linux_dsm_epyc7002/kernel/audit.c
Randy Dunlap b0dd25a826 [PATCH] AUDIT: kerneldoc for kernel/audit*.c
- add kerneldoc for non-static functions;
- don't init static data to 0;
- limit lines to < 80 columns;
- fix long-format style;
- delete whitespace at end of some lines;

(chrisw: resend and update to current audit-2.6 tree)

Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Chris Wright <chrisw@osdl.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-03-20 14:08:53 -05:00

976 lines
27 KiB
C

/* audit.c -- Auditing support
* Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
* System-call specific features have moved to auditsc.c
*
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
*
* Goals: 1) Integrate fully with SELinux.
* 2) Minimal run-time overhead:
* a) Minimal when syscall auditing is disabled (audit_enable=0).
* b) Small when syscall auditing is enabled and no audit record
* is generated (defer as much work as possible to record
* generation time):
* i) context is allocated,
* ii) names from getname are stored without a copy, and
* iii) inode information stored from path_lookup.
* 3) Ability to disable syscall auditing at boot time (audit=0).
* 4) Usable by other parts of the kernel (if audit_log* is called,
* then a syscall record will be generated automatically for the
* current syscall).
* 5) Netlink interface to user-space.
* 6) Support low-overhead kernel-based filtering to minimize the
* information that must be passed to user-space.
*
* Example user-space utilities: http://people.redhat.com/sgrubb/audit/
*/
#include <linux/init.h>
#include <asm/types.h>
#include <asm/atomic.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/kthread.h>
#include <linux/audit.h>
#include <net/sock.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
/* No auditing will take place until audit_initialized != 0.
* (Initialization happens after skb_init is called.) */
static int audit_initialized;
/* No syscall auditing will take place unless audit_enabled != 0. */
int audit_enabled;
/* Default state when kernel boots without any parameters. */
static int audit_default;
/* If auditing cannot proceed, audit_failure selects what happens. */
static int audit_failure = AUDIT_FAIL_PRINTK;
/* If audit records are to be written to the netlink socket, audit_pid
* contains the (non-zero) pid. */
int audit_pid;
/* If audit_rate_limit is non-zero, limit the rate of sending audit records
* to that number per second. This prevents DoS attacks, but results in
* audit records being dropped. */
static int audit_rate_limit;
/* Number of outstanding audit_buffers allowed. */
static int audit_backlog_limit = 64;
static int audit_backlog_wait_time = 60 * HZ;
static int audit_backlog_wait_overflow = 0;
/* The identity of the user shutting down the audit system. */
uid_t audit_sig_uid = -1;
pid_t audit_sig_pid = -1;
/* Records can be lost in several ways:
0) [suppressed in audit_alloc]
1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
2) out of memory in audit_log_move [alloc_skb]
3) suppressed due to audit_rate_limit
4) suppressed due to audit_backlog_limit
*/
static atomic_t audit_lost = ATOMIC_INIT(0);
/* The netlink socket. */
static struct sock *audit_sock;
/* The audit_freelist is a list of pre-allocated audit buffers (if more
* than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
* being placed on the freelist). */
static DEFINE_SPINLOCK(audit_freelist_lock);
static int audit_freelist_count;
static LIST_HEAD(audit_freelist);
static struct sk_buff_head audit_skb_queue;
static struct task_struct *kauditd_task;
static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
/* The netlink socket is only to be read by 1 CPU, which lets us assume
* that list additions and deletions never happen simultaneously in
* auditsc.c */
DECLARE_MUTEX(audit_netlink_sem);
/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
* audit records. Since printk uses a 1024 byte buffer, this buffer
* should be at least that large. */
#define AUDIT_BUFSIZ 1024
/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
* audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
#define AUDIT_MAXFREE (2*NR_CPUS)
/* The audit_buffer is used when formatting an audit record. The caller
* locks briefly to get the record off the freelist or to allocate the
* buffer, and locks briefly to send the buffer to the netlink layer or
* to place it on a transmit queue. Multiple audit_buffers can be in
* use simultaneously. */
struct audit_buffer {
struct list_head list;
struct sk_buff *skb; /* formatted skb ready to send */
struct audit_context *ctx; /* NULL or associated context */
gfp_t gfp_mask;
};
static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
{
struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
nlh->nlmsg_pid = pid;
}
static void audit_panic(const char *message)
{
switch (audit_failure)
{
case AUDIT_FAIL_SILENT:
break;
case AUDIT_FAIL_PRINTK:
printk(KERN_ERR "audit: %s\n", message);
break;
case AUDIT_FAIL_PANIC:
panic("audit: %s\n", message);
break;
}
}
static inline int audit_rate_check(void)
{
static unsigned long last_check = 0;
static int messages = 0;
static DEFINE_SPINLOCK(lock);
unsigned long flags;
unsigned long now;
unsigned long elapsed;
int retval = 0;
if (!audit_rate_limit) return 1;
spin_lock_irqsave(&lock, flags);
if (++messages < audit_rate_limit) {
retval = 1;
} else {
now = jiffies;
elapsed = now - last_check;
if (elapsed > HZ) {
last_check = now;
messages = 0;
retval = 1;
}
}
spin_unlock_irqrestore(&lock, flags);
return retval;
}
/**
* audit_log_lost - conditionally log lost audit message event
* @message: the message stating reason for lost audit message
*
* Emit at least 1 message per second, even if audit_rate_check is
* throttling.
