linux_dsm_epyc7002/fs/btrfs/free-space-cache.c
Josef Bacik b0175117b9 Btrfs: fix panic when recovering tree log
A user reported a BUG_ON(ret) that occured during tree log replay.  Ret was
-EAGAIN, so what I think happened is that we removed an extent that covered
a bitmap entry and an extent entry.  We remove the part from the bitmap and
return -EAGAIN and then search for the next piece we want to remove, which
happens to be an entire extent entry, so we just free the sucker and return.
The problem is ret is still set to -EAGAIN so we trip the BUG_ON().  The
user used btrfs-zero-log so I'm not 100% sure this is what happened so I've
added a WARN_ON() to catch the other possibility.  Thanks,

Reported-by: Jan Steffens <jan.steffens@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-01-24 12:49:49 -05:00

2930 lines
72 KiB
C

/*
* Copyright (C) 2008 Red Hat. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/math64.h>
#include <linux/ratelimit.h>
#include "ctree.h"
#include "free-space-cache.h"
#include "transaction.h"
#include "disk-io.h"
#include "extent_io.h"
#include "inode-map.h"
#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
static int link_free_space(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info);
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info);
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
struct btrfs_path *path,
u64 offset)
{
struct btrfs_key key;
struct btrfs_key location;
struct btrfs_disk_key disk_key;
struct btrfs_free_space_header *header;
struct extent_buffer *leaf;
struct inode *inode = NULL;
int ret;
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
key.offset = offset;
key.type = 0;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
return ERR_PTR(ret);
if (ret > 0) {
btrfs_release_path(path);
return ERR_PTR(-ENOENT);
}
leaf = path->nodes[0];
header = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_free_space_header);
btrfs_free_space_key(leaf, header, &disk_key);
btrfs_disk_key_to_cpu(&location, &disk_key);
btrfs_release_path(path);
inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
if (!inode)
return ERR_PTR(-ENOENT);
if (IS_ERR(inode))
return inode;
if (is_bad_inode(inode)) {
iput(inode);
return ERR_PTR(-ENOENT);
}
mapping_set_gfp_mask(inode->i_mapping,
mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
return inode;
}
struct inode *lookup_free_space_inode(struct btrfs_root *root,
struct btrfs_block_group_cache
*block_group, struct btrfs_path *path)
{
struct inode *inode = NULL;
u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
spin_lock(&block_group->lock);
if (block_group->inode)
inode = igrab(block_group->inode);
spin_unlock(&block_group->lock);
if (inode)
return inode;
inode = __lookup_free_space_inode(root, path,
block_group->key.objectid);
if (IS_ERR(inode))
return inode;
spin_lock(&block_group->lock);
if (!((BTRFS_I(inode)->flags & flags) == flags)) {
printk(KERN_INFO "Old style space inode found, converting.\n");
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
BTRFS_INODE_NODATACOW;
block_group->disk_cache_state = BTRFS_DC_CLEAR;
}
if (!block_group->iref) {
block_group->inode = igrab(inode);
block_group->iref = 1;
}
spin_unlock(&block_group->lock);
return inode;
}
int __create_free_space_inode(struct btrfs_root *root,
struct btrfs_trans_handle *trans,
struct btrfs_path *path, u64 ino, u64 offset)
{
struct btrfs_key key;
struct btrfs_disk_key disk_key;
struct btrfs_free_space_header *header;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
int ret;
ret = btrfs_insert_empty_inode(trans, root, path, ino);
if (ret)
return ret;
/* We inline crc's for the free disk space cache */
if (ino != BTRFS_FREE_INO_OBJECTID)
flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
leaf = path->nodes[0];
inode_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_inode_item);
btrfs_item_key(leaf, &disk_key, path->slots[0]);
memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
sizeof(*inode_item));
