mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 21:30:15 +07:00
67792cf958
Many functions carry the enable_per_layer_report argument. This is a bool value indicating the error information contains some location data where the error occurred. This can easily being determined by checking the pos[] array for values. Negative values indicate there is no location available. So if the top layer is negative, the error location is unknown. Just check if the top layer is negative and remove enable_per_layer_report as function argument and also from struct edac_raw_error_desc. [ bp: Reflow comments to 80 columns, while at it. ] Signed-off-by: Robert Richter <rrichter@marvell.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Aristeu Rozanski <aris@redhat.com> Link: https://lkml.kernel.org/r/20200123090210.26933-8-rrichter@marvell.com
592 lines
14 KiB
C
592 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* GHES/EDAC Linux driver
|
|
*
|
|
* Copyright (c) 2013 by Mauro Carvalho Chehab
|
|
*
|
|
* Red Hat Inc. http://www.redhat.com
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <acpi/ghes.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/dmi.h>
|
|
#include "edac_module.h"
|
|
#include <ras/ras_event.h>
|
|
|
|
struct ghes_edac_pvt {
|
|
struct list_head list;
|
|
struct ghes *ghes;
|
|
struct mem_ctl_info *mci;
|
|
|
|
/* Buffers for the error handling routine */
|
|
char other_detail[400];
|
|
char msg[80];
|
|
};
|
|
|
|
static refcount_t ghes_refcount = REFCOUNT_INIT(0);
|
|
|
|
/*
|
|
* Access to ghes_pvt must be protected by ghes_lock. The spinlock
|
|
* also provides the necessary (implicit) memory barrier for the SMP
|
|
* case to make the pointer visible on another CPU.
|
|
*/
|
|
static struct ghes_edac_pvt *ghes_pvt;
|
|
|
|
/* GHES registration mutex */
|
|
static DEFINE_MUTEX(ghes_reg_mutex);
|
|
|
|
/*
|
|
* Sync with other, potentially concurrent callers of
|
|
* ghes_edac_report_mem_error(). We don't know what the
|
|
* "inventive" firmware would do.
|
|
*/
|
|
static DEFINE_SPINLOCK(ghes_lock);
|
|
|
|
/* "ghes_edac.force_load=1" skips the platform check */
|
|
static bool __read_mostly force_load;
|
|
module_param(force_load, bool, 0);
|
|
|
|
/* Memory Device - Type 17 of SMBIOS spec */
|
|
struct memdev_dmi_entry {
|
|
u8 type;
|
|
u8 length;
|
|
u16 handle;
|
|
u16 phys_mem_array_handle;
|
|
u16 mem_err_info_handle;
|
|
u16 total_width;
|
|
u16 data_width;
|
|
u16 size;
|
|
u8 form_factor;
|
|
u8 device_set;
|
|
u8 device_locator;
|
|
u8 bank_locator;
|
|
u8 memory_type;
|
|
u16 type_detail;
|
|
u16 speed;
|
|
u8 manufacturer;
|
|
u8 serial_number;
|
|
u8 asset_tag;
|
|
u8 part_number;
|
|
u8 attributes;
|
|
u32 extended_size;
|
|
u16 conf_mem_clk_speed;
|
|
} __attribute__((__packed__));
|
|
|
|
struct ghes_edac_dimm_fill {
|
|
struct mem_ctl_info *mci;
|
|
unsigned int count;
|
|
};
|
|
|
|
static void ghes_edac_count_dimms(const struct dmi_header *dh, void *arg)
|
|
{
|
|
int *num_dimm = arg;
|
|
|
|
if (dh->type == DMI_ENTRY_MEM_DEVICE)
|
|
(*num_dimm)++;
|
|
}
|
|
|
|
static int get_dimm_smbios_index(struct mem_ctl_info *mci, u16 handle)
|
|
{
|
|
struct dimm_info *dimm;
|
|
|
|
mci_for_each_dimm(mci, dimm) {
|
|
if (dimm->smbios_handle == handle)
