mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 08:29:47 +07:00
bde7cff67c
Instead of setting up pointers to memory locations in iop_format which then get copied into the CIL linear buffer after return move the copy into the individual inode items. This avoids the need to always have a memory block in the exact same layout that gets written into the log around, and allow the log items to be much more flexible in their in-memory layouts. The only caveat is that we need to properly align the data for each iovec so that don't have structures misaligned in subsequent iovecs. Note that all log item format routines now need to be careful to modify the copy of the item that was placed into the CIL after calls to xlog_copy_iovec instead of the in-memory copy. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
509 lines
14 KiB
C
509 lines
14 KiB
C
/*
|
|
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_extfree_item.h"
|
|
#include "xfs_log.h"
|
|
|
|
|
|
kmem_zone_t *xfs_efi_zone;
|
|
kmem_zone_t *xfs_efd_zone;
|
|
|
|
static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_efi_log_item, efi_item);
|
|
}
|
|
|
|
void
|
|
xfs_efi_item_free(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
|
|
kmem_free(efip);
|
|
else
|
|
kmem_zone_free(xfs_efi_zone, efip);
|
|
}
|
|
|
|
/*
|
|
* Freeing the efi requires that we remove it from the AIL if it has already
|
|
* been placed there. However, the EFI may not yet have been placed in the AIL
|
|
* when called by xfs_efi_release() from EFD processing due to the ordering of
|
|
* committed vs unpin operations in bulk insert operations. Hence the reference
|
|
* count to ensure only the last caller frees the EFI.
|
|
*/
|
|
STATIC void
|
|
__xfs_efi_release(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
struct xfs_ail *ailp = efip->efi_item.li_ailp;
|
|
|
|
if (atomic_dec_and_test(&efip->efi_refcount)) {
|
|
spin_lock(&ailp->xa_lock);
|
|
/* xfs_trans_ail_delete() drops the AIL lock. */
|
|
xfs_trans_ail_delete(ailp, &efip->efi_item,
|
|
SHUTDOWN_LOG_IO_ERROR);
|
|
xfs_efi_item_free(efip);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given efi item.
|
|
* We only need 1 iovec for an efi item. It just logs the efi_log_format
|
|
* structure.
|
|
*/
|
|
static inline int
|
|
xfs_efi_item_sizeof(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
return sizeof(struct xfs_efi_log_format) +
|
|
(efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efi_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
*nvecs += 1;
|
|
*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efi log item. We use only 1 iovec, and we point that
|
|
* at the efi_log_format structure embedded in the efi item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efi item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(atomic_read(&efip->efi_next_extent) ==
|
|
efip->efi_format.efi_nextents);
|
|
|
|
efip->efi_format.efi_type = XFS_LI_EFI;
|
|
efip->efi_format.efi_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
|
|
&efip->efi_format,
|
|
xfs_efi_item_sizeof(efip));
|
|
}
|
|
|
|
|
|
/*
|
|
* Pinning has no meaning for an efi item, so just return.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* While EFIs cannot really be pinned, the unpin operation is the last place at
|
|
* which the EFI is manipulated during a transaction. If we are being asked to
|
|
* remove the EFI it's because the transaction has been cancelled and by
|
|
* definition that means the EFI cannot be in the AIL so remove it from the
|
|
* transaction and free it. Otherwise coordinate with xfs_efi_release()
|
|
* to determine who gets to free the EFI.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
|
|
if (remove) {
|
|
ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
|
|
if (lip->li_desc)
|
|
xfs_trans_del_item(lip);
|
|
xfs_efi_item_free(efip);
|
|
return;
|
|
}
|
|
__xfs_efi_release(efip);
|
|
}
|
|
|
|
/*
|
|
* Efi items have no locking or pushing. However, since EFIs are pulled from
|
|
* the AIL when their corresponding EFDs are committed to disk, their situation
|
|
* is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
|
|
* will eventually flush the log. This should help in getting the EFI out of
|
|
* the AIL.