btrfs_set_inode_generation(leaf, inode_item, trans->transid);
btrfs_set_inode_size(leaf, inode_item, 0);
btrfs_set_inode_nbytes(leaf, inode_item, 0);
btrfs_set_inode_uid(leaf, inode_item, 0);
btrfs_set_inode_gid(leaf, inode_item, 0);
btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
btrfs_set_inode_flags(leaf, inode_item, flags);
btrfs_set_inode_nlink(leaf, inode_item, 1);
btrfs_set_inode_transid(leaf, inode_item, trans->transid);
btrfs_set_inode_block_group(leaf, inode_item, offset);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
key.offset = offset;
key.type = 0;
ret = btrfs_insert_empty_item(trans, root, path, &key,
sizeof(struct btrfs_free_space_header));
if (ret < 0) {
btrfs_release_path(path);
return ret;
}
leaf = path->nodes[0];
header = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_free_space_header);
memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
btrfs_set_free_space_key(leaf, header, &disk_key);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
return 0;
}
int create_free_space_inode(struct btrfs_root *root,
struct btrfs_trans_handle *trans,
struct btrfs_block_group_cache *block_group,
struct btrfs_path *path)
{
int ret;
u64 ino;
ret = btrfs_find_free_objectid(root, &ino);
if (ret < 0)
return ret;
return __create_free_space_inode(root, trans, path, ino,
block_group->key.objectid);
}
int btrfs_truncate_free_space_cache(struct btrfs_root *root,
struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct inode *inode)
{
struct btrfs_block_rsv *rsv;
u64 needed_bytes;
loff_t oldsize;
int ret = 0;
rsv = trans->block_rsv;
trans->block_rsv = &root->fs_info->global_block_rsv;
/* 1 for slack space, 1 for updating the inode */
needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
btrfs_calc_trans_metadata_size(root, 1);
spin_lock(&trans->block_rsv->lock);
if (trans->block_rsv->reserved < needed_bytes) {
spin_unlock(&trans->block_rsv->lock);
trans->block_rsv = rsv;
return -ENOSPC;
}
spin_unlock(&trans->block_rsv->lock);
oldsize = i_size_read(inode);
btrfs_i_size_write(inode, 0);
truncate_pagecache(inode, oldsize, 0);
/*
* We don't need an orphan item because truncating the free space cache
* will never be split across transactions.
*/
ret = btrfs_truncate_inode_items(trans, root, inode,
0, BTRFS_EXTENT_DATA_KEY);
if (ret) {
trans->block_rsv = rsv;
btrfs_abort_transaction(trans, root, ret);
return ret;
}
ret = btrfs_update_inode(trans, root, inode);
if (ret)
btrfs_abort_transaction(trans, root, ret);
trans->block_rsv = rsv;
return ret;
}
static int readahead_cache(struct inode *inode)
{
struct file_ra_state *ra;
unsigned long last_index;
ra = kzalloc(sizeof(*ra), GFP_NOFS);
if (!ra)
return -ENOMEM;
file_ra_state_init(ra, inode->i_mapping);
last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
kfree(ra);
return 0;
}
struct io_ctl {
void *cur, *orig;
struct page *page;
struct page **pages;
struct btrfs_root *root;
unsigned long size;
int index;
int num_pages;
unsigned check_crcs:1;
};
static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
struct btrfs_root *root)
{
memset(io_ctl, 0, sizeof(struct io_ctl));
io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT;
io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
GFP_NOFS);
if (!io_ctl->pages)
return -ENOMEM;
io_ctl->root = root;
if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
io_ctl->check_crcs = 1;
return 0;
}
static void io_ctl_free(struct io_ctl *io_ctl)
{
kfree(io_ctl->pages);
}
static void io_ctl_unmap_page(struct io_ctl *io_ctl)
{
if (io_ctl->cur) {
kunmap(io_ctl->page);
io_ctl->cur = NULL;
io_ctl->orig = NULL;
}
}
static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
{
BUG_ON(io_ctl->index >= io_ctl->num_pages);
io_ctl->page = io_ctl->pages[io_ctl->index++];
io_ctl->cur = kmap(io_ctl->page);
io_ctl->orig = io_ctl->cur;
io_ctl->size = PAGE_CACHE_SIZE;
if (clear)
memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
}
static void io_ctl_drop_pages(struct io_ctl *io_ctl)
{
int i;
io_ctl_unmap_page(io_ctl);
