linux_dsm_epyc7002/drivers/nfc/microread/microread.c
Eric Lapuyade cfad1ba871 NFC: Initial support for Inside Secure microread
Inside Secure microread is an HCI based NFC chipset.
This initial support includes reader and p2p (Target and initiator) modes.

Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-02-03 20:37:42 +01:00

729 lines
20 KiB
C

/*
* HCI based Driver for Inside Secure microread NFC Chip
*
* Copyright (C) 2013 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/crc-ccitt.h>
#include <linux/nfc.h>
#include <net/nfc/nfc.h>
#include <net/nfc/hci.h>
#include <net/nfc/llc.h>
#include "microread.h"
/* Proprietary gates, events, commands and registers */
/* Admin */
#define MICROREAD_GATE_ID_ADM NFC_HCI_ADMIN_GATE
#define MICROREAD_GATE_ID_MGT 0x01
#define MICROREAD_GATE_ID_OS 0x02
#define MICROREAD_GATE_ID_TESTRF 0x03
#define MICROREAD_GATE_ID_LOOPBACK NFC_HCI_LOOPBACK_GATE
#define MICROREAD_GATE_ID_IDT NFC_HCI_ID_MGMT_GATE
#define MICROREAD_GATE_ID_LMS NFC_HCI_LINK_MGMT_GATE
/* Reader */
#define MICROREAD_GATE_ID_MREAD_GEN 0x10
#define MICROREAD_GATE_ID_MREAD_ISO_B NFC_HCI_RF_READER_B_GATE
#define MICROREAD_GATE_ID_MREAD_NFC_T1 0x12
#define MICROREAD_GATE_ID_MREAD_ISO_A NFC_HCI_RF_READER_A_GATE
#define MICROREAD_GATE_ID_MREAD_NFC_T3 0x14
#define MICROREAD_GATE_ID_MREAD_ISO_15_3 0x15
#define MICROREAD_GATE_ID_MREAD_ISO_15_2 0x16
#define MICROREAD_GATE_ID_MREAD_ISO_B_3 0x17
#define MICROREAD_GATE_ID_MREAD_BPRIME 0x18
#define MICROREAD_GATE_ID_MREAD_ISO_A_3 0x19
/* Card */
#define MICROREAD_GATE_ID_MCARD_GEN 0x20
#define MICROREAD_GATE_ID_MCARD_ISO_B 0x21
#define MICROREAD_GATE_ID_MCARD_BPRIME 0x22
#define MICROREAD_GATE_ID_MCARD_ISO_A 0x23
#define MICROREAD_GATE_ID_MCARD_NFC_T3 0x24
#define MICROREAD_GATE_ID_MCARD_ISO_15_3 0x25
#define MICROREAD_GATE_ID_MCARD_ISO_15_2 0x26
#define MICROREAD_GATE_ID_MCARD_ISO_B_2 0x27
#define MICROREAD_GATE_ID_MCARD_ISO_CUSTOM 0x28
#define MICROREAD_GATE_ID_SECURE_ELEMENT 0x2F
/* P2P */
#define MICROREAD_GATE_ID_P2P_GEN 0x30
#define MICROREAD_GATE_ID_P2P_TARGET 0x31
#define MICROREAD_PAR_P2P_TARGET_MODE 0x01
#define MICROREAD_PAR_P2P_TARGET_GT 0x04
#define MICROREAD_GATE_ID_P2P_INITIATOR 0x32
#define MICROREAD_PAR_P2P_INITIATOR_GI 0x01
#define MICROREAD_PAR_P2P_INITIATOR_GT 0x03
/* Those pipes are created/opened by default in the chip */
#define MICROREAD_PIPE_ID_LMS 0x00
#define MICROREAD_PIPE_ID_ADMIN 0x01
#define MICROREAD_PIPE_ID_MGT 0x02
#define MICROREAD_PIPE_ID_OS 0x03
#define MICROREAD_PIPE_ID_HDS_LOOPBACK 0x04
#define MICROREAD_PIPE_ID_HDS_IDT 0x05
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B 0x08
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_BPRIME 0x09
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_A 0x0A
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_3 0x0B
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_2 0x0C
#define MICROREAD_PIPE_ID_HDS_MCARD_NFC_T3 0x0D
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B_2 0x0E
#define MICROREAD_PIPE_ID_HDS_MCARD_CUSTOM 0x0F
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B 0x10