|
|
return dimm->idx;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void ghes_edac_dmidecode(const struct dmi_header *dh, void *arg)
|
|
{
|
|
struct ghes_edac_dimm_fill *dimm_fill = arg;
|
|
struct mem_ctl_info *mci = dimm_fill->mci;
|
|
|
|
if (dh->type == DMI_ENTRY_MEM_DEVICE) {
|
|
struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
|
|
struct dimm_info *dimm = edac_get_dimm(mci, dimm_fill->count, 0, 0);
|
|
u16 rdr_mask = BIT(7) | BIT(13);
|
|
|
|
if (entry->size == 0xffff) {
|
|
pr_info("Can't get DIMM%i size\n",
|
|
dimm_fill->count);
|
|
dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
|
|
} else if (entry->size == 0x7fff) {
|
|
dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
|
|
} else {
|
|
if (entry->size & BIT(15))
|
|
dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10);
|
|
else
|
|
dimm->nr_pages = MiB_TO_PAGES(entry->size);
|
|
}
|
|
|
|
switch (entry->memory_type) {
|
|
case 0x12:
|
|
if (entry->type_detail & BIT(13))
|
|
dimm->mtype = MEM_RDDR;
|
|
else
|
|
dimm->mtype = MEM_DDR;
|
|
break;
|
|
case 0x13:
|
|
if (entry->type_detail & BIT(13))
|
|
dimm->mtype = MEM_RDDR2;
|
|
else
|
|
dimm->mtype = MEM_DDR2;
|
|
break;
|
|
case 0x14:
|
|
dimm->mtype = MEM_FB_DDR2;
|
|
break;
|
|
case 0x18:
|
|
if (entry->type_detail & BIT(12))
|
|
dimm->mtype = MEM_NVDIMM;
|
|
else if (entry->type_detail & BIT(13))
|
|
dimm->mtype = MEM_RDDR3;
|
|
else
|
|
dimm->mtype = MEM_DDR3;
|
|
break;
|
|
case 0x1a:
|
|
if (entry->type_detail & BIT(12))
|
|
dimm->mtype = MEM_NVDIMM;
|
|
else if (entry->type_detail & BIT(13))
|
|
dimm->mtype = MEM_RDDR4;
|
|
else
|
|
dimm->mtype = MEM_DDR4;
|
|
break;
|
|
default:
|
|
if (entry->type_detail & BIT(6))
|
|
dimm->mtype = MEM_RMBS;
|
|
else if ((entry->type_detail & rdr_mask) == rdr_mask)
|
|
dimm->mtype = MEM_RDR;
|
|
else if (entry->type_detail & BIT(7))
|
|
dimm->mtype = MEM_SDR;
|
|
else if (entry->type_detail & BIT(9))
|
|
dimm->mtype = MEM_EDO;
|
|
else
|
|
dimm->mtype = MEM_UNKNOWN;
|
|
}
|
|
|
|
/*
|
|
* Actually, we can only detect if the memory has bits for
|
|
* checksum or not
|
|
*/
|
|
if (entry->total_width == entry->data_width)
|
|
dimm->edac_mode = EDAC_NONE;
|
|
else
|
|
dimm->edac_mode = EDAC_SECDED;
|
|
|
|
dimm->dtype = DEV_UNKNOWN;
|
|
dimm->grain = 128; /* Likely, worse case */
|
|
|
|
/*
|
|
* FIXME: It shouldn't be hard to also fill the DIMM labels
|
|
*/
|
|
|
|
if (dimm->nr_pages) {
|
|
edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
|
|
dimm_fill->count, edac_mem_types[dimm->mtype],
|
|
PAGES_TO_MiB(dimm->nr_pages),
|
|
(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
|
|
edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
|
|
entry->memory_type, entry->type_detail,
|
|
entry->total_width, entry->data_width);
|
|
}
|
|
|
|
dimm->smbios_handle = entry->handle;
|
|
|
|
dimm_fill->count++;
|
|
}
|
|
}
|
|
|
|
void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
|
|
{
|
|
struct edac_raw_error_desc *e;
|
|
struct mem_ctl_info *mci;
|
|
struct ghes_edac_pvt *pvt;
|
|
unsigned long flags;
|
|
char *p;
|
|
|
|
/*
|
|
* We can do the locking below because GHES defers error processing
|
|
* from NMI to IRQ context. Whenever that changes, we'd at least
|
|
* know.