* Always increment the lost messages counter.
*/
void audit_log_lost(const char *message)
{
static unsigned long last_msg = 0;
static DEFINE_SPINLOCK(lock);
unsigned long flags;
unsigned long now;
int print;
atomic_inc(&audit_lost);
print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
if (!print) {
spin_lock_irqsave(&lock, flags);
now = jiffies;
if (now - last_msg > HZ) {
print = 1;
last_msg = now;
}
spin_unlock_irqrestore(&lock, flags);
}
if (print) {
printk(KERN_WARNING
"audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n",
atomic_read(&audit_lost),
audit_rate_limit,
audit_backlog_limit);
audit_panic(message);
}
}
static int audit_set_rate_limit(int limit, uid_t loginuid)
{
int old = audit_rate_limit;
audit_rate_limit = limit;
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
"audit_rate_limit=%d old=%d by auid=%u",
audit_rate_limit, old, loginuid);
return old;
}
static int audit_set_backlog_limit(int limit, uid_t loginuid)
{
int old = audit_backlog_limit;
audit_backlog_limit = limit;
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
"audit_backlog_limit=%d old=%d by auid=%u",
audit_backlog_limit, old, loginuid);
return old;
}
static int audit_set_enabled(int state, uid_t loginuid)
{
int old = audit_enabled;
if (state != 0 && state != 1)
return -EINVAL;
audit_enabled = state;
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
"audit_enabled=%d old=%d by auid=%u",
audit_enabled, old, loginuid);
return old;
}
static int audit_set_failure(int state, uid_t loginuid)
{
int old = audit_failure;
if (state != AUDIT_FAIL_SILENT
&& state != AUDIT_FAIL_PRINTK
&& state != AUDIT_FAIL_PANIC)
return -EINVAL;
audit_failure = state;
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
"audit_failure=%d old=%d by auid=%u",
audit_failure, old, loginuid);
return old;
}
static int kauditd_thread(void *dummy)
{
struct sk_buff *skb;
while (1) {
skb = skb_dequeue(&audit_skb_queue);
wake_up(&audit_backlog_wait);
if (skb) {
if (audit_pid) {
int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
if (err < 0) {
BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
audit_pid = 0;
}
} else {
printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
kfree_skb(skb);
}
} else {
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&kauditd_wait, &wait);
if (!skb_queue_len(&audit_skb_queue)) {
try_to_freeze();
schedule();
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&kauditd_wait, &wait);
}
}
}
/**
* audit_send_reply - send an audit reply message via netlink
* @pid: process id to send reply to
* @seq: sequence number
* @type: audit message type
* @done: done (last) flag
* @multi: multi-part message flag
* @payload: payload data
* @size: payload size
*
* Allocates an skb, builds the netlink message, and sends it to the pid.
* No failure notifications.