#define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1 0x11
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A 0x12
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_3 0x13
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_2 0x14
#define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3 0x15
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B_3 0x16
#define MICROREAD_PIPE_ID_HDS_MREAD_BPRIME 0x17
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3 0x18
#define MICROREAD_PIPE_ID_HDS_MREAD_GEN 0x1B
#define MICROREAD_PIPE_ID_HDS_STACKED_ELEMENT 0x1C
#define MICROREAD_PIPE_ID_HDS_INSTANCES 0x1D
#define MICROREAD_PIPE_ID_HDS_TESTRF 0x1E
#define MICROREAD_PIPE_ID_HDS_P2P_TARGET 0x1F
#define MICROREAD_PIPE_ID_HDS_P2P_INITIATOR 0x20
/* Events */
#define MICROREAD_EVT_MREAD_DISCOVERY_OCCURED NFC_HCI_EVT_TARGET_DISCOVERED
#define MICROREAD_EVT_MREAD_CARD_FOUND 0x3D
#define MICROREAD_EMCF_A_ATQA 0
#define MICROREAD_EMCF_A_SAK 2
#define MICROREAD_EMCF_A_LEN 3
#define MICROREAD_EMCF_A_UID 4
#define MICROREAD_EMCF_A3_ATQA 0
#define MICROREAD_EMCF_A3_SAK 2
#define MICROREAD_EMCF_A3_LEN 3
#define MICROREAD_EMCF_A3_UID 4
#define MICROREAD_EMCF_B_UID 0
#define MICROREAD_EMCF_T1_ATQA 0
#define MICROREAD_EMCF_T1_UID 4
#define MICROREAD_EMCF_T3_UID 0
#define MICROREAD_EVT_MREAD_DISCOVERY_START NFC_HCI_EVT_READER_REQUESTED
#define MICROREAD_EVT_MREAD_DISCOVERY_START_SOME 0x3E
#define MICROREAD_EVT_MREAD_DISCOVERY_STOP NFC_HCI_EVT_END_OPERATION
#define MICROREAD_EVT_MREAD_SIM_REQUESTS 0x3F
#define MICROREAD_EVT_MCARD_EXCHANGE NFC_HCI_EVT_TARGET_DISCOVERED
#define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF 0x20
#define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF 0x21
#define MICROREAD_EVT_MCARD_FIELD_ON 0x11
#define MICROREAD_EVT_P2P_TARGET_ACTIVATED 0x13
#define MICROREAD_EVT_P2P_TARGET_DEACTIVATED 0x12
#define MICROREAD_EVT_MCARD_FIELD_OFF 0x14
/* Commands */
#define MICROREAD_CMD_MREAD_EXCHANGE 0x10
#define MICROREAD_CMD_MREAD_SUBSCRIBE 0x3F
/* Hosts IDs */
#define MICROREAD_ELT_ID_HDS NFC_HCI_TERMINAL_HOST_ID
#define MICROREAD_ELT_ID_SIM NFC_HCI_UICC_HOST_ID
#define MICROREAD_ELT_ID_SE1 0x03
#define MICROREAD_ELT_ID_SE2 0x04
#define MICROREAD_ELT_ID_SE3 0x05
static struct nfc_hci_gate microread_gates[] = {
{MICROREAD_GATE_ID_ADM, MICROREAD_PIPE_ID_ADMIN},
{MICROREAD_GATE_ID_LOOPBACK, MICROREAD_PIPE_ID_HDS_LOOPBACK},
{MICROREAD_GATE_ID_IDT, MICROREAD_PIPE_ID_HDS_IDT},
{MICROREAD_GATE_ID_LMS, MICROREAD_PIPE_ID_LMS},
{MICROREAD_GATE_ID_MREAD_ISO_B, MICROREAD_PIPE_ID_HDS_MREAD_ISO_B},
{MICROREAD_GATE_ID_MREAD_ISO_A, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A},
{MICROREAD_GATE_ID_MREAD_ISO_A_3, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3},
{MICROREAD_GATE_ID_MGT, MICROREAD_PIPE_ID_MGT},
{MICROREAD_GATE_ID_OS, MICROREAD_PIPE_ID_OS},
{MICROREAD_GATE_ID_MREAD_NFC_T1, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1},
{MICROREAD_GATE_ID_MREAD_NFC_T3, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3},
{MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_PIPE_ID_HDS_P2P_TARGET},