for (i = 0; i < io_ctl->num_pages; i++) {
if (io_ctl->pages[i]) {
ClearPageChecked(io_ctl->pages[i]);
unlock_page(io_ctl->pages[i]);
page_cache_release(io_ctl->pages[i]);
}
}
}
static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
int uptodate)
{
struct page *page;
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
int i;
for (i = 0; i < io_ctl->num_pages; i++) {
page = find_or_create_page(inode->i_mapping, i, mask);
if (!page) {
io_ctl_drop_pages(io_ctl);
return -ENOMEM;
}
io_ctl->pages[i] = page;
if (uptodate && !PageUptodate(page)) {
btrfs_readpage(NULL, page);
lock_page(page);
if (!PageUptodate(page)) {
printk(KERN_ERR "btrfs: error reading free "
"space cache\n");
io_ctl_drop_pages(io_ctl);
return -EIO;
}
}
}
for (i = 0; i < io_ctl->num_pages; i++) {
clear_page_dirty_for_io(io_ctl->pages[i]);
set_page_extent_mapped(io_ctl->pages[i]);
}
return 0;
}
static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
{
__le64 *val;
io_ctl_map_page(io_ctl, 1);
/*
* Skip the csum areas. If we don't check crcs then we just have a
* 64bit chunk at the front of the first page.
*/
if (io_ctl->check_crcs) {
io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
} else {
io_ctl->cur += sizeof(u64);
io_ctl->size -= sizeof(u64) * 2;
}
val = io_ctl->cur;
*val = cpu_to_le64(generation);
io_ctl->cur += sizeof(u64);
}
static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
{
__le64 *gen;
/*
* Skip the crc area. If we don't check crcs then we just have a 64bit
* chunk at the front of the first page.
*/
if (io_ctl->check_crcs) {
io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
io_ctl->size -= sizeof(u64) +
(sizeof(u32) * io_ctl->num_pages);
} else {
io_ctl->cur += sizeof(u64);
io_ctl->size -= sizeof(u64) * 2;
}
gen = io_ctl->cur;
if (le64_to_cpu(*gen) != generation) {
printk_ratelimited(KERN_ERR "btrfs: space cache generation "
"(%Lu) does not match inode (%Lu)\n", *gen,
generation);
io_ctl_unmap_page(io_ctl);
return -EIO;
}
io_ctl->cur += sizeof(u64);
return 0;
}
static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
{
u32 *tmp;
u32 crc = ~(u32)0;
unsigned offset = 0;
if (!io_ctl->check_crcs) {
io_ctl_unmap_page(io_ctl);
return;
}
if (index == 0)
offset = sizeof(u32) * io_ctl->num_pages;
crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
PAGE_CACHE_SIZE - offset);
btrfs_csum_final(crc, (char *)&crc);
io_ctl_unmap_page(io_ctl);
tmp = kmap(io_ctl->pages[0]);
tmp += index;
*tmp = crc;
kunmap(io_ctl->pages[0]);
}
static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
{
u32 *tmp, val;
u32 crc = ~(u32)0;
unsigned offset = 0;
if (!io_ctl->check_crcs) {
io_ctl_map_page(io_ctl, 0);
return 0;
}
if (index == 0)
offset = sizeof(u32) * io_ctl->num_pages;
tmp = kmap(io_ctl->pages[0]);
tmp += index;
val = *tmp;
kunmap(io_ctl->pages[0]);
io_ctl_map_page(io_ctl, 0);
crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
PAGE_CACHE_SIZE - offset);
btrfs_csum_final(crc, (char *)&crc);
if (val != crc) {
printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
"space cache\n");
io_ctl_unmap_page(io_ctl);
return -EIO;
}
return 0;
}
static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
void *bitmap)
{
struct btrfs_free_space_entry *entry;
if (!io_ctl->cur)
return -ENOSPC;
entry = io_ctl->cur;
entry->offset = cpu_to_le64(offset);
entry->bytes = cpu_to_le64(bytes);
entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
BTRFS_FREE_SPACE_EXTENT;
io_ctl->cur += sizeof(struct btrfs_free_space_entry);
io_ctl->size -= sizeof(struct btrfs_free_space_entry);
if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
return 0;
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
/* No more pages to map */
if (io_ctl->index >= io_ctl->num_pages)
return 0;
/* map the next page */
io_ctl_map_page(io_ctl, 1);
return 0;
}
static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
{
if (!io_ctl->cur)
return -ENOSPC;
/*
* If we aren't at the start of the current page, unmap this one and
* map the next one if there is any left.