|
|
*/
|
|
STATIC uint
|
|
xfs_efi_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
{
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efi_item_unlock(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
if (lip->li_flags & XFS_LI_ABORTED)
|
|
xfs_efi_item_free(EFI_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* The EFI is logged only once and cannot be moved in the log, so simply return
|
|
* the lsn at which it's been logged.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_efi_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
return lsn;
|
|
}
|
|
|
|
/*
|
|
* The EFI dependency tracking op doesn't do squat. It can't because
|
|
* it doesn't know where the free extent is coming from. The dependency
|
|
* tracking has to be handled by the "enclosing" metadata object. For
|
|
* example, for inodes, the inode is locked throughout the extent freeing
|
|
* so the dependency should be recorded there.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all efi log items.
|
|
*/
|
|
static const struct xfs_item_ops xfs_efi_item_ops = {
|
|
.iop_size = xfs_efi_item_size,
|
|
.iop_format = xfs_efi_item_format,
|
|
.iop_pin = xfs_efi_item_pin,
|
|
.iop_unpin = xfs_efi_item_unpin,
|
|
.iop_unlock = xfs_efi_item_unlock,
|
|
.iop_committed = xfs_efi_item_committed,
|
|
.iop_push = xfs_efi_item_push,
|
|
.iop_committing = xfs_efi_item_committing
|
|
};
|
|
|
|
|
|
/*
|
|
* Allocate and initialize an efi item with the given number of extents.
|
|
*/
|
|
struct xfs_efi_log_item *
|
|
xfs_efi_init(
|
|
struct xfs_mount *mp,
|
|
uint nextents)
|
|
|
|
{
|
|
struct xfs_efi_log_item *efip;
|
|
uint size;
|
|
|
|
ASSERT(nextents > 0);
|
|
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
|
|
size = (uint)(sizeof(xfs_efi_log_item_t) +
|
|
((nextents - 1) * sizeof(xfs_extent_t)));
|
|
efip = kmem_zalloc(size, KM_SLEEP);
|
|
} else {
|
|
efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
|
|
}
|
|
|
|
xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
|
|
efip->efi_format.efi_nextents = nextents;
|
|
efip->efi_format.efi_id = (__psint_t)(void*)efip;
|
|
atomic_set(&efip->efi_next_extent, 0);
|
|
atomic_set(&efip->efi_refcount, 2);
|
|
|
|
return efip;
|
|
}
|
|
|
|
/*
|
|
* Copy an EFI format buffer from the given buf, and into the destination
|
|
* EFI format structure.
|
|
* The given buffer can be in 32 bit or 64 bit form (which has different padding),
|
|
* one of which will be the native format for this kernel.
|
|
* It will handle the conversion of formats if necessary.
|
|
*/
|
|
int
|
|
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
|
|
{
|
|
xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
|
|
uint i;
|
|
uint len = sizeof(xfs_efi_log_format_t) +
|
|
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
|
|
uint len32 = sizeof(xfs_efi_log_format_32_t) +
|
|
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
|
|
uint len64 = sizeof(xfs_efi_log_format_64_t) +
|
|
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
|
|
|
|
if (buf->i_len == len) {
|
|
memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
|
|
return 0;
|
|
} else if (buf->i_len == len32) {
|
|
xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_32->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_32->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
} else if (buf->i_len == len64) {
|
|
xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_64->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_64->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
}
|
|
return EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* This is called by the efd item code below to release references to the given
|
|
* efi item. Each efd calls this with the number of extents that it has
|
|
* logged, and when the sum of these reaches the total number of extents logged
|
|
* by this efi item we can free the efi item.
|
|
*/
|
|
void
|
|
xfs_efi_release(xfs_efi_log_item_t *efip,
|
|
uint nextents)
|
|
{
|
|
ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
|
|
if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) {
|
|
/* recovery needs us to drop the EFI reference, too */
|
|
if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
|
|
__xfs_efi_release(efip);
|
|
|
|
__xfs_efi_release(efip);
|
|
/* efip may now have been freed, do not reference it again. */
|
|
}
|
|
}
|
|
|
|
static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_efd_log_item, efd_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_free(struct xfs_efd_log_item *efdp)
|
|
{
|
|
if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
|
|
kmem_free(efdp);
|
|
else
|
|
kmem_zone_free(xfs_efd_zone, efdp);
|
|
}
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given efd item.
