mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 20:49:35 +07:00
b09511c253
The DOUBLE_FAULT crash does INT $8, which is a decent approximation of a double fault. This is useful for testing the double fault handling. Use it like: Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
379 lines
9.0 KiB
C
379 lines
9.0 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This is for all the tests related to logic bugs (e.g. bad dereferences,
|
|
* bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
|
|
* lockups) along with other things that don't fit well into existing LKDTM
|
|
* test source files.
|
|
*/
|
|
#include "lkdtm.h"
|
|
#include <linux/list.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#ifdef CONFIG_X86_32
|
|
#include <asm/desc.h>
|
|
#endif
|
|
|
|
struct lkdtm_list {
|
|
struct list_head node;
|
|
};
|
|
|
|
/*
|
|
* Make sure our attempts to over run the kernel stack doesn't trigger
|
|
* a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
|
|
* recurse past the end of THREAD_SIZE by default.
|
|
*/
|
|
#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
|
|
#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
|
|
#else
|
|
#define REC_STACK_SIZE (THREAD_SIZE / 8)
|
|
#endif
|
|
#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
|
|
|
|
static int recur_count = REC_NUM_DEFAULT;
|
|
|
|
static DEFINE_SPINLOCK(lock_me_up);
|
|
|
|
/*
|
|
* Make sure compiler does not optimize this function or stack frame away:
|
|
* - function marked noinline
|
|
* - stack variables are marked volatile
|
|
* - stack variables are written (memset()) and read (pr_info())
|
|
* - function has external effects (pr_info())
|
|
* */
|
|
static int noinline recursive_loop(int remaining)
|
|
{
|
|
volatile char buf[REC_STACK_SIZE];
|
|
|
|
memset((void *)buf, remaining & 0xFF, sizeof(buf));
|
|
pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
|
|
recur_count);
|
|
if (!remaining)
|
|
return 0;
|
|
else
|
|
return recursive_loop(remaining - 1);
|
|
}
|
|
|
|
/* If the depth is negative, use the default, otherwise keep parameter. */
|
|
void __init lkdtm_bugs_init(int *recur_param)
|
|
{
|
|
if (*recur_param < 0)
|
|
*recur_param = recur_count;
|
|
else
|
|
recur_count = *recur_param;
|
|
}
|
|
|
|
void lkdtm_PANIC(void)
|
|
{
|
|
panic("dumptest");
|
|
}
|
|
|
|
void lkdtm_BUG(void)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
static int warn_counter;
|
|
|
|
void lkdtm_WARNING(void)
|
|
{
|
|
WARN_ON(++warn_counter);
|
|
}
|
|
|
|
void lkdtm_WARNING_MESSAGE(void)
|
|
{
|
|
WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
|
|
}
|
|
|
|
void lkdtm_EXCEPTION(void)
|
|
{
|
|
*((volatile int *) 0) = 0;
|
|
}
|
|
|
|
void lkdtm_LOOP(void)
|
|
{
|
|
for (;;)
|
|
;
|
|
}
|
|
|
|
void lkdtm_EXHAUST_STACK(void)
|
|
{
|
|
pr_info("Calling function with %lu frame size to depth %d ...\n",
|
|
REC_STACK_SIZE, recur_count);
|
|
recursive_loop(recur_count);
|
|
pr_info("FAIL: survived without exhausting stack?!\n");
|
|
}
|
|
|
|
static noinline void __lkdtm_CORRUPT_STACK(void *stack)
|
|
{
|
|
memset(stack, '\xff', 64);
|
|
}
|
|
|
|
/* This should trip the stack canary, not corrupt the return address. */
|
|
noinline void lkdtm_CORRUPT_STACK(void)
|
|
{
|
|
/* Use default char array length that triggers stack protection. */
|
|
char data[8] __aligned(sizeof(void *));
|
|
|
|
__lkdtm_CORRUPT_STACK(&data);
|
|
|
|
pr_info("Corrupted stack containing char array ...\n");
|
|
}
|
|
|
|
/* Same as above but will only get a canary with -fstack-protector-strong */
|
|