*/
if (io_ctl->cur != io_ctl->orig) {
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
if (io_ctl->index >= io_ctl->num_pages)
return -ENOSPC;
io_ctl_map_page(io_ctl, 0);
}
memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
if (io_ctl->index < io_ctl->num_pages)
io_ctl_map_page(io_ctl, 0);
return 0;
}
static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
{
/*
* If we're not on the boundary we know we've modified the page and we
* need to crc the page.
*/
if (io_ctl->cur != io_ctl->orig)
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
else
io_ctl_unmap_page(io_ctl);
while (io_ctl->index < io_ctl->num_pages) {
io_ctl_map_page(io_ctl, 1);
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
}
}
static int io_ctl_read_entry(struct io_ctl *io_ctl,
struct btrfs_free_space *entry, u8 *type)
{
struct btrfs_free_space_entry *e;
int ret;
if (!io_ctl->cur) {
ret = io_ctl_check_crc(io_ctl, io_ctl->index);
if (ret)
return ret;
}
e = io_ctl->cur;
entry->offset = le64_to_cpu(e->offset);
entry->bytes = le64_to_cpu(e->bytes);
*type = e->type;
io_ctl->cur += sizeof(struct btrfs_free_space_entry);
io_ctl->size -= sizeof(struct btrfs_free_space_entry);
if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
return 0;
io_ctl_unmap_page(io_ctl);
return 0;
}
static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
struct btrfs_free_space *entry)
{
int ret;
ret = io_ctl_check_crc(io_ctl, io_ctl->index);
if (ret)
return ret;
memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
io_ctl_unmap_page(io_ctl);
return 0;
}
/*
* Since we attach pinned extents after the fact we can have contiguous sections
* of free space that are split up in entries. This poses a problem with the
* tree logging stuff since it could have allocated across what appears to be 2
* entries since we would have merged the entries when adding the pinned extents
* back to the free space cache. So run through the space cache that we just
* loaded and merge contiguous entries. This will make the log replay stuff not
* blow up and it will make for nicer allocator behavior.
*/
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
struct btrfs_free_space *e, *prev = NULL;
struct rb_node *n;
again:
spin_lock(&ctl->tree_lock);
for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
e = rb_entry(n, struct btrfs_free_space, offset_index);
if (!prev)
goto next;
if (e->bitmap || prev->bitmap)
goto next;
if (prev->offset + prev->bytes == e->offset) {
unlink_free_space(ctl, prev);
unlink_free_space(ctl, e);
prev->bytes += e->bytes;
kmem_cache_free(btrfs_free_space_cachep, e);
link_free_space(ctl, prev);
prev = NULL;
spin_unlock(&ctl->tree_lock);
goto again;
}
next:
prev = e;
}
spin_unlock(&ctl->tree_lock);
}
int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
struct btrfs_free_space_ctl *ctl,
struct btrfs_path *path, u64 offset)
{
struct btrfs_free_space_header *header;
struct extent_buffer *leaf;
struct io_ctl io_ctl;
struct btrfs_key key;
struct btrfs_free_space *e, *n;
struct list_head bitmaps;
u64 num_entries;
u64 num_bitmaps;
u64 generation;
u8 type;
int ret = 0;
INIT_LIST_HEAD(&bitmaps);
/* Nothing in the space cache, goodbye */
if (!i_size_read(inode))
return 0;
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
key.offset = offset;
key.type = 0;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
return 0;
else if (ret > 0) {
btrfs_release_path(path);
return 0;
}
ret = -1;
leaf = path->nodes[0];
header = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_free_space_header);
num_entries = btrfs_free_space_entries(leaf, header);