*/
void audit_send_reply(int pid, int seq, int type, int done, int multi,
void *payload, int size)
{
struct sk_buff *skb;
struct nlmsghdr *nlh;
int len = NLMSG_SPACE(size);
void *data;
int flags = multi ? NLM_F_MULTI : 0;
int t = done ? NLMSG_DONE : type;
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return;
nlh = NLMSG_PUT(skb, pid, seq, t, size);
nlh->nlmsg_flags = flags;
data = NLMSG_DATA(nlh);
memcpy(data, payload, size);
/* Ignore failure. It'll only happen if the sender goes away,
because our timeout is set to infinite. */
netlink_unicast(audit_sock, skb, pid, 0);
return;
nlmsg_failure: /* Used by NLMSG_PUT */
if (skb)
kfree_skb(skb);
}
/*
* Check for appropriate CAP_AUDIT_ capabilities on incoming audit
* control messages.
*/
static int audit_netlink_ok(kernel_cap_t eff_cap, u16 msg_type)
{
int err = 0;
switch (msg_type) {
case AUDIT_GET:
case AUDIT_LIST:
case AUDIT_SET:
case AUDIT_ADD:
case AUDIT_DEL:
case AUDIT_SIGNAL_INFO:
if (!cap_raised(eff_cap, CAP_AUDIT_CONTROL))
err = -EPERM;
break;
case AUDIT_USER:
case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
if (!cap_raised(eff_cap, CAP_AUDIT_WRITE))
err = -EPERM;
break;
default: /* bad msg */
err = -EINVAL;
}
return err;
}
static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
{
u32 uid, pid, seq;
void *data;
struct audit_status *status_get, status_set;
int err;
struct audit_buffer *ab;
u16 msg_type = nlh->nlmsg_type;
uid_t loginuid; /* loginuid of sender */
struct audit_sig_info sig_data;
err = audit_netlink_ok(NETLINK_CB(skb).eff_cap, msg_type);
if (err)
return err;
/* As soon as there's any sign of userspace auditd,
* start kauditd to talk to it */
if (!kauditd_task)
kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
if (IS_ERR(kauditd_task)) {
err = PTR_ERR(kauditd_task);
kauditd_task = NULL;
return err;
}
pid = NETLINK_CREDS(skb)->pid;
uid = NETLINK_CREDS(skb)->uid;
loginuid = NETLINK_CB(skb).loginuid;
seq = nlh->nlmsg_seq;
data = NLMSG_DATA(nlh);
switch (msg_type) {
case AUDIT_GET:
status_set.enabled = audit_enabled;
status_set.failure = audit_failure;
status_set.pid = audit_pid;
status_set.rate_limit = audit_rate_limit;
status_set.backlog_limit = audit_backlog_limit;
status_set.lost = atomic_read(&audit_lost);
status_set.backlog = skb_queue_len(&audit_skb_queue);
audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
&status_set, sizeof(status_set));
break;
case AUDIT_SET:
if (nlh->nlmsg_len < sizeof(struct audit_status))
return -EINVAL;
status_get = (struct audit_status *)data;
if (status_get->mask & AUDIT_STATUS_ENABLED) {
err = audit_set_enabled(status_get->enabled, loginuid);
if (err < 0) return err;
}
if (status_get->mask & AUDIT_STATUS_FAILURE) {
err = audit_set_failure(status_get->failure, loginuid);
if (err < 0) return err;
}
if (status_get->mask & AUDIT_STATUS_PID) {
int old = audit_pid;
audit_pid = status_get->pid;
audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
"audit_pid=%d old=%d by auid=%u",
audit_pid, old, loginuid);
}
if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
audit_set_rate_limit(status_get->rate_limit, loginuid);
if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
audit_set_backlog_limit(status_get->backlog_limit,
loginuid);
break;
case AUDIT_USER:
case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
if (!audit_enabled && msg_type != AUDIT_USER_AVC)
return 0;
err = audit_filter_user(&NETLINK_CB(skb), msg_type);
if (err == 1) {
err = 0;
ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
if (ab) {
audit_log_format(ab,
"user pid=%d uid=%u auid=%u msg='%.1024s'",
pid, uid, loginuid, (char *)data);
audit_set_pid(ab, pid);
audit_log_end(ab);
}
}
break;
case AUDIT_ADD:
case AUDIT_DEL:
if (nlh->nlmsg_len < sizeof(struct audit_rule))
return -EINVAL;
/* fallthrough */
case AUDIT_LIST:
err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
uid, seq, data, loginuid);
break;
case AUDIT_SIGNAL_INFO:
sig_data.uid = audit_sig_uid;
sig_data.pid = audit_sig_pid;
audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
0, 0, &sig_data, sizeof(sig_data));
break;
default:
err = -EINVAL;
break;
}
return err < 0 ? err : 0;
}
/*
* Get message from skb (based on rtnetlink_rcv_skb). Each message is
* processed by audit_receive_msg. Malformed skbs with wrong length are
* discarded silently.
