state = EEPROM_ADDRESS;
|
|
}
|
|
break;
|
|
case EEPROM_ADDRESS:
|
|
eepcr |= ((addr >> bit_count) & 1) << 2;
|
|
if (bit_count-- <= 0) {
|
|
if (op == EEPROM_OP_WRITE) {
|
|
bit_count = EEPROM_DATA_LEN - 1;
|
|
state = EEPROM_DATA;
|
|
} else {
|
|
state = EEPROM_COMPLETE;
|
|
}
|
|
}
|
|
break;
|
|
case EEPROM_DATA:
|
|
eepcr |= ((data >> bit_count) & 1) << 2;
|
|
if (bit_count-- <= 0)
|
|
state = EEPROM_COMPLETE;
|
|
break;
|
|
}
|
|
|
|
/* lower clock */
|
|
eepcr &= ~EEPCR_EESCK;
|
|
|
|
mutex_lock(&ks->lock);
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
mutex_unlock(&ks->lock);
|
|
|
|
/* wait period / 2 */
|
|
udelay(EEPROM_SK_PERIOD / 2);
|
|
|
|
/* rising clock period starts... */
|
|
|
|
/* raise clock */
|
|
eepcr |= EEPCR_EESCK;
|
|
mutex_lock(&ks->lock);
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
mutex_unlock(&ks->lock);
|
|
|
|
/* wait period / 2 */
|
|
udelay(EEPROM_SK_PERIOD / 2);
|
|
}
|
|
|
|
/* close transaction */
|
|
mutex_lock(&ks->lock);
|
|
eepcr &= ~EEPCR_EECS;
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
eepcr = 0;
|
|
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
|
|
mutex_unlock(&ks->lock);
|
|
|
|
}
|
|
|
|
/* ethtool support */
|
|
|
|
static void ks8851_get_drvinfo(struct net_device *dev,
|
|
struct ethtool_drvinfo *di)
|
|
{
|
|
strlcpy(di->driver, "KS8851", sizeof(di->driver));
|
|
strlcpy(di->version, "1.00", sizeof(di->version));
|
|
strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
|
|
}
|
|
|
|
static u32 ks8851_get_msglevel(struct net_device *dev)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
return ks->msg_enable;
|
|
}
|
|
|
|
static void ks8851_set_msglevel(struct net_device *dev, u32 to)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
ks->msg_enable = to;
|
|
}
|
|
|
|
static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
return mii_ethtool_gset(&ks->mii, cmd);
|
|
}
|
|
|
|
static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
return mii_ethtool_sset(&ks->mii, cmd);
|
|
}
|
|
|
|
static u32 ks8851_get_link(struct net_device *dev)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
return mii_link_ok(&ks->mii);
|
|
}
|
|
|
|
static int ks8851_nway_reset(struct net_device *dev)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
return mii_nway_restart(&ks->mii);
|
|
}
|
|
|
|
static int ks8851_get_eeprom_len(struct net_device *dev)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
return ks->eeprom_size;
|
|
}
|
|
|
|
static int ks8851_get_eeprom(struct net_device *dev,
|
|
struct ethtool_eeprom *eeprom, u8 *bytes)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
u16 *eeprom_buff;
|
|
int first_word;
|
|
int last_word;
|
|
int ret_val = 0;
|
|
u16 i;
|
|
|
|
if (eeprom->len == 0)
|
|
return -EINVAL;
|
|
|
|
if (eeprom->len > ks->eeprom_size)
|
|
return -EINVAL;
|
|
|
|
eeprom->magic = ks8851_rdreg16(ks, KS_CIDER);
|
|
|
|
first_word = eeprom->offset >> 1;
|
|
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
|
|
eeprom_buff = kmalloc(sizeof(u16) *
|
|
(last_word - first_word + 1), GFP_KERNEL);
|
|
if (!eeprom_buff)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1);
|
|
|
|
/* Device's eeprom is little-endian, word addressable */
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
le16_to_cpus(&eeprom_buff[i]);
|
|
|
|
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