noinline void lkdtm_CORRUPT_STACK_STRONG(void)
|
|
{
|
|
union {
|
|
unsigned short shorts[4];
|
|
unsigned long *ptr;
|
|
} data __aligned(sizeof(void *));
|
|
|
|
__lkdtm_CORRUPT_STACK(&data);
|
|
|
|
pr_info("Corrupted stack containing union ...\n");
|
|
}
|
|
|
|
void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
|
|
{
|
|
static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
|
|
u32 *p;
|
|
u32 val = 0x12345678;
|
|
|
|
p = (u32 *)(data + 1);
|
|
if (*p == 0)
|
|
val = 0x87654321;
|
|
*p = val;
|
|
}
|
|
|
|
void lkdtm_SOFTLOCKUP(void)
|
|
{
|
|
preempt_disable();
|
|
for (;;)
|
|
cpu_relax();
|
|
}
|
|
|
|
void lkdtm_HARDLOCKUP(void)
|
|
{
|
|
local_irq_disable();
|
|
for (;;)
|
|
cpu_relax();
|
|
}
|
|
|
|
void lkdtm_SPINLOCKUP(void)
|
|
{
|
|
/* Must be called twice to trigger. */
|
|
spin_lock(&lock_me_up);
|
|
/* Let sparse know we intended to exit holding the lock. */
|
|
__release(&lock_me_up);
|
|
}
|
|
|
|
void lkdtm_HUNG_TASK(void)
|
|
{
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule();
|
|
}
|
|
|
|
void lkdtm_CORRUPT_LIST_ADD(void)
|
|
{
|
|
/*
|
|
* Initially, an empty list via LIST_HEAD:
|
|
* test_head.next = &test_head
|
|
* test_head.prev = &test_head
|
|
*/
|
|
LIST_HEAD(test_head);
|
|
struct lkdtm_list good, bad;
|
|
void *target[2] = { };
|
|
void *redirection = ⌖
|
|
|
|
pr_info("attempting good list addition\n");
|
|
|
|
/*
|
|
* Adding to the list performs these actions:
|
|
* test_head.next->prev = &good.node
|
|
* good.node.next = test_head.next
|
|
* good.node.prev = test_head
|
|
* test_head.next = good.node
|
|
*/
|
|
list_add(&good.node, &test_head);
|
|
|
|
pr_info("attempting corrupted list addition\n");
|
|
/*
|
|
* In simulating this "write what where" primitive, the "what" is
|
|
* the address of &bad.node, and the "where" is the address held
|
|
* by "redirection".
|
|
*/
|
|
test_head.next = redirection;
|
|
list_add(&bad.node, &test_head);
|
|
|
|
if (target[0] == NULL && target[1] == NULL)
|
|
pr_err("Overwrite did not happen, but no BUG?!\n");
|
|
else
|
|
pr_err("list_add() corruption not detected!\n");
|
|
}
|
|
|
|
void lkdtm_CORRUPT_LIST_DEL(void)
|
|
{
|
|
LIST_HEAD(test_head);
|
|
struct lkdtm_list item;
|
|
void *target[2] = { };
|
|
void *redirection = ⌖
|
|
|
|
list_add(&item.node, &test_head);
|
|
|
|
pr_info("attempting good list removal\n");
|
|
list_del(&item.node);
|
|
|
|
pr_info("attempting corrupted list removal\n");
|
|
list_add(&item.node, &test_head);
|
|
|
|
/* As with the list_add() test above, this corrupts "next". */
|
|
item.node.next = redirection;
|
|
list_del(&item.node);
|
|
|
|
if (target[0] == NULL && target[1] == NULL)
|
|
pr_err("Overwrite did not happen, but no BUG?!\n");
|
|
else
|
|
pr_err("list_del() corruption not detected!\n");
|
|
}
|
|
|
|
/* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */
|
|
void lkdtm_CORRUPT_USER_DS(void)
|
|
{
|
|
pr_info("setting bad task size limit\n");
|
|
set_fs(KERNEL_DS);
|
|
|
|
/* Make sure we do not keep running with a KERNEL_DS! */
|
|
force_sig(SIGKILL);
|
|
}
|
|
|
|
/* Test that VMAP_STACK is actually allocating with a leading guard page */
|
|
void lkdtm_STACK_GUARD_PAGE_LEADING(void)
|
|
{
|
|
const unsigned char *stack = task_stack_page(current);
|
|
const unsigned char *ptr = stack - 1;
|
|
volatile unsigned char byte;
|
|
|
|
pr_info("attempting bad read from page below current stack\n");
|
|
|
|
byte = *ptr;
|
|
|
|
pr_err("FAIL: accessed page before stack!\n");
|
|
}
|
|
|
|
/* Test that VMAP_STACK is actually allocating with a trailing guard page */
