linux_dsm_epyc7002/drivers/md/bcache/util.h
Coly Li b0d30981c0 bcache: style fixes for lines over 80 characters
This patch fixes the lines over 80 characters into more lines, to minimize
warnings by checkpatch.pl. There are still some lines exceed 80 characters,
but it is better to be a single line and I don't change them.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:41 -06:00

571 lines
15 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHE_UTIL_H
#define _BCACHE_UTIL_H
#include <linux/blkdev.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/sched/clock.h>
#include <linux/llist.h>
#include <linux/ratelimit.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include "closure.h"
#define PAGE_SECTORS (PAGE_SIZE / 512)
struct closure;
#ifdef CONFIG_BCACHE_DEBUG
#define EBUG_ON(cond) BUG_ON(cond)
#define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
#define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
#else /* DEBUG */
#define EBUG_ON(cond) do { if (cond); } while (0)
#define atomic_dec_bug(v) atomic_dec(v)
#define atomic_inc_bug(v, i) atomic_inc(v)
#endif
#define DECLARE_HEAP(type, name) \
struct { \
size_t size, used; \
type *data; \
} name
#define init_heap(heap, _size, gfp) \
({ \
size_t _bytes; \
(heap)->used = 0; \
(heap)->size = (_size); \
_bytes = (heap)->size * sizeof(*(heap)->data); \
(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
(heap)->data; \
})
#define free_heap(heap) \
do { \
kvfree((heap)->data); \
(heap)->data = NULL; \
} while (0)
#define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
#define heap_sift(h, i, cmp) \
do { \
size_t _r, _j = i; \
\
for (; _j * 2 + 1 < (h)->used; _j = _r) { \
_r = _j * 2 + 1; \
if (_r + 1 < (h)->used && \
cmp((h)->data[_r], (h)->data[_r + 1])) \
_r++; \
\
if (cmp((h)->data[_r], (h)->data[_j])) \
break; \
heap_swap(h, _r, _j); \
} \
} while (0)
#define heap_sift_down(h, i, cmp) \
do { \
while (i) { \
size_t p = (i - 1) / 2; \
if (cmp((h)->data[i], (h)->data[p])) \
break; \
heap_swap(h, i, p); \
i = p; \
} \
} while (0)
#define heap_add(h, d, cmp) \
({ \
bool _r = !heap_full(h); \
if (_r) { \
size_t _i = (h)->used++; \
(h)->data[_i] = d; \
\
heap_sift_down(h, _i, cmp); \
heap_sift(h, _i, cmp); \
} \
_r; \
})
#define heap_pop(h, d, cmp) \
({ \
bool _r = (h)->used; \
if (_r) { \
(d) = (h)->data[0]; \
(h)->used--; \
heap_swap(h, 0, (h)->used); \
heap_sift(h, 0, cmp); \
} \
_r; \
})
#define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
#define heap_full(h) ((h)->used == (h)->size)
#define heap_empty(h) ((h)->used == 0)
#define DECLARE_FIFO(type, name) \
struct { \
size_t front, back, size, mask; \
type *data; \
} name
#define fifo_for_each(c, fifo, iter) \
for (iter = (fifo)->front; \
c = (fifo)->data[iter], iter != (fifo)->back; \
iter = (iter + 1) & (fifo)->mask)
#define __init_fifo(fifo, gfp) \
({ \
size_t _allocated_size, _bytes; \
BUG_ON(!(fifo)->size); \
\
_allocated_size = roundup_pow_of_two((fifo)->size + 1); \
_bytes = _allocated_size * sizeof(*(fifo)->data); \
\
(fifo)->mask = _allocated_size - 1; \
(fifo)->front = (fifo)->back = 0; \
\
(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
(fifo)->data; \
})
#define init_fifo_exact(fifo, _size, gfp) \
({ \
(fifo)->size = (_size); \
__init_fifo(fifo, gfp); \
})
#define init_fifo(fifo, _size, gfp) \
({ \
(fifo)->size = (_size); \
if ((fifo)->size > 4) \
(fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
__init_fifo(fifo, gfp); \
})
#define free_fifo(fifo) \
do { \
kvfree((fifo)->data); \
(fifo)->data = NULL; \
} while (0)
#define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
#define fifo_empty(fifo) (!fifo_used(fifo))
#define fifo_full(fifo) (!fifo_free(fifo))
#define fifo_front(fifo) ((fifo)->data[(fifo)->front])
#define fifo_back(fifo) \
((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
#define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
#define fifo_push_back(fifo, i) \
({ \
bool _r = !fifo_full((fifo)); \
if (_r) { \
(fifo)->data[(fifo)->back++] = (i); \
(fifo)->back &= (fifo)->mask; \
} \
_r; \
})
#define fifo_pop_front(fifo, i) \
({ \
bool _r = !fifo_empty((fifo)); \
if (_r) { \
(i) = (fifo)->data[(fifo)->front++]; \
(fifo)->front &= (fifo)->mask; \
} \
_r; \
})
#define fifo_push_front(fifo, i) \
({ \
bool _r = !fifo_full((fifo)); \
if (_r) { \
--(fifo)->front; \
(fifo)->front &= (fifo)->mask; \
(fifo)->data[(fifo)->front] = (i); \
} \
_r; \
})
#define fifo_pop_back(fifo, i) \
({ \
bool _r = !fifo_empty((fifo)); \
if (_r) { \
--(fifo)->back; \
(fifo)->back &= (fifo)->mask; \
(i) = (fifo)->data[(fifo)->back] \
} \
_r; \
})
#define fifo_push(fifo, i) fifo_push_back(fifo, (i))
#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
#define fifo_swap(l, r) \
do { \
swap((l)->front, (r)->front); \
swap((l)->back, (r)->back); \
swap((l)->size, (r)->size); \
swap((l)->mask, (r)->mask); \
swap((l)->data, (r)->data); \
} while (0)
#define fifo_move(dest, src) \
do { \
typeof(*((dest)->data)) _t; \
while (!fifo_full(dest) && \
fifo_pop(src, _t)) \
fifo_push(dest, _t); \
} while (0)
/*
* Simple array based allocator - preallocates a number of elements and you can
* never allocate more than that, also has no locking.