{MICROREAD_GATE_ID_P2P_INITIATOR, MICROREAD_PIPE_ID_HDS_P2P_INITIATOR}
};
/* Largest headroom needed for outgoing custom commands */
#define MICROREAD_CMDS_HEADROOM 2
#define MICROREAD_CMD_TAILROOM 2
struct microread_info {
struct nfc_phy_ops *phy_ops;
void *phy_id;
struct nfc_hci_dev *hdev;
int async_cb_type;
data_exchange_cb_t async_cb;
void *async_cb_context;
};
static int microread_open(struct nfc_hci_dev *hdev)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
return info->phy_ops->enable(info->phy_id);
}
static void microread_close(struct nfc_hci_dev *hdev)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
info->phy_ops->disable(info->phy_id);
}
static int microread_hci_ready(struct nfc_hci_dev *hdev)
{
int r;
u8 param[4];
param[0] = 0x03;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
MICROREAD_CMD_MREAD_SUBSCRIBE, param, 1, NULL);
if (r)
return r;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A_3,
MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL);
if (r)
return r;
param[0] = 0x00;
param[1] = 0x03;
param[2] = 0x00;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_B,
MICROREAD_CMD_MREAD_SUBSCRIBE, param, 3, NULL);
if (r)
return r;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T1,
MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL);
if (r)
return r;
param[0] = 0xFF;
param[1] = 0xFF;
param[2] = 0x00;
param[3] = 0x00;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T3,
MICROREAD_CMD_MREAD_SUBSCRIBE, param, 4, NULL);
return r;
}
static int microread_xmit(struct nfc_hci_dev *hdev, struct sk_buff *skb)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
return info->phy_ops->write(info->phy_id, skb);
}
static int microread_start_poll(struct nfc_hci_dev *hdev,
u32 im_protocols, u32 tm_protocols)
{
int r;
u8 param[2];
u8 mode;
param[0] = 0x00;
param[1] = 0x00;
if (im_protocols & NFC_PROTO_ISO14443_MASK)
param[0] |= (1 << 2);
if (im_protocols & NFC_PROTO_ISO14443_B_MASK)
param[0] |= 1;
if (im_protocols & NFC_PROTO_MIFARE_MASK)
param[1] |= 1;
if (im_protocols & NFC_PROTO_JEWEL_MASK)
param[0] |= (1 << 1);
if (im_protocols & NFC_PROTO_FELICA_MASK)
param[0] |= (1 << 5);
if (im_protocols & NFC_PROTO_NFC_DEP_MASK)
param[1] |= (1 << 1);
if ((im_protocols | tm_protocols) & NFC_PROTO_NFC_DEP_MASK) {
hdev->gb = nfc_get_local_general_bytes(hdev->ndev,
&hdev->gb_len);
if (hdev->gb == NULL || hdev->gb_len == 0) {
im_protocols &= ~NFC_PROTO_NFC_DEP_MASK;
tm_protocols &= ~NFC_PROTO_NFC_DEP_MASK;
}
}
r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0);
if (r)
return r;
mode = 0xff;
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
if (r)
return r;
if (im_protocols & NFC_PROTO_NFC_DEP_MASK) {
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_INITIATOR,
MICROREAD_PAR_P2P_INITIATOR_GI,
hdev->gb, hdev->gb_len);
if (r)
return r;
}
if (tm_protocols & NFC_PROTO_NFC_DEP_MASK) {
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_PAR_P2P_TARGET_GT,
hdev->gb, hdev->gb_len);
if (r)
return r;
mode = 0x02;
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
if (r)
return r;
}
return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