|
|
kfree(eeprom_buff);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
static int ks8851_set_eeprom(struct net_device *dev,
|
|
struct ethtool_eeprom *eeprom, u8 *bytes)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
u16 *eeprom_buff;
|
|
void *ptr;
|
|
int max_len;
|
|
int first_word;
|
|
int last_word;
|
|
int ret_val = 0;
|
|
u16 i;
|
|
|
|
if (eeprom->len == 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (eeprom->len > ks->eeprom_size)
|
|
return -EINVAL;
|
|
|
|
if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER))
|
|
return -EFAULT;
|
|
|
|
first_word = eeprom->offset >> 1;
|
|
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
max_len = (last_word - first_word + 1) * 2;
|
|
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
|
|
if (!eeprom_buff)
|
|
return -ENOMEM;
|
|
|
|
ptr = (void *)eeprom_buff;
|
|
|
|
if (eeprom->offset & 1) {
|
|
/* need read/modify/write of first changed EEPROM word */
|
|
/* only the second byte of the word is being modified */
|
|
eeprom_buff[0] = ks8851_eeprom_read(dev, first_word);
|
|
ptr++;
|
|
}
|
|
if ((eeprom->offset + eeprom->len) & 1)
|
|
/* need read/modify/write of last changed EEPROM word */
|
|
/* only the first byte of the word is being modified */
|
|
eeprom_buff[last_word - first_word] =
|
|
ks8851_eeprom_read(dev, last_word);
|
|
|
|
|
|
/* Device's eeprom is little-endian, word addressable */
|
|
le16_to_cpus(&eeprom_buff[0]);
|
|
le16_to_cpus(&eeprom_buff[last_word - first_word]);
|
|
|
|
memcpy(ptr, bytes, eeprom->len);
|
|
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
|
|
|
|
ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0);
|
|
|
|
for (i = 0; i < last_word - first_word + 1; i++) {
|
|
ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i,
|
|
eeprom_buff[i]);
|
|
mdelay(EEPROM_WRITE_TIME);
|
|
}
|
|
|
|
ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0);
|
|
|
|
kfree(eeprom_buff);
|
|
return ret_val;
|
|
}
|
|
|
|
static const struct ethtool_ops ks8851_ethtool_ops = {
|
|
.get_drvinfo = ks8851_get_drvinfo,
|
|
.get_msglevel = ks8851_get_msglevel,
|
|
.set_msglevel = ks8851_set_msglevel,
|
|
.get_settings = ks8851_get_settings,
|
|
.set_settings = ks8851_set_settings,
|
|
.get_link = ks8851_get_link,
|
|
.nway_reset = ks8851_nway_reset,
|
|
.get_eeprom_len = ks8851_get_eeprom_len,
|
|
.get_eeprom = ks8851_get_eeprom,
|
|
.set_eeprom = ks8851_set_eeprom,
|
|
};
|
|
|
|
/* MII interface controls */
|
|
|
|
/**
|
|
* ks8851_phy_reg - convert MII register into a KS8851 register
|
|
* @reg: MII register number.
|
|
*
|
|
* Return the KS8851 register number for the corresponding MII PHY register
|
|
* if possible. Return zero if the MII register has no direct mapping to the
|
|
* KS8851 register set.
|
|
*/
|
|
static int ks8851_phy_reg(int reg)
|
|
{
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
return KS_P1MBCR;
|
|
case MII_BMSR:
|
|
return KS_P1MBSR;
|
|
case MII_PHYSID1:
|
|
return KS_PHY1ILR;
|
|
case MII_PHYSID2:
|
|
return KS_PHY1IHR;
|
|
case MII_ADVERTISE:
|
|
return KS_P1ANAR;
|
|
case MII_LPA:
|
|
return KS_P1ANLPR;
|
|
}
|
|
|
|
return 0x0;
|
|
}
|
|
|
|
/**
|
|
* ks8851_phy_read - MII interface PHY register read.
|
|
* @dev: The network device the PHY is on.
|
|
* @phy_addr: Address of PHY (ignored as we only have one)
|
|
* @reg: The register to read.