*/
static void audit_receive_skb(struct sk_buff *skb)
{
int err;
struct nlmsghdr *nlh;
u32 rlen;
while (skb->len >= NLMSG_SPACE(0)) {
nlh = (struct nlmsghdr *)skb->data;
if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
return;
rlen = NLMSG_ALIGN(nlh->nlmsg_len);
if (rlen > skb->len)
rlen = skb->len;
if ((err = audit_receive_msg(skb, nlh))) {
netlink_ack(skb, nlh, err);
} else if (nlh->nlmsg_flags & NLM_F_ACK)
netlink_ack(skb, nlh, 0);
skb_pull(skb, rlen);
}
}
/* Receive messages from netlink socket. */
static void audit_receive(struct sock *sk, int length)
{
struct sk_buff *skb;
unsigned int qlen;
down(&audit_netlink_sem);
for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) {
skb = skb_dequeue(&sk->sk_receive_queue);
audit_receive_skb(skb);
kfree_skb(skb);
}
up(&audit_netlink_sem);
}
/* Initialize audit support at boot time. */
static int __init audit_init(void)
{
printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
audit_default ? "enabled" : "disabled");
audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive,
THIS_MODULE);
if (!audit_sock)
audit_panic("cannot initialize netlink socket");
audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
skb_queue_head_init(&audit_skb_queue);
audit_initialized = 1;
audit_enabled = audit_default;
audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
return 0;
}
__initcall(audit_init);
/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
static int __init audit_enable(char *str)
{
audit_default = !!simple_strtol(str, NULL, 0);
printk(KERN_INFO "audit: %s%s\n",
audit_default ? "enabled" : "disabled",
audit_initialized ? "" : " (after initialization)");
if (audit_initialized)
audit_enabled = audit_default;
return 0;
}
__setup("audit=", audit_enable);
static void audit_buffer_free(struct audit_buffer *ab)
{
unsigned long flags;
if (!ab)
return;
if (ab->skb)
kfree_skb(ab->skb);
spin_lock_irqsave(&audit_freelist_lock, flags);
if (++audit_freelist_count > AUDIT_MAXFREE)
kfree(ab);
else
list_add(&ab->list, &audit_freelist);
spin_unlock_irqrestore(&audit_freelist_lock, flags);
}
static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
gfp_t gfp_mask, int type)
{
unsigned long flags;
struct audit_buffer *ab = NULL;
struct nlmsghdr *nlh;
spin_lock_irqsave(&audit_freelist_lock, flags);
if (!list_empty(&audit_freelist)) {
ab = list_entry(audit_freelist.next,
struct audit_buffer, list);
list_del(&ab->list);
--audit_freelist_count;
}
spin_unlock_irqrestore(&audit_freelist_lock, flags);
if (!ab) {
ab = kmalloc(sizeof(*ab), gfp_mask);
if (!ab)
goto err;
}
ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
if (!ab->skb)
goto err;
ab->ctx = ctx;
ab->gfp_mask = gfp_mask;
nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
nlh->nlmsg_type = type;
nlh->nlmsg_flags = 0;
nlh->nlmsg_pid = 0;
nlh->nlmsg_seq = 0;
return ab;
err:
audit_buffer_free(ab);
return NULL;
}
/**
* audit_serial - compute a serial number for the audit record
*
* Compute a serial number for the audit record. Audit records are
* written to user-space as soon as they are generated, so a complete
* audit record may be written in several pieces. The timestamp of the
* record and this serial number are used by the user-space tools to
* determine which pieces belong to the same audit record. The
* (timestamp,serial) tuple is unique for each syscall and is live from
* syscall entry to syscall exit.
*
* NOTE: Another possibility is to store the formatted records off the
* audit context (for those records that have a context), and emit them
* all at syscall exit. However, this could delay the reporting of
* significant errors until syscall exit (or never, if the system
* halts).