|
|
void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
|
|
{
|
|
const unsigned char *stack = task_stack_page(current);
|
|
const unsigned char *ptr = stack + THREAD_SIZE;
|
|
volatile unsigned char byte;
|
|
|
|
pr_info("attempting bad read from page above current stack\n");
|
|
|
|
byte = *ptr;
|
|
|
|
pr_err("FAIL: accessed page after stack!\n");
|
|
}
|
|
|
|
void lkdtm_UNSET_SMEP(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
#define MOV_CR4_DEPTH 64
|
|
void (*direct_write_cr4)(unsigned long val);
|
|
unsigned char *insn;
|
|
unsigned long cr4;
|
|
int i;
|
|
|
|
cr4 = native_read_cr4();
|
|
|
|
if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
|
|
pr_err("FAIL: SMEP not in use\n");
|
|
return;
|
|
}
|
|
cr4 &= ~(X86_CR4_SMEP);
|
|
|
|
pr_info("trying to clear SMEP normally\n");
|
|
native_write_cr4(cr4);
|
|
if (cr4 == native_read_cr4()) {
|
|
pr_err("FAIL: pinning SMEP failed!\n");
|
|
cr4 |= X86_CR4_SMEP;
|
|
pr_info("restoring SMEP\n");
|
|
native_write_cr4(cr4);
|
|
return;
|
|
}
|
|
pr_info("ok: SMEP did not get cleared\n");
|
|
|
|
/*
|
|
* To test the post-write pinning verification we need to call
|
|
* directly into the middle of native_write_cr4() where the
|
|
* cr4 write happens, skipping any pinning. This searches for
|
|
* the cr4 writing instruction.
|
|
*/
|
|
insn = (unsigned char *)native_write_cr4;
|
|
for (i = 0; i < MOV_CR4_DEPTH; i++) {
|
|
/* mov %rdi, %cr4 */
|
|
if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
|
|
break;
|
|
/* mov %rdi,%rax; mov %rax, %cr4 */
|
|
if (insn[i] == 0x48 && insn[i+1] == 0x89 &&
|
|
insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
|
|
insn[i+4] == 0x22 && insn[i+5] == 0xe0)
|
|
break;
|
|
}
|
|
if (i >= MOV_CR4_DEPTH) {
|
|
pr_info("ok: cannot locate cr4 writing call gadget\n");
|
|
return;
|
|
}
|
|
direct_write_cr4 = (void *)(insn + i);
|
|
|
|
pr_info("trying to clear SMEP with call gadget\n");
|
|
direct_write_cr4(cr4);
|
|
if (native_read_cr4() & X86_CR4_SMEP) {
|
|
pr_info("ok: SMEP removal was reverted\n");
|
|
} else {
|
|
pr_err("FAIL: cleared SMEP not detected!\n");
|
|
cr4 |= X86_CR4_SMEP;
|
|
pr_info("restoring SMEP\n");
|
|
native_write_cr4(cr4);
|
|
}
|
|
#else
|
|
pr_err("FAIL: this test is x86_64-only\n");
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
void lkdtm_DOUBLE_FAULT(void)
|
|
{
|
|
/*
|
|
* Trigger #DF by setting the stack limit to zero. This clobbers
|
|
* a GDT TLS slot, which is okay because the current task will die
|
|
* anyway due to the double fault.
|
|
*/
|
|
struct desc_struct d = {
|
|
.type = 3, /* expand-up, writable, accessed data */
|
|
.p = 1, /* present */
|
|
.d = 1, /* 32-bit */
|
|
.g = 0, /* limit in bytes */
|
|
.s = 1, /* not system */
|
|
};
|
|
|
|
local_irq_disable();
|
|
write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
|
|
GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
|
|
|
|
/*
|
|
* Put our zero-limit segment in SS and then trigger a fault. The
|
|
* 4-byte access to (%esp) will fault with #SS, and the attempt to
|
|
* deliver the fault will recursively cause #SS and result in #DF.
|
|
* This whole process happens while NMIs and MCEs are blocked by the
|
|
* MOV SS window. This is nice because an NMI with an invalid SS
|
|
* would also double-fault, resulting in the NMI or MCE being lost.
|
|
*/
|
|
asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
|
|
"r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
|
|
|
|
panic("tried to double fault but didn't die\n");
|
|
}
|
|
#endif
|