|
|
*/
|
|
if (WARN_ON_ONCE(in_nmi()))
|
|
return;
|
|
|
|
spin_lock_irqsave(&ghes_lock, flags);
|
|
|
|
pvt = ghes_pvt;
|
|
if (!pvt)
|
|
goto unlock;
|
|
|
|
mci = pvt->mci;
|
|
e = &mci->error_desc;
|
|
|
|
/* Cleans the error report buffer */
|
|
memset(e, 0, sizeof (*e));
|
|
e->error_count = 1;
|
|
e->grain = 1;
|
|
strcpy(e->label, "unknown label");
|
|
e->msg = pvt->msg;
|
|
e->other_detail = pvt->other_detail;
|
|
e->top_layer = -1;
|
|
e->mid_layer = -1;
|
|
e->low_layer = -1;
|
|
*pvt->other_detail = '\0';
|
|
*pvt->msg = '\0';
|
|
|
|
switch (sev) {
|
|
case GHES_SEV_CORRECTED:
|
|
e->type = HW_EVENT_ERR_CORRECTED;
|
|
break;
|
|
case GHES_SEV_RECOVERABLE:
|
|
e->type = HW_EVENT_ERR_UNCORRECTED;
|
|
break;
|
|
case GHES_SEV_PANIC:
|
|
e->type = HW_EVENT_ERR_FATAL;
|
|
break;
|
|
default:
|
|
case GHES_SEV_NO:
|
|
e->type = HW_EVENT_ERR_INFO;
|
|
}
|
|
|
|
edac_dbg(1, "error validation_bits: 0x%08llx\n",
|
|
(long long)mem_err->validation_bits);
|
|
|
|
/* Error type, mapped on e->msg */
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
|
|
p = pvt->msg;
|
|
switch (mem_err->error_type) {
|
|
case 0:
|
|
p += sprintf(p, "Unknown");
|
|
break;
|
|
case 1:
|
|
p += sprintf(p, "No error");
|
|
break;
|
|
case 2:
|
|
p += sprintf(p, "Single-bit ECC");
|
|
break;
|
|
case 3:
|
|
p += sprintf(p, "Multi-bit ECC");
|
|
break;
|
|
case 4:
|
|
p += sprintf(p, "Single-symbol ChipKill ECC");
|
|
break;
|
|
case 5:
|
|
p += sprintf(p, "Multi-symbol ChipKill ECC");
|
|
break;
|
|
case 6:
|
|
p += sprintf(p, "Master abort");
|
|
break;
|
|
case 7:
|
|
p += sprintf(p, "Target abort");
|
|
break;
|
|
case 8:
|
|
p += sprintf(p, "Parity Error");
|
|
break;
|
|
case 9:
|
|
p += sprintf(p, "Watchdog timeout");
|
|
break;
|
|
case 10:
|
|
p += sprintf(p, "Invalid address");
|
|
break;
|
|
case 11:
|
|
p += sprintf(p, "Mirror Broken");
|
|
break;
|
|
case 12:
|
|
p += sprintf(p, "Memory Sparing");
|
|
break;
|
|
case 13:
|
|
p += sprintf(p, "Scrub corrected error");
|
|
break;
|
|
case 14:
|
|
p += sprintf(p, "Scrub uncorrected error");
|
|
break;
|
|
case 15:
|
|
p += sprintf(p, "Physical Memory Map-out event");
|
|
break;
|
|
default:
|
|
p += sprintf(p, "reserved error (%d)",
|
|
mem_err->error_type);
|
|
}
|
|
} else {
|
|
strcpy(pvt->msg, "unknown error");
|
|
}
|
|
|
|
/* Error address */
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
|
|
e->page_frame_number = PHYS_PFN(mem_err->physical_addr);
|
|
e->offset_in_page = offset_in_page(mem_err->physical_addr);
|
|
}
|
|
|
|
/* Error grain */
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
|
|
e->grain = ~mem_err->physical_addr_mask + 1;
|
|
|
|
/* Memory error location, mapped on e->location */
|
|
p = e->location;
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
|
|
p += sprintf(p, "node:%d ", mem_err->node);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
|
|
p += sprintf(p, "card:%d ", mem_err->card);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
|
|
p += sprintf(p, "module:%d ", mem_err->module);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
|
|
p += sprintf(p, "rank:%d ", mem_err->rank);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
|
|
p += sprintf(p, "bank:%d ", mem_err->bank);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_ROW)
|
|
p += sprintf(p, "row:%d ", mem_err->row);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
|
|
p += sprintf(p, "col:%d ", mem_err->column);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
|
|
p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) {
|
|
const char *bank = NULL, *device = NULL;
|
|
int index = -1;
|
|
|
|
dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device);
|
|