*/
unsigned int audit_serial(void)
{
static spinlock_t serial_lock = SPIN_LOCK_UNLOCKED;
static unsigned int serial = 0;
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(&serial_lock, flags);
do {
ret = ++serial;
} while (unlikely(!ret));
spin_unlock_irqrestore(&serial_lock, flags);
return ret;
}
static inline void audit_get_stamp(struct audit_context *ctx,
struct timespec *t, unsigned int *serial)
{
if (ctx)
auditsc_get_stamp(ctx, t, serial);
else {
*t = CURRENT_TIME;
*serial = audit_serial();
}
}
/* Obtain an audit buffer. This routine does locking to obtain the
* audit buffer, but then no locking is required for calls to
* audit_log_*format. If the tsk is a task that is currently in a
* syscall, then the syscall is marked as auditable and an audit record
* will be written at syscall exit. If there is no associated task, tsk
* should be NULL. */
/**
* audit_log_start - obtain an audit buffer
* @ctx: audit_context (may be NULL)
* @gfp_mask: type of allocation
* @type: audit message type
*
* Returns audit_buffer pointer on success or NULL on error.
*
* Obtain an audit buffer. This routine does locking to obtain the
* audit buffer, but then no locking is required for calls to
* audit_log_*format. If the task (ctx) is a task that is currently in a
* syscall, then the syscall is marked as auditable and an audit record
* will be written at syscall exit. If there is no associated task, then
* task context (ctx) should be NULL.
*/
struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
int type)
{
struct audit_buffer *ab = NULL;
struct timespec t;
unsigned int serial;
int reserve;
unsigned long timeout_start = jiffies;
if (!audit_initialized)
return NULL;
if (gfp_mask & __GFP_WAIT)
reserve = 0;
else
reserve = 5; /* Allow atomic callers to go up to five
entries over the normal backlog limit */
while (audit_backlog_limit
&& skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
&& time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
/* Wait for auditd to drain the queue a little */
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&audit_backlog_wait, &wait);
if (audit_backlog_limit &&
skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
__set_current_state(TASK_RUNNING);
remove_wait_queue(&audit_backlog_wait, &wait);
continue;
}
if (audit_rate_check())
printk(KERN_WARNING
"audit: audit_backlog=%d > "
"audit_backlog_limit=%d\n",
skb_queue_len(&audit_skb_queue),
audit_backlog_limit);
audit_log_lost("backlog limit exceeded");
audit_backlog_wait_time = audit_backlog_wait_overflow;
wake_up(&audit_backlog_wait);
return NULL;
}
ab = audit_buffer_alloc(ctx, gfp_mask, type);
if (!ab) {
audit_log_lost("out of memory in audit_log_start");
return NULL;
}
audit_get_stamp(ab->ctx, &t, &serial);
audit_log_format(ab, "audit(%lu.%03lu:%u): ",
t.tv_sec, t.tv_nsec/1000000, serial);
return ab;
}
/**
* audit_expand - expand skb in the audit buffer
* @ab: audit_buffer
* @extra: space to add at tail of the skb
*
* Returns 0 (no space) on failed expansion, or available space if
* successful.
*/
static inline int audit_expand(struct audit_buffer *ab, int extra)
{
struct sk_buff *skb = ab->skb;
int ret = pskb_expand_head(skb, skb_headroom(skb), extra,
ab->gfp_mask);
if (ret < 0) {
audit_log_lost("out of memory in audit_expand");
return 0;
}
return skb_tailroom(skb);
}
/*
* Format an audit message into the audit buffer. If there isn't enough
* room in the audit buffer, more room will be allocated and vsnprint
* will be called a second time. Currently, we assume that a printk
* can't format message larger than 1024 bytes, so we don't either.
*/
static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
va_list args)
{
int len, avail;
struct sk_buff *skb;
va_list args2;
if (!ab)
return;
BUG_ON(!ab->skb);
skb = ab->skb;
avail = skb_tailroom(skb);
if (avail == 0) {
avail = audit_expand(ab, AUDIT_BUFSIZ);
if (!avail)
goto out;
}
va_copy(args2, args);
len = vsnprintf(skb->tail, avail, fmt, args);
if (len >= avail) {
/* The printk buffer is 1024 bytes long, so if we get
* here and AUDIT_BUFSIZ is at least 1024, then we can
* log everything that printk could have logged. */
avail = audit_expand(ab,
max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
if (!avail)
goto out;
len = vsnprintf(skb->tail, avail, fmt, args2);
}
if (len > 0)
skb_put(skb, len);
out:
return;
}
/**
* audit_log_format - format a message into the audit buffer.