|
|
* We only need 1 iovec for an efd item. It just logs the efd_log_format
|
|
* structure.
|
|
*/
|
|
static inline int
|
|
xfs_efd_item_sizeof(
|
|
struct xfs_efd_log_item *efdp)
|
|
{
|
|
return sizeof(xfs_efd_log_format_t) +
|
|
(efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
*nvecs += 1;
|
|
*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efd log item. We use only 1 iovec, and we point that
|
|
* at the efd_log_format structure embedded in the efd item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efd item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
|
|
|
|
efdp->efd_format.efd_type = XFS_LI_EFD;
|
|
efdp->efd_format.efd_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
|
|
&efdp->efd_format,
|
|
xfs_efd_item_sizeof(efdp));
|
|
}
|
|
|
|
/*
|
|
* Pinning has no meaning for an efd item, so just return.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Since pinning has no meaning for an efd item, unpinning does
|
|
* not either.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* There isn't much you can do to push on an efd item. It is simply stuck
|
|
* waiting for the log to be flushed to disk.
|
|
*/
|
|
STATIC uint
|
|
xfs_efd_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
{
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_unlock(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
if (lip->li_flags & XFS_LI_ABORTED)
|
|
xfs_efd_item_free(EFD_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* When the efd item is committed to disk, all we need to do
|
|
* is delete our reference to our partner efi item and then
|
|
* free ourselves. Since we're freeing ourselves we must
|
|
* return -1 to keep the transaction code from further referencing
|
|
* this item.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_efd_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
|
|
/*
|
|
* If we got a log I/O error, it's always the case that the LR with the
|
|
* EFI got unpinned and freed before the EFD got aborted.
|
|
*/
|
|
if (!(lip->li_flags & XFS_LI_ABORTED))
|
|
xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
|
|
|
|
xfs_efd_item_free(efdp);
|
|
return (xfs_lsn_t)-1;
|
|
}
|
|
|
|
/*
|
|
* The EFD dependency tracking op doesn't do squat. It can't because
|
|
* it doesn't know where the free extent is coming from. The dependency
|
|
* tracking has to be handled by the "enclosing" metadata object. For
|
|
* example, for inodes, the inode is locked throughout the extent freeing
|
|
* so the dependency should be recorded there.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all efd log items.
|
|
*/
|
|
static const struct xfs_item_ops xfs_efd_item_ops = {
|
|
.iop_size = xfs_efd_item_size,
|
|
.iop_format = xfs_efd_item_format,
|
|
.iop_pin = xfs_efd_item_pin,
|
|
.iop_unpin = xfs_efd_item_unpin,
|
|
.iop_unlock = xfs_efd_item_unlock,
|
|
.iop_committed = xfs_efd_item_committed,
|
|
.iop_push = xfs_efd_item_push,
|
|
.iop_committing = xfs_efd_item_committing
|
|
};
|
|
|
|
/*
|
|
* Allocate and initialize an efd item with the given number of extents.
|
|
*/
|
|
struct xfs_efd_log_item *
|
|
xfs_efd_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_efi_log_item *efip,
|
|
uint nextents)
|
|
|
|
{
|
|
struct xfs_efd_log_item *efdp;
|
|
uint size;
|
|
|
|
ASSERT(nextents > 0);
|
|
if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
|
|
size = (uint)(sizeof(xfs_efd_log_item_t) +
|
|
((nextents - 1) * sizeof(xfs_extent_t)));
|
|
efdp = kmem_zalloc(size, KM_SLEEP);
|
|
} else {
|
|
efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
|
|
}
|
|
|
|
xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
|
|
efdp->efd_efip = efip;
|
|
efdp->efd_format.efd_nextents = nextents;
|
|
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
|
|
|
|
return efdp;
|
|
}
|