|
|
*
|
|
* This call reads data from the PHY register specified in @reg. Since the
|
|
* device does not support all the MII registers, the non-existent values
|
|
* are always returned as zero.
|
|
*
|
|
* We return zero for unsupported registers as the MII code does not check
|
|
* the value returned for any error status, and simply returns it to the
|
|
* caller. The mii-tool that the driver was tested with takes any -ve error
|
|
* as real PHY capabilities, thus displaying incorrect data to the user.
|
|
*/
|
|
static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
int ksreg;
|
|
int result;
|
|
|
|
ksreg = ks8851_phy_reg(reg);
|
|
if (!ksreg)
|
|
return 0x0; /* no error return allowed, so use zero */
|
|
|
|
mutex_lock(&ks->lock);
|
|
result = ks8851_rdreg16(ks, ksreg);
|
|
mutex_unlock(&ks->lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void ks8851_phy_write(struct net_device *dev,
|
|
int phy, int reg, int value)
|
|
{
|
|
struct ks8851_net *ks = netdev_priv(dev);
|
|
int ksreg;
|
|
|
|
ksreg = ks8851_phy_reg(reg);
|
|
if (ksreg) {
|
|
mutex_lock(&ks->lock);
|
|
ks8851_wrreg16(ks, ksreg, value);
|
|
mutex_unlock(&ks->lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ks8851_read_selftest - read the selftest memory info.
|
|
* @ks: The device state
|
|
*
|
|
* Read and check the TX/RX memory selftest information.
|
|
*/
|
|
static int ks8851_read_selftest(struct ks8851_net *ks)
|
|
{
|
|
unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
|
|
int ret = 0;
|
|
unsigned rd;
|
|
|
|
rd = ks8851_rdreg16(ks, KS_MBIR);
|
|
|
|
if ((rd & both_done) != both_done) {
|
|
netdev_warn(ks->netdev, "Memory selftest not finished\n");
|
|
return 0;
|
|
}
|
|
|
|
if (rd & MBIR_TXMBFA) {
|
|
netdev_err(ks->netdev, "TX memory selftest fail\n");
|
|
ret |= 1;
|
|
}
|
|
|
|
if (rd & MBIR_RXMBFA) {
|
|
netdev_err(ks->netdev, "RX memory selftest fail\n");
|
|
ret |= 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* driver bus management functions */
|
|
|
|
#ifdef CONFIG_PM
|
|
static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
|
|
{
|
|
struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
|
|
struct net_device *dev = ks->netdev;
|
|
|
|
if (netif_running(dev)) {
|
|
netif_device_detach(dev);
|
|
ks8851_net_stop(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ks8851_resume(struct spi_device *spi)
|
|
{
|
|
struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
|
|
struct net_device *dev = ks->netdev;
|
|
|
|
if (netif_running(dev)) {
|
|
ks8851_net_open(dev);
|
|
netif_device_attach(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define ks8851_suspend NULL
|
|
#define ks8851_resume NULL
|
|
#endif
|
|
|
|
static int __devinit ks8851_probe(struct spi_device *spi)
|
|
{
|
|
struct net_device *ndev;
|
|
struct ks8851_net *ks;
|
|
int ret;
|
|
|
|
ndev = alloc_etherdev(sizeof(struct ks8851_net));
|
|
if (!ndev) {
|
|
dev_err(&spi->dev, "failed to alloc ethernet device\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spi->bits_per_word = 8;
|
|
|
|
ks = netdev_priv(ndev);
|
|
|
|
ks->netdev = ndev;
|
|
ks->spidev = spi;
|
|
ks->tx_space = 6144;
|
|
|
|
mutex_init(&ks->lock);
|
|
spin_lock_init(&ks->statelock);
|
|
|
|
INIT_WORK(&ks->tx_work, ks8851_tx_work);
|
|
INIT_WORK(&ks->irq_work, ks8851_irq_work);
|
|
INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
|
|
|
|
