mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 04:46:37 +07:00
53df1ad525
The policy might have been changed since last call of target(). Thus, using cpufreq_frequency_table_target(), which depends on policy to find the corresponding index from a frequency, may return inconsistent index for freqs.old. Thus, old_index should be calculated not based on the current policy. We have been observing such issue when scaling_min/max_freq were updated and sometimes cuased system lockups deu to incorrectly configured voltages. Signed-off-by: MyungJoo Ham <myungjoo.ham@samsung.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
307 lines
7.8 KiB
C
307 lines
7.8 KiB
C
/*
|
|
* Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com
|
|
*
|
|
* EXYNOS - CPU frequency scaling support for EXYNOS series
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/err.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/suspend.h>
|
|
|
|
#include <mach/cpufreq.h>
|
|
|
|
#include <plat/cpu.h>
|
|
|
|
static struct exynos_dvfs_info *exynos_info;
|
|
|
|
static struct regulator *arm_regulator;
|
|
static struct cpufreq_freqs freqs;
|
|
|
|
static unsigned int locking_frequency;
|
|
static bool frequency_locked;
|
|
static DEFINE_MUTEX(cpufreq_lock);
|
|
|
|
int exynos_verify_speed(struct cpufreq_policy *policy)
|
|
{
|
|
return cpufreq_frequency_table_verify(policy,
|
|
exynos_info->freq_table);
|
|
}
|
|
|
|
unsigned int exynos_getspeed(unsigned int cpu)
|
|
{
|
|
return clk_get_rate(exynos_info->cpu_clk) / 1000;
|
|
}
|
|
|
|
static int exynos_target(struct cpufreq_policy *policy,
|
|
unsigned int target_freq,
|
|
unsigned int relation)
|
|
{
|
|
unsigned int index, old_index;
|
|
unsigned int arm_volt, safe_arm_volt = 0;
|
|
int ret = 0;
|
|
struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
|
|
unsigned int *volt_table = exynos_info->volt_table;
|
|
unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
|
|
|
|
mutex_lock(&cpufreq_lock);
|
|
|
|
freqs.old = policy->cur;
|
|
|
|
if (frequency_locked && target_freq != locking_frequency) {
|
|
ret = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The policy max have been changed so that we cannot get proper
|
|
* old_index with cpufreq_frequency_table_target(). Thus, ignore
|
|
* policy and get the index from the raw freqeuncy table.
|
|
*/
|
|
for (old_index = 0;
|
|
freq_table[old_index].frequency != CPUFREQ_TABLE_END;
|
|
old_index++)
|
|
if (freq_table[old_index].frequency == freqs.old)
|
|
break;
|
|
|
|
if (freq_table[old_index].frequency == CPUFREQ_TABLE_END) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (cpufreq_frequency_table_target(policy, freq_table,
|
|
target_freq, relation, &index)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
freqs.new = freq_table[index].frequency;
|
|
freqs.cpu = policy->cpu;
|
|
|
|
/*
|
|
* ARM clock source will be changed APLL to MPLL temporary
|
|
* To support this level, need to control regulator for
|
|
* required voltage level
|
|
*/
|
|
if (exynos_info->need_apll_change != NULL) {
|
|
if (exynos_info->need_apll_change(old_index, index) &&
|
|
(freq_table[index].frequency < mpll_freq_khz) &&
|
|
(freq_table[old_index].frequency < mpll_freq_khz))
|
|
safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
|
|
}
|
|
arm_volt = volt_table[index];
|
|
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
|
|
|
|
/* When the new frequency is higher than current frequency */
|
|
if ((freqs.new > freqs.old) && !safe_arm_volt) {
|
|
/* Firstly, voltage up to increase frequency */
|
|
regulator_set_voltage(arm_regulator, arm_volt,
|
|
arm_volt);
|
|
}
|
|
|
|
if (safe_arm_volt)
|
|
regulator_set_voltage(arm_regulator, safe_arm_volt,
|
|
safe_arm_volt);
|
|
if (freqs.new != freqs.old)
|
|
exynos_info->set_freq(old_index, index);
|
|
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
|
|
|
|
/* When the new frequency is lower than current frequency */
|
|
if ((freqs.new < freqs.old) ||
|
|
((freqs.new > freqs.old) && safe_arm_volt)) {
|
|
/* down the voltage after frequency change */
|
|
regulator_set_voltage(arm_regulator, arm_volt,
|
|
arm_volt);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&cpufreq_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
|
|
* context
|
|
* @notifier
|
|
* @pm_event
|
|
* @v
|
|
*
|
|
* While frequency_locked == true, target() ignores every frequency but
|
|
* locking_frequency. The locking_frequency value is the initial frequency,
|
|
* which is set by the bootloader. In order to eliminate possible
|
|
* inconsistency in clock values, we save and restore frequencies during
|
|
* suspend and resume and block CPUFREQ activities. Note that the standard
|
|
* suspend/resume cannot be used as they are too deep (syscore_ops) for
|
|
* regulator actions.
