mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 04:06:37 +07:00
58a111f03a
intel_runtime_pm is the only thing they use from the i915 structure, so use that directly. Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190613232156.34940-9-daniele.ceraolospurio@intel.com
165 lines
4.4 KiB
C
165 lines
4.4 KiB
C
/*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright © 2019 Intel Corporation
|
|
*/
|
|
|
|
#ifndef INTEL_WAKEREF_H
|
|
#define INTEL_WAKEREF_H
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/stackdepot.h>
|
|
#include <linux/timer.h>
|
|
|
|
struct intel_runtime_pm;
|
|
|
|
typedef depot_stack_handle_t intel_wakeref_t;
|
|
|
|
struct intel_wakeref {
|
|
atomic_t count;
|
|
struct mutex mutex;
|
|
intel_wakeref_t wakeref;
|
|
};
|
|
|
|
void __intel_wakeref_init(struct intel_wakeref *wf,
|
|
struct lock_class_key *key);
|
|
#define intel_wakeref_init(wf) do { \
|
|
static struct lock_class_key __key; \
|
|
\
|
|
__intel_wakeref_init((wf), &__key); \
|
|
} while (0)
|
|
|
|
int __intel_wakeref_get_first(struct intel_runtime_pm *rpm,
|
|
struct intel_wakeref *wf,
|
|
int (*fn)(struct intel_wakeref *wf));
|
|
int __intel_wakeref_put_last(struct intel_runtime_pm *rpm,
|
|
struct intel_wakeref *wf,
|
|
int (*fn)(struct intel_wakeref *wf));
|
|
|
|
/**
|
|
* intel_wakeref_get: Acquire the wakeref
|
|
* @i915: the drm_i915_private device
|
|
* @wf: the wakeref
|
|
* @fn: callback for acquired the wakeref, called only on first acquire.
|
|
*
|
|
* Acquire a hold on the wakeref. The first user to do so, will acquire
|
|
* the runtime pm wakeref and then call the @fn underneath the wakeref
|
|
* mutex.
|
|
*
|
|
* Note that @fn is allowed to fail, in which case the runtime-pm wakeref
|
|
* will be released and the acquisition unwound, and an error reported.
|
|
*
|
|
* Returns: 0 if the wakeref was acquired successfully, or a negative error
|
|
* code otherwise.
|
|
*/
|
|
static inline int
|
|
intel_wakeref_get(struct intel_runtime_pm *rpm,
|
|
struct intel_wakeref *wf,
|
|
int (*fn)(struct intel_wakeref *wf))
|
|
{
|
|
if (unlikely(!atomic_inc_not_zero(&wf->count)))
|
|
return __intel_wakeref_get_first(rpm, wf, fn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_wakeref_put: Release the wakeref
|
|
* @i915: the drm_i915_private device
|
|
* @wf: the wakeref
|
|
* @fn: callback for releasing the wakeref, called only on final release.
|
|
*
|
|
* Release our hold on the wakeref. When there are no more users,
|
|
* the runtime pm wakeref will be released after the @fn callback is called
|
|
* underneath the wakeref mutex.
|
|
*
|
|
* Note that @fn is allowed to fail, in which case the runtime-pm wakeref
|
|
* is retained and an error reported.
|
|
*
|
|
* Returns: 0 if the wakeref was released successfully, or a negative error
|
|
* code otherwise.
|
|
*/
|
|
static inline int
|
|
intel_wakeref_put(struct intel_runtime_pm *rpm,
|
|
struct intel_wakeref *wf,
|
|
int (*fn)(struct intel_wakeref *wf))
|
|
{
|
|
if (atomic_dec_and_mutex_lock(&wf->count, &wf->mutex))
|
|
return __intel_wakeref_put_last(rpm, wf, fn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_wakeref_lock: Lock the wakeref (mutex)
|
|
* @wf: the wakeref
|
|
*
|
|
* Locks the wakeref to prevent it being acquired or released. New users
|
|
* can still adjust the counter, but the wakeref itself (and callback)
|
|
* cannot be acquired or released.
|
|
*/
|
|
static inline void
|
|
intel_wakeref_lock(struct intel_wakeref *wf)
|
|
__acquires(wf->mutex)
|
|
{
|
|
mutex_lock(&wf->mutex);
|
|
}
|
|
|
|
/**
|
|
* intel_wakeref_unlock: Unlock the wakeref
|
|
* @wf: the wakeref
|
|
*
|
|
* Releases a previously acquired intel_wakeref_lock().
|
|
*/
|
|
static inline void
|
|
intel_wakeref_unlock(struct intel_wakeref *wf)
|
|
__releases(wf->mutex)
|
|
{
|
|
mutex_unlock(&wf->mutex);
|
|
}
|
|
|
|
/**
|
|
* intel_wakeref_active: Query whether the wakeref is currently held
|
|
* @wf: the wakeref
|
|
*
|
|
* Returns: true if the wakeref is currently held.
|
|
*/
|
|
static inline bool
|
|
intel_wakeref_active(struct intel_wakeref *wf)
|
|
{
|
|
return READ_ONCE(wf->wakeref);
|
|
}
|
|
|
|
struct intel_wakeref_auto {
|
|
struct intel_runtime_pm *rpm;
|
|
struct timer_list timer;
|
|
intel_wakeref_t wakeref;
|
|
spinlock_t lock;
|
|
refcount_t count;
|
|
};
|
|
|
|
/**
|
|
* intel_wakeref_auto: Delay the runtime-pm autosuspend
|
|
* @wf: the wakeref
|
|
* @timeout: relative timeout in jiffies
|
|
*
|
|
* The runtime-pm core uses a suspend delay after the last wakeref
|
|
* is released before triggering runtime suspend of the device. That
|
|
* delay is configurable via sysfs with little regard to the device
|
|
* characteristics. Instead, we want to tune the autosuspend based on our
|
|
* HW knowledge. intel_wakeref_auto() delays the sleep by the supplied
|
|
* timeout.
|
|
*
|
|
* Pass @timeout = 0 to cancel a previous autosuspend by executing the
|
|
* suspend immediately.
|
|
*/
|
|
void intel_wakeref_auto(struct intel_wakeref_auto *wf, unsigned long timeout);
|
|
|
|
void intel_wakeref_auto_init(struct intel_wakeref_auto *wf,
|
|
struct intel_runtime_pm *rpm);
|
|
void intel_wakeref_auto_fini(struct intel_wakeref_auto *wf);
|
|
|
|
#endif /* INTEL_WAKEREF_H */
|