if (bank != NULL && device != NULL)
|
|
p += sprintf(p, "DIMM location:%s %s ", bank, device);
|
|
else
|
|
p += sprintf(p, "DIMM DMI handle: 0x%.4x ",
|
|
mem_err->mem_dev_handle);
|
|
|
|
index = get_dimm_smbios_index(mci, mem_err->mem_dev_handle);
|
|
if (index >= 0)
|
|
e->top_layer = index;
|
|
}
|
|
if (p > e->location)
|
|
*(p - 1) = '\0';
|
|
|
|
/* All other fields are mapped on e->other_detail */
|
|
p = pvt->other_detail;
|
|
p += snprintf(p, sizeof(pvt->other_detail),
|
|
"APEI location: %s ", e->location);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
|
|
u64 status = mem_err->error_status;
|
|
|
|
p += sprintf(p, "status(0x%016llx): ", (long long)status);
|
|
switch ((status >> 8) & 0xff) {
|
|
case 1:
|
|
p += sprintf(p, "Error detected internal to the component ");
|
|
break;
|
|
case 16:
|
|
p += sprintf(p, "Error detected in the bus ");
|
|
break;
|
|
case 4:
|
|
p += sprintf(p, "Storage error in DRAM memory ");
|
|
break;
|
|
case 5:
|
|
p += sprintf(p, "Storage error in TLB ");
|
|
break;
|
|
case 6:
|
|
p += sprintf(p, "Storage error in cache ");
|
|
break;
|
|
case 7:
|
|
p += sprintf(p, "Error in one or more functional units ");
|
|
break;
|
|
case 8:
|
|
p += sprintf(p, "component failed self test ");
|
|
break;
|
|
case 9:
|
|
p += sprintf(p, "Overflow or undervalue of internal queue ");
|
|
break;
|
|
case 17:
|
|
p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
|
|
break;
|
|
case 18:
|
|
p += sprintf(p, "Improper access error ");
|
|
break;
|
|
case 19:
|
|
p += sprintf(p, "Access to a memory address which is not mapped to any component ");
|
|
break;
|
|
case 20:
|
|
p += sprintf(p, "Loss of Lockstep ");
|
|
break;
|
|
case 21:
|
|
p += sprintf(p, "Response not associated with a request ");
|
|
break;
|
|
case 22:
|
|
p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
|
|
break;
|
|
case 23:
|
|
p += sprintf(p, "Detection of a PATH_ERROR ");
|
|
break;
|
|
case 25:
|
|
p += sprintf(p, "Bus operation timeout ");
|
|
break;
|
|
case 26:
|
|
p += sprintf(p, "A read was issued to data that has been poisoned ");
|
|
break;
|
|
default:
|
|
p += sprintf(p, "reserved ");
|
|
break;
|
|
}
|
|
}
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
|
|
p += sprintf(p, "requestorID: 0x%016llx ",
|
|
(long long)mem_err->requestor_id);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
|
|
p += sprintf(p, "responderID: 0x%016llx ",
|
|
(long long)mem_err->responder_id);
|
|
if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
|
|
p += sprintf(p, "targetID: 0x%016llx ",
|
|
(long long)mem_err->responder_id);
|
|
if (p > pvt->other_detail)
|
|
*(p - 1) = '\0';
|
|
|
|
edac_raw_mc_handle_error(e);
|
|
|
|
unlock:
|
|
spin_unlock_irqrestore(&ghes_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Known systems that are safe to enable this module.
|
|
*/
|
|
static struct acpi_platform_list plat_list[] = {
|
|
{"HPE ", "Server ", 0, ACPI_SIG_FADT, all_versions},
|
|
{ } /* End */
|
|
};
|
|
|
|
int ghes_edac_register(struct ghes *ghes, struct device *dev)
|
|
{
|
|
bool fake = false;
|
|
int rc = 0, num_dimm = 0;
|
|
struct mem_ctl_info *mci;
|
|
struct ghes_edac_pvt *pvt;
|
|
struct edac_mc_layer layers[1];
|
|
struct ghes_edac_dimm_fill dimm_fill;
|
|
unsigned long flags;
|
|
int idx = -1;
|
|
|
|
if (IS_ENABLED(CONFIG_X86)) {
|
|
/* Check if safe to enable on this system */
|
|
idx = acpi_match_platform_list(plat_list);
|
|
if (!force_load && idx < 0)
|
|
return -ENODEV;
|
|
} else {
|
|
idx = 0;
|
|
}
|
|
|
|
/* finish another registration/unregistration instance first */
|
|
mutex_lock(&ghes_reg_mutex);
|
|
|
|
/*
|
|
* We have only one logical memory controller to which all DIMMs belong.