|
|
*/
|
|
static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
|
|
unsigned long pm_event, void *v)
|
|
{
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
|
|
static unsigned int saved_frequency;
|
|
unsigned int temp;
|
|
|
|
mutex_lock(&cpufreq_lock);
|
|
switch (pm_event) {
|
|
case PM_SUSPEND_PREPARE:
|
|
if (frequency_locked)
|
|
goto out;
|
|
|
|
frequency_locked = true;
|
|
|
|
if (locking_frequency) {
|
|
saved_frequency = exynos_getspeed(0);
|
|
|
|
mutex_unlock(&cpufreq_lock);
|
|
exynos_target(policy, locking_frequency,
|
|
CPUFREQ_RELATION_H);
|
|
mutex_lock(&cpufreq_lock);
|
|
}
|
|
break;
|
|
|
|
case PM_POST_SUSPEND:
|
|
if (saved_frequency) {
|
|
/*
|
|
* While frequency_locked, only locking_frequency
|
|
* is valid for target(). In order to use
|
|
* saved_frequency while keeping frequency_locked,
|
|
* we temporarly overwrite locking_frequency.
|
|
*/
|
|
temp = locking_frequency;
|
|
locking_frequency = saved_frequency;
|
|
|
|
mutex_unlock(&cpufreq_lock);
|
|
exynos_target(policy, locking_frequency,
|
|
CPUFREQ_RELATION_H);
|
|
mutex_lock(&cpufreq_lock);
|
|
|
|
locking_frequency = temp;
|
|
}
|
|
frequency_locked = false;
|
|
break;
|
|
}
|
|
out:
|
|
mutex_unlock(&cpufreq_lock);
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block exynos_cpufreq_nb = {
|
|
.notifier_call = exynos_cpufreq_pm_notifier,
|
|
};
|
|
|
|
static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);
|
|
|
|
cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);
|
|
|
|
locking_frequency = exynos_getspeed(0);
|
|
|
|
/* set the transition latency value */
|
|
policy->cpuinfo.transition_latency = 100000;
|
|
|
|
/*
|
|
* EXYNOS4 multi-core processors has 2 cores
|
|
* that the frequency cannot be set independently.
|
|
* Each cpu is bound to the same speed.
|
|
* So the affected cpu is all of the cpus.
|
|
*/
|
|
if (num_online_cpus() == 1) {
|
|
cpumask_copy(policy->related_cpus, cpu_possible_mask);
|
|
cpumask_copy(policy->cpus, cpu_online_mask);
|
|
} else {
|
|
cpumask_setall(policy->cpus);
|
|
}
|
|
|
|
return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
|
|
}
|
|
|
|
static struct cpufreq_driver exynos_driver = {
|
|
.flags = CPUFREQ_STICKY,
|
|
.verify = exynos_verify_speed,
|
|
.target = exynos_target,
|
|
.get = exynos_getspeed,
|
|
.init = exynos_cpufreq_cpu_init,
|
|
.name = "exynos_cpufreq",
|
|
#ifdef CONFIG_PM
|
|
.suspend = exynos_cpufreq_suspend,
|
|
.resume = exynos_cpufreq_resume,
|
|
#endif
|
|
};
|
|
|
|
static int __init exynos_cpufreq_init(void)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL);
|
|
if (!exynos_info)
|
|
return -ENOMEM;
|
|
|
|
if (soc_is_exynos4210())
|
|
ret = exynos4210_cpufreq_init(exynos_info);
|
|
else if (soc_is_exynos4212() || soc_is_exynos4412())
|
|
ret = exynos4x12_cpufreq_init(exynos_info);
|
|
else if (soc_is_exynos5250())
|
|
ret = exynos5250_cpufreq_init(exynos_info);
|
|
else
|
|
pr_err("%s: CPU type not found\n", __func__);
|
|
|
|
if (ret)
|
|
goto err_vdd_arm;
|
|
|
|
if (exynos_info->set_freq == NULL) {
|
|
pr_err("%s: No set_freq function (ERR)\n", __func__);
|
|
goto err_vdd_arm;
|
|
}
|
|
|
|
arm_regulator = regulator_get(NULL, "vdd_arm");
|
|
if (IS_ERR(arm_regulator)) {
|
|
pr_err("%s: failed to get resource vdd_arm\n", __func__);
|
|
goto err_vdd_arm;
|
|
}
|
|
|
|
register_pm_notifier(&exynos_cpufreq_nb);
|
|
|
|
if (cpufreq_register_driver(&exynos_driver)) {
|
|
pr_err("%s: failed to register cpufreq driver\n", __func__);
|
|
goto err_cpufreq;
|
|
}
|
|
|
|
return 0;
|
|
err_cpufreq:
|
|
unregister_pm_notifier(&exynos_cpufreq_nb);
|
|
|
|
if (!IS_ERR(arm_regulator))
|
|
regulator_put(arm_regulator);
|
|
err_vdd_arm:
|
|
kfree(exynos_info);
|
|
pr_debug("%s: failed initialization\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
late_initcall(exynos_cpufreq_init);
|