MICROREAD_EVT_MREAD_DISCOVERY_START_SOME,
param, 2);
}
static int microread_dep_link_up(struct nfc_hci_dev *hdev,
struct nfc_target *target, u8 comm_mode,
u8 *gb, size_t gb_len)
{
struct sk_buff *rgb_skb = NULL;
int r;
r = nfc_hci_get_param(hdev, target->hci_reader_gate,
MICROREAD_PAR_P2P_INITIATOR_GT, &rgb_skb);
if (r < 0)
return r;
if (rgb_skb->len == 0 || rgb_skb->len > NFC_GB_MAXSIZE) {
r = -EPROTO;
goto exit;
}
r = nfc_set_remote_general_bytes(hdev->ndev, rgb_skb->data,
rgb_skb->len);
if (r == 0)
r = nfc_dep_link_is_up(hdev->ndev, target->idx, comm_mode,
NFC_RF_INITIATOR);
exit:
kfree_skb(rgb_skb);
return r;
}
static int microread_dep_link_down(struct nfc_hci_dev *hdev)
{
return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_INITIATOR,
MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0);
}
static int microread_target_from_gate(struct nfc_hci_dev *hdev, u8 gate,
struct nfc_target *target)
{
switch (gate) {
case MICROREAD_GATE_ID_P2P_INITIATOR:
target->supported_protocols = NFC_PROTO_NFC_DEP_MASK;
break;
default:
return -EPROTO;
}
return 0;
}
static int microread_complete_target_discovered(struct nfc_hci_dev *hdev,
u8 gate,
struct nfc_target *target)
{
return 0;
}
#define MICROREAD_CB_TYPE_READER_ALL 1
static void microread_im_transceive_cb(void *context, struct sk_buff *skb,
int err)
{
struct microread_info *info = context;
switch (info->async_cb_type) {
case MICROREAD_CB_TYPE_READER_ALL:
if (err == 0) {
if (skb->len == 0) {
err = -EPROTO;
kfree_skb(skb);
info->async_cb(info->async_cb_context, NULL,
-EPROTO);
return;
}
if (skb->data[skb->len - 1] != 0) {
err = nfc_hci_result_to_errno(
skb->data[skb->len - 1]);
kfree_skb(skb);
info->async_cb(info->async_cb_context, NULL,
err);
return;
}
skb_trim(skb, skb->len - 1); /* RF Error ind. */
}
info->async_cb(info->async_cb_context, skb, err);
break;
default:
if (err == 0)
kfree_skb(skb);
break;
}
}
/*
* Returns:
* <= 0: driver handled the data exchange
* 1: driver doesn't especially handle, please do standard processing
*/
static int microread_im_transceive(struct nfc_hci_dev *hdev,
struct nfc_target *target,
struct sk_buff *skb, data_exchange_cb_t cb,
void *cb_context)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
u8 control_bits;
u16 crc;
pr_info("data exchange to gate 0x%x\n", target->hci_reader_gate);
if (target->hci_reader_gate == MICROREAD_GATE_ID_P2P_INITIATOR) {
*skb_push(skb, 1) = 0;
return nfc_hci_send_event(hdev, target->hci_reader_gate,
MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF,
skb->data, skb->len);
}
switch (target->hci_reader_gate) {
case MICROREAD_GATE_ID_MREAD_ISO_A:
control_bits = 0xCB;
break;
case MICROREAD_GATE_ID_MREAD_ISO_A_3:
control_bits = 0xCB;
break;
case MICROREAD_GATE_ID_MREAD_ISO_B:
control_bits = 0xCB;
break;
case MICROREAD_GATE_ID_MREAD_NFC_T1:
control_bits = 0x1B;
crc = crc_ccitt(0xffff, skb->data, skb->len);
crc = ~crc;
*skb_put(skb, 1) = crc & 0xff;
*skb_put(skb, 1) = crc >> 8;
break;
case MICROREAD_GATE_ID_MREAD_NFC_T3:
control_bits = 0xDB;
break;
default:
pr_info("Abort im_transceive to invalid gate 0x%x\n",
target->hci_reader_gate);