*
* Handy because if you know you only need a fixed number of elements you don't
* have to worry about memory allocation failure, and sometimes a mempool isn't
* what you want.
*
* We treat the free elements as entries in a singly linked list, and the
* freelist as a stack - allocating and freeing push and pop off the freelist.
*/
#define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
struct { \
type *freelist; \
type data[size]; \
} name
#define array_alloc(array) \
({ \
typeof((array)->freelist) _ret = (array)->freelist; \
\
if (_ret) \
(array)->freelist = *((typeof((array)->freelist) *) _ret);\
\
_ret; \
})
#define array_free(array, ptr) \
do { \
typeof((array)->freelist) _ptr = ptr; \
\
*((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
(array)->freelist = _ptr; \
} while (0)
#define array_allocator_init(array) \
do { \
typeof((array)->freelist) _i; \
\
BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
(array)->freelist = NULL; \
\
for (_i = (array)->data; \
_i < (array)->data + ARRAY_SIZE((array)->data); \
_i++) \
array_free(array, _i); \
} while (0)
#define array_freelist_empty(array) ((array)->freelist == NULL)
#define ANYSINT_MAX(t) \
((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
int bch_strtoint_h(const char *cp, int *res);
int bch_strtouint_h(const char *cp, unsigned int *res);
int bch_strtoll_h(const char *cp, long long *res);
int bch_strtoull_h(const char *cp, unsigned long long *res);
static inline int bch_strtol_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
return bch_strtoint_h(cp, (int *) res);
#else
return bch_strtoll_h(cp, (long long *) res);
#endif
}
static inline int bch_strtoul_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
return bch_strtouint_h(cp, (unsigned int *) res);
#else
return bch_strtoull_h(cp, (unsigned long long *) res);
#endif
}
#define strtoi_h(cp, res) \
(__builtin_types_compatible_p(typeof(*res), int) \
? bch_strtoint_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), long) \
? bch_strtol_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), long long) \
? bch_strtoll_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), unsigned int) \
? bch_strtouint_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), unsigned long) \
? bch_strtoul_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
? bch_strtoull_h(cp, (void *) res) : -EINVAL)
#define strtoul_safe(cp, var) \
({ \
unsigned long _v; \
int _r = kstrtoul(cp, 10, &_v); \
if (!_r) \
var = _v; \
_r; \
})
#define strtoul_safe_clamp(cp, var, min, max) \
({ \
unsigned long _v; \
int _r = kstrtoul(cp, 10, &_v); \
if (!_r) \
var = clamp_t(typeof(var), _v, min, max); \
_r; \
})
#define snprint(buf, size, var) \
snprintf(buf, size, \
__builtin_types_compatible_p(typeof(var), int) \
? "%i\n" : \
__builtin_types_compatible_p(typeof(var), unsigned int) \
? "%u\n" : \
__builtin_types_compatible_p(typeof(var), long) \
? "%li\n" : \
__builtin_types_compatible_p(typeof(var), unsigned long)\
? "%lu\n" : \
__builtin_types_compatible_p(typeof(var), int64_t) \
? "%lli\n" : \
__builtin_types_compatible_p(typeof(var), uint64_t) \
? "%llu\n" : \
__builtin_types_compatible_p(typeof(var), const char *) \
? "%s\n" : "%i\n", var)
ssize_t bch_hprint(char *buf, int64_t v);
bool bch_is_zero(const char *p, size_t n);
int bch_parse_uuid(const char *s, char *uuid);
struct time_stats {
spinlock_t lock;
/*
* all fields are in nanoseconds, averages are ewmas stored left shifted
* by 8
*/
uint64_t max_duration;
uint64_t average_duration;
uint64_t average_frequency;
uint64_t last;
};
void bch_time_stats_update(struct time_stats *stats, uint64_t time);
static inline unsigned int local_clock_us(void)
{
return local_clock() >> 10;
}
#define NSEC_PER_ns 1L
#define NSEC_PER_us NSEC_PER_USEC
#define NSEC_PER_ms NSEC_PER_MSEC
#define NSEC_PER_sec NSEC_PER_SEC
#define __print_time_stat(stats, name, stat, units) \
sysfs_print(name ## _ ## stat ## _ ## units, \
div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
#define sysfs_print_time_stats(stats, name, \