|
|
*/
|
|
if (refcount_inc_not_zero(&ghes_refcount))
|
|
goto unlock;
|
|
|
|
/* Get the number of DIMMs */
|
|
dmi_walk(ghes_edac_count_dimms, &num_dimm);
|
|
|
|
/* Check if we've got a bogus BIOS */
|
|
if (num_dimm == 0) {
|
|
fake = true;
|
|
num_dimm = 1;
|
|
}
|
|
|
|
layers[0].type = EDAC_MC_LAYER_ALL_MEM;
|
|
layers[0].size = num_dimm;
|
|
layers[0].is_virt_csrow = true;
|
|
|
|
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_edac_pvt));
|
|
if (!mci) {
|
|
pr_info("Can't allocate memory for EDAC data\n");
|
|
rc = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
|
|
pvt = mci->pvt_info;
|
|
pvt->ghes = ghes;
|
|
pvt->mci = mci;
|
|
|
|
mci->pdev = dev;
|
|
mci->mtype_cap = MEM_FLAG_EMPTY;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = "ghes_edac.c";
|
|
mci->ctl_name = "ghes_edac";
|
|
mci->dev_name = "ghes";
|
|
|
|
if (fake) {
|
|
pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
|
|
pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
|
|
pr_info("work on such system. Use this driver with caution\n");
|
|
} else if (idx < 0) {
|
|
pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
|
|
pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
|
|
pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
|
|
pr_info("If you find incorrect reports, please contact your hardware vendor\n");
|
|
pr_info("to correct its BIOS.\n");
|
|
pr_info("This system has %d DIMM sockets.\n", num_dimm);
|
|
}
|
|
|
|
if (!fake) {
|
|
dimm_fill.count = 0;
|
|
dimm_fill.mci = mci;
|
|
dmi_walk(ghes_edac_dmidecode, &dimm_fill);
|
|
} else {
|
|
struct dimm_info *dimm = edac_get_dimm(mci, 0, 0, 0);
|
|
|
|
dimm->nr_pages = 1;
|
|
dimm->grain = 128;
|
|
dimm->mtype = MEM_UNKNOWN;
|
|
dimm->dtype = DEV_UNKNOWN;
|
|
dimm->edac_mode = EDAC_SECDED;
|
|
}
|
|
|
|
rc = edac_mc_add_mc(mci);
|
|
if (rc < 0) {
|
|
pr_info("Can't register at EDAC core\n");
|
|
edac_mc_free(mci);
|
|
rc = -ENODEV;
|
|
goto unlock;
|
|
}
|
|
|
|
spin_lock_irqsave(&ghes_lock, flags);
|
|
ghes_pvt = pvt;
|
|
spin_unlock_irqrestore(&ghes_lock, flags);
|
|
|
|
/* only set on success */
|
|
refcount_set(&ghes_refcount, 1);
|
|
|
|
unlock:
|
|
mutex_unlock(&ghes_reg_mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void ghes_edac_unregister(struct ghes *ghes)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
unsigned long flags;
|
|
|
|
mutex_lock(&ghes_reg_mutex);
|
|
|
|
if (!refcount_dec_and_test(&ghes_refcount))
|
|
goto unlock;
|
|
|
|
/*
|
|
* Wait for the irq handler being finished.
|
|
*/
|
|
spin_lock_irqsave(&ghes_lock, flags);
|
|
mci = ghes_pvt ? ghes_pvt->mci : NULL;
|
|
ghes_pvt = NULL;
|
|
spin_unlock_irqrestore(&ghes_lock, flags);
|
|
|
|
if (!mci)
|
|
goto unlock;
|
|
|
|
mci = edac_mc_del_mc(mci->pdev);
|
|
if (mci)
|
|
edac_mc_free(mci);
|
|
|
|
unlock:
|
|
mutex_unlock(&ghes_reg_mutex);
|
|
}
|