return 1;
}
*skb_push(skb, 1) = control_bits;
info->async_cb_type = MICROREAD_CB_TYPE_READER_ALL;
info->async_cb = cb;
info->async_cb_context = cb_context;
return nfc_hci_send_cmd_async(hdev, target->hci_reader_gate,
MICROREAD_CMD_MREAD_EXCHANGE,
skb->data, skb->len,
microread_im_transceive_cb, info);
}
static int microread_tm_send(struct nfc_hci_dev *hdev, struct sk_buff *skb)
{
int r;
r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_EVT_MCARD_EXCHANGE,
skb->data, skb->len);
kfree_skb(skb);
return r;
}
static void microread_target_discovered(struct nfc_hci_dev *hdev, u8 gate,
struct sk_buff *skb)
{
struct nfc_target *targets;
int r = 0;
pr_info("target discovered to gate 0x%x\n", gate);
targets = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
if (targets == NULL) {
r = -ENOMEM;
goto exit;
}
targets->hci_reader_gate = gate;
switch (gate) {
case MICROREAD_GATE_ID_MREAD_ISO_A:
targets->supported_protocols =
nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A_SAK]);
targets->sens_res =
be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A_ATQA]);
targets->sel_res = skb->data[MICROREAD_EMCF_A_SAK];
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A_UID],
skb->data[MICROREAD_EMCF_A_LEN]);
targets->nfcid1_len = skb->data[MICROREAD_EMCF_A_LEN];
break;
case MICROREAD_GATE_ID_MREAD_ISO_A_3:
targets->supported_protocols =
nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A3_SAK]);
targets->sens_res =
be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A3_ATQA]);
targets->sel_res = skb->data[MICROREAD_EMCF_A3_SAK];
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A3_UID],
skb->data[MICROREAD_EMCF_A3_LEN]);
targets->nfcid1_len = skb->data[MICROREAD_EMCF_A3_LEN];
break;
case MICROREAD_GATE_ID_MREAD_ISO_B:
targets->supported_protocols = NFC_PROTO_ISO14443_B_MASK;
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_B_UID], 4);
targets->nfcid1_len = 4;
break;
case MICROREAD_GATE_ID_MREAD_NFC_T1:
targets->supported_protocols = NFC_PROTO_JEWEL_MASK;
targets->sens_res =
le16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_T1_ATQA]);
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T1_UID], 4);
targets->nfcid1_len = 4;
break;
case MICROREAD_GATE_ID_MREAD_NFC_T3:
targets->supported_protocols = NFC_PROTO_FELICA_MASK;
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T3_UID], 8);
targets->nfcid1_len = 8;
break;
default:
pr_info("discard target discovered to gate 0x%x\n", gate);
goto exit_free;
}
r = nfc_targets_found(hdev->ndev, targets, 1);
exit_free:
kfree(targets);
exit:
kfree_skb(skb);
if (r)
pr_err("Failed to handle discovered target err=%d", r);
}
static int microread_event_received(struct nfc_hci_dev *hdev, u8 gate,
u8 event, struct sk_buff *skb)
{
int r;
u8 mode;
pr_info("Microread received event 0x%x to gate 0x%x\n", event, gate);
switch (event) {
case MICROREAD_EVT_MREAD_CARD_FOUND:
microread_target_discovered(hdev, gate, skb);
return 0;
case MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF:
if (skb->len < 1) {
kfree_skb(skb);
return -EPROTO;
}
if (skb->data[skb->len - 1]) {
kfree_skb(skb);
return -EIO;
}