frequency_units, \
duration_units) \
do { \
__print_time_stat(stats, name, \
average_frequency, frequency_units); \
__print_time_stat(stats, name, \
average_duration, duration_units); \
sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
div_u64((stats)->max_duration, \
NSEC_PER_ ## duration_units)); \
\
sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
? div_s64(local_clock() - (stats)->last, \
NSEC_PER_ ## frequency_units) \
: -1LL); \
} while (0)
#define sysfs_time_stats_attribute(name, \
frequency_units, \
duration_units) \
read_attribute(name ## _average_frequency_ ## frequency_units); \
read_attribute(name ## _average_duration_ ## duration_units); \
read_attribute(name ## _max_duration_ ## duration_units); \
read_attribute(name ## _last_ ## frequency_units)
#define sysfs_time_stats_attribute_list(name, \
frequency_units, \
duration_units) \
&sysfs_ ## name ## _average_frequency_ ## frequency_units, \
&sysfs_ ## name ## _average_duration_ ## duration_units, \
&sysfs_ ## name ## _max_duration_ ## duration_units, \
&sysfs_ ## name ## _last_ ## frequency_units,
#define ewma_add(ewma, val, weight, factor) \
({ \
(ewma) *= (weight) - 1; \
(ewma) += (val) << factor; \
(ewma) /= (weight); \
(ewma) >> factor; \
})
struct bch_ratelimit {
/* Next time we want to do some work, in nanoseconds */
uint64_t next;
/*
* Rate at which we want to do work, in units per second
* The units here correspond to the units passed to bch_next_delay()
*/
atomic_long_t rate;
};
static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
{
d->next = local_clock();
}
uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
#define __DIV_SAFE(n, d, zero) \
({ \
typeof(n) _n = (n); \
typeof(d) _d = (d); \
_d ? _n / _d : zero; \
})
#define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
#define container_of_or_null(ptr, type, member) \
({ \
typeof(ptr) _ptr = ptr; \
_ptr ? container_of(_ptr, type, member) : NULL; \
})
#define RB_INSERT(root, new, member, cmp) \
({ \
__label__ dup; \
struct rb_node **n = &(root)->rb_node, *parent = NULL; \
typeof(new) this; \
int res, ret = -1; \
\
while (*n) { \
parent = *n; \
this = container_of(*n, typeof(*(new)), member); \
res = cmp(new, this); \
if (!res) \
goto dup; \
n = res < 0 \
? &(*n)->rb_left \
: &(*n)->rb_right; \
} \
\
rb_link_node(&(new)->member, parent, n); \
rb_insert_color(&(new)->member, root); \
ret = 0; \
dup: \
ret; \
})
#define RB_SEARCH(root, search, member, cmp) \
({ \
struct rb_node *n = (root)->rb_node; \
typeof(&(search)) this, ret = NULL; \
int res; \
\
while (n) { \
this = container_of(n, typeof(search), member); \
res = cmp(&(search), this); \
if (!res) { \
ret = this; \
break; \
} \
n = res < 0 \
? n->rb_left \
: n->rb_right; \
} \
ret; \
})
#define RB_GREATER(root, search, member, cmp) \
({ \
struct rb_node *n = (root)->rb_node; \
typeof(&(search)) this, ret = NULL; \
int res; \
\
while (n) { \
this = container_of(n, typeof(search), member); \
res = cmp(&(search), this); \
if (res < 0) { \
ret = this; \
n = n->rb_left; \
} else \
n = n->rb_right; \
} \
ret; \
})
#define RB_FIRST(root, type, member) \
container_of_or_null(rb_first(root), type, member)
#define RB_LAST(root, type, member) \
container_of_or_null(rb_last(root), type, member)
#define RB_NEXT(ptr, member) \
container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
#define RB_PREV(ptr, member) \
container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
/* Does linear interpolation between powers of two */
static inline unsigned int fract_exp_two(unsigned int x,
unsigned int fract_bits)
{
unsigned int fract = x & ~(~0 << fract_bits);
x >>= fract_bits;
x = 1 << x;
x += (x * fract) >> fract_bits;
return x;
}
void bch_bio_map(struct bio *bio, void *base);
int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
static inline sector_t bdev_sectors(struct block_device *bdev)
{
return bdev->bd_inode->i_size >> 9;
}
uint64_t bch_crc64_update(uint64_t crc, const void *_data, size_t len);
uint64_t bch_crc64(const void *data, size_t len);
#endif /* _BCACHE_UTIL_H */