/* initialise pre-made spi transfer messages */
|
|
|
|
spi_message_init(&ks->spi_msg1);
|
|
spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
|
|
|
|
spi_message_init(&ks->spi_msg2);
|
|
spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
|
|
spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
|
|
|
|
/* setup mii state */
|
|
ks->mii.dev = ndev;
|
|
ks->mii.phy_id = 1,
|
|
ks->mii.phy_id_mask = 1;
|
|
ks->mii.reg_num_mask = 0xf;
|
|
ks->mii.mdio_read = ks8851_phy_read;
|
|
ks->mii.mdio_write = ks8851_phy_write;
|
|
|
|
dev_info(&spi->dev, "message enable is %d\n", msg_enable);
|
|
|
|
/* set the default message enable */
|
|
ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
|
|
NETIF_MSG_PROBE |
|
|
NETIF_MSG_LINK));
|
|
|
|
skb_queue_head_init(&ks->txq);
|
|
|
|
SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
|
|
SET_NETDEV_DEV(ndev, &spi->dev);
|
|
|
|
dev_set_drvdata(&spi->dev, ks);
|
|
|
|
ndev->if_port = IF_PORT_100BASET;
|
|
ndev->netdev_ops = &ks8851_netdev_ops;
|
|
ndev->irq = spi->irq;
|
|
|
|
/* issue a global soft reset to reset the device. */
|
|
ks8851_soft_reset(ks, GRR_GSR);
|
|
|
|
/* simple check for a valid chip being connected to the bus */
|
|
|
|
if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
|
|
dev_err(&spi->dev, "failed to read device ID\n");
|
|
ret = -ENODEV;
|
|
goto err_id;
|
|
}
|
|
|
|
/* cache the contents of the CCR register for EEPROM, etc. */
|
|
ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
|
|
|
|
if (ks->rc_ccr & CCR_EEPROM)
|
|
ks->eeprom_size = 128;
|
|
else
|
|
ks->eeprom_size = 0;
|
|
|
|
ks8851_read_selftest(ks);
|
|
ks8851_init_mac(ks);
|
|
|
|
ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
|
|
ndev->name, ks);
|
|
if (ret < 0) {
|
|
dev_err(&spi->dev, "failed to get irq\n");
|
|
goto err_irq;
|
|
}
|
|
|
|
ret = register_netdev(ndev);
|
|
if (ret) {
|
|
dev_err(&spi->dev, "failed to register network device\n");
|
|
goto err_netdev;
|
|
}
|
|
|
|
netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
|
|
CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
|
|
ndev->dev_addr, ndev->irq);
|
|
|
|
return 0;
|
|
|
|
|
|
err_netdev:
|
|
free_irq(ndev->irq, ndev);
|
|
|
|
err_id:
|
|
err_irq:
|
|
free_netdev(ndev);
|
|
return ret;
|
|
}
|
|
|
|
static int __devexit ks8851_remove(struct spi_device *spi)
|
|
{
|
|
struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
|
|
|
|
if (netif_msg_drv(priv))
|
|
dev_info(&spi->dev, "remove\n");
|
|
|
|
unregister_netdev(priv->netdev);
|
|
free_irq(spi->irq, priv);
|
|
free_netdev(priv->netdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct spi_driver ks8851_driver = {
|
|
.driver = {
|
|
.name = "ks8851",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.probe = ks8851_probe,
|
|
.remove = __devexit_p(ks8851_remove),
|
|
.suspend = ks8851_suspend,
|
|
.resume = ks8851_resume,
|
|
};
|
|
|
|
static int __init ks8851_init(void)
|
|
{
|
|
return spi_register_driver(&ks8851_driver);
|
|
}
|
|
|
|
static void __exit ks8851_exit(void)
|
|
{
|
|
spi_unregister_driver(&ks8851_driver);
|
|
}
|
|
|
|
module_init(ks8851_init);
|
|
module_exit(ks8851_exit);
|
|
|
|
MODULE_DESCRIPTION("KS8851 Network driver");
|
|
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_param_named(message, msg_enable, int, 0);
|
|
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
|
|
MODULE_ALIAS("spi:ks8851");
|