skb_trim(skb, skb->len - 1);
r = nfc_tm_data_received(hdev->ndev, skb);
break;
case MICROREAD_EVT_MCARD_FIELD_ON:
case MICROREAD_EVT_MCARD_FIELD_OFF:
kfree_skb(skb);
return 0;
case MICROREAD_EVT_P2P_TARGET_ACTIVATED:
r = nfc_tm_activated(hdev->ndev, NFC_PROTO_NFC_DEP_MASK,
NFC_COMM_PASSIVE, skb->data,
skb->len);
kfree_skb(skb);
break;
case MICROREAD_EVT_MCARD_EXCHANGE:
if (skb->len < 1) {
kfree_skb(skb);
return -EPROTO;
}
if (skb->data[skb->len-1]) {
kfree_skb(skb);
return -EIO;
}
skb_trim(skb, skb->len - 1);
r = nfc_tm_data_received(hdev->ndev, skb);
break;
case MICROREAD_EVT_P2P_TARGET_DEACTIVATED:
kfree_skb(skb);
mode = 0xff;
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
if (r)
break;
r = nfc_hci_send_event(hdev, gate,
MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL,
0);
break;
default:
return 1;
}
return r;
}
static struct nfc_hci_ops microread_hci_ops = {
.open = microread_open,
.close = microread_close,
.hci_ready = microread_hci_ready,
.xmit = microread_xmit,
.start_poll = microread_start_poll,
.dep_link_up = microread_dep_link_up,
.dep_link_down = microread_dep_link_down,
.target_from_gate = microread_target_from_gate,
.complete_target_discovered = microread_complete_target_discovered,
.im_transceive = microread_im_transceive,
.tm_send = microread_tm_send,
.check_presence = NULL,
.event_received = microread_event_received,
};
int microread_probe(void *phy_id, struct nfc_phy_ops *phy_ops, char *llc_name,
int phy_headroom, int phy_tailroom, int phy_payload,
struct nfc_hci_dev **hdev)
{
struct microread_info *info;
unsigned long quirks = 0;
u32 protocols, se;
struct nfc_hci_init_data init_data;
int r;
info = kzalloc(sizeof(struct microread_info), GFP_KERNEL);
if (!info) {
pr_err("Cannot allocate memory for microread_info.\n");
r = -ENOMEM;
goto err_info_alloc;
}
info->phy_ops = phy_ops;
info->phy_id = phy_id;
init_data.gate_count = ARRAY_SIZE(microread_gates);
memcpy(init_data.gates, microread_gates, sizeof(microread_gates));
strcpy(init_data.session_id, "MICROREA");
set_bit(NFC_HCI_QUIRK_SHORT_CLEAR, &quirks);
protocols = NFC_PROTO_JEWEL_MASK |
NFC_PROTO_MIFARE_MASK |
NFC_PROTO_FELICA_MASK |
NFC_PROTO_ISO14443_MASK |
NFC_PROTO_ISO14443_B_MASK |
NFC_PROTO_NFC_DEP_MASK;
se = NFC_SE_UICC | NFC_SE_EMBEDDED;
info->hdev = nfc_hci_allocate_device(&microread_hci_ops, &init_data,
quirks, protocols, se, llc_name,
phy_headroom +
MICROREAD_CMDS_HEADROOM,
phy_tailroom +
MICROREAD_CMD_TAILROOM,
phy_payload);
if (!info->hdev) {
pr_err("Cannot allocate nfc hdev.\n");
r = -ENOMEM;
goto err_alloc_hdev;
}
nfc_hci_set_clientdata(info->hdev, info);
r = nfc_hci_register_device(info->hdev);
if (r)
goto err_regdev;
*hdev = info->hdev;
return 0;
err_regdev:
nfc_hci_free_device(info->hdev);
err_alloc_hdev:
kfree(info);
err_info_alloc:
return r;
}
EXPORT_SYMBOL(microread_probe);
void microread_remove(struct nfc_hci_dev *hdev)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
nfc_hci_unregister_device(hdev);
nfc_hci_free_device(hdev);
kfree(info);
}
EXPORT_SYMBOL(microread_remove);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DRIVER_DESC);