* @ab: audit_buffer
* @fmt: format string
* @...: optional parameters matching @fmt string
*
* All the work is done in audit_log_vformat.
*/
void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
{
va_list args;
if (!ab)
return;
va_start(args, fmt);
audit_log_vformat(ab, fmt, args);
va_end(args);
}
/**
* audit_log_hex - convert a buffer to hex and append it to the audit skb
* @ab: the audit_buffer
* @buf: buffer to convert to hex
* @len: length of @buf to be converted
*
* No return value; failure to expand is silently ignored.
*
* This function will take the passed buf and convert it into a string of
* ascii hex digits. The new string is placed onto the skb.
*/
void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
size_t len)
{
int i, avail, new_len;
unsigned char *ptr;
struct sk_buff *skb;
static const unsigned char *hex = "0123456789ABCDEF";
BUG_ON(!ab->skb);
skb = ab->skb;
avail = skb_tailroom(skb);
new_len = len<<1;
if (new_len >= avail) {
/* Round the buffer request up to the next multiple */
new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
avail = audit_expand(ab, new_len);
if (!avail)
return;
}
ptr = skb->tail;
for (i=0; i<len; i++) {
*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
*ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
}
*ptr = 0;
skb_put(skb, len << 1); /* new string is twice the old string */
}
/**
* audit_log_unstrustedstring - log a string that may contain random characters
* @ab: audit_buffer
* @string: string to be logged
*
* This code will escape a string that is passed to it if the string
* contains a control character, unprintable character, double quote mark,
* or a space. Unescaped strings will start and end with a double quote mark.
* Strings that are escaped are printed in hex (2 digits per char).
*/
void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
{
const unsigned char *p = string;
while (*p) {
if (*p == '"' || *p < 0x21 || *p > 0x7f) {
audit_log_hex(ab, string, strlen(string));
return;
}
p++;
}
audit_log_format(ab, "\"%s\"", string);
}
/* This is a helper-function to print the escaped d_path */
void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
struct dentry *dentry, struct vfsmount *vfsmnt)
{
char *p, *path;
if (prefix)
audit_log_format(ab, " %s", prefix);
/* We will allow 11 spaces for ' (deleted)' to be appended */
path = kmalloc(PATH_MAX+11, ab->gfp_mask);
if (!path) {
audit_log_format(ab, "<no memory>");
return;
}
p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
/* FIXME: can we save some information here? */
audit_log_format(ab, "<too long>");
} else
audit_log_untrustedstring(ab, p);
kfree(path);
}
/**
* audit_log_end - end one audit record
* @ab: the audit_buffer
*
* The netlink_* functions cannot be called inside an irq context, so
* the audit buffer is placed on a queue and a tasklet is scheduled to
* remove them from the queue outside the irq context. May be called in
* any context.
*/
void audit_log_end(struct audit_buffer *ab)
{
if (!ab)
return;
if (!audit_rate_check()) {
audit_log_lost("rate limit exceeded");
} else {
if (audit_pid) {
struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
skb_queue_tail(&audit_skb_queue, ab->skb);
ab->skb = NULL;
wake_up_interruptible(&kauditd_wait);
} else {
printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0));
}
}
audit_buffer_free(ab);
}
/**
* audit_log - Log an audit record
* @ctx: audit context
* @gfp_mask: type of allocation
* @type: audit message type
* @fmt: format string to use
* @...: variable parameters matching the format string
*
* This is a convenience function that calls audit_log_start,
* audit_log_vformat, and audit_log_end. It may be called
* in any context.
*/
void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
const char *fmt, ...)
{
struct audit_buffer *ab;
va_list args;
ab = audit_log_start(ctx, gfp_mask, type);
if (ab) {
va_start(args, fmt);
audit_log_vformat(ab, fmt, args);
va_end(args);
audit_log_end(ab);
}
}