num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
generation = btrfs_free_space_generation(leaf, header);
btrfs_release_path(path);
if (BTRFS_I(inode)->generation != generation) {
printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
" not match free space cache generation (%llu)\n",
(unsigned long long)BTRFS_I(inode)->generation,
(unsigned long long)generation);
return 0;
}
if (!num_entries)
return 0;
ret = io_ctl_init(&io_ctl, inode, root);
if (ret)
return ret;
ret = readahead_cache(inode);
if (ret)
goto out;
ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
if (ret)
goto out;
ret = io_ctl_check_crc(&io_ctl, 0);
if (ret)
goto free_cache;
ret = io_ctl_check_generation(&io_ctl, generation);
if (ret)
goto free_cache;
while (num_entries) {
e = kmem_cache_zalloc(btrfs_free_space_cachep,
GFP_NOFS);
if (!e)
goto free_cache;
ret = io_ctl_read_entry(&io_ctl, e, &type);
if (ret) {
kmem_cache_free(btrfs_free_space_cachep, e);
goto free_cache;
}
if (!e->bytes) {
kmem_cache_free(btrfs_free_space_cachep, e);
goto free_cache;
}
if (type == BTRFS_FREE_SPACE_EXTENT) {
spin_lock(&ctl->tree_lock);
ret = link_free_space(ctl, e);
spin_unlock(&ctl->tree_lock);
if (ret) {
printk(KERN_ERR "Duplicate entries in "
"free space cache, dumping\n");
kmem_cache_free(btrfs_free_space_cachep, e);
goto free_cache;
}
} else {
BUG_ON(!num_bitmaps);
num_bitmaps--;
e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
if (!e->bitmap) {
kmem_cache_free(
btrfs_free_space_cachep, e);
goto free_cache;
}
spin_lock(&ctl->tree_lock);
ret = link_free_space(ctl, e);
ctl->total_bitmaps++;
ctl->op->recalc_thresholds(ctl);
spin_unlock(&ctl->tree_lock);
if (ret) {
printk(KERN_ERR "Duplicate entries in "
"free space cache, dumping\n");
kmem_cache_free(btrfs_free_space_cachep, e);
goto free_cache;
}
list_add_tail(&e->list, &bitmaps);
}
num_entries--;
}
io_ctl_unmap_page(&io_ctl);
/*
* We add the bitmaps at the end of the entries in order that
* the bitmap entries are added to the cache.
*/
list_for_each_entry_safe(e, n, &bitmaps, list) {
list_del_init(&e->list);
ret = io_ctl_read_bitmap(&io_ctl, e);
if (ret)
goto free_cache;
}
io_ctl_drop_pages(&io_ctl);
merge_space_tree(ctl);
ret = 1;
out:
io_ctl_free(&io_ctl);
return ret;
free_cache:
io_ctl_drop_pages(&io_ctl);
__btrfs_remove_free_space_cache(ctl);
goto out;
}
int load_free_space_cache(struct btrfs_fs_info *fs_info,
struct btrfs_block_group_cache *block_group)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_root *root = fs_info->tree_root;
struct inode *inode;
struct btrfs_path *path;
int ret = 0;
bool matched;
u64 used = btrfs_block_group_used(&block_group->item);
/*
* If this block group has been marked to be cleared for one reason or
* another then we can't trust the on disk cache, so just return.
*/
spin_lock(&block_group->lock);
if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
spin_unlock(&block_group->lock);
return 0;
}
spin_unlock(&block_group->lock);
path = btrfs_alloc_path();
if (!path)
return 0;
path->search_commit_root = 1;
path->skip_locking = 1;
inode = lookup_free_space_inode(root, block_group, path);
if (IS_ERR(inode)) {
btrfs_free_path(path);
return 0;
}
/* We may have converted the inode and made the cache invalid. */
spin_lock(&block_group->lock);
if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
spin_unlock(&block_group->lock);
btrfs_free_path(path);
goto out;
}
spin_unlock(&block_group->lock);
ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
path, block_group->key.objectid);
btrfs_free_path(path);
if (ret <= 0)
goto out;
spin_lock(&ctl->tree_lock);
matched = (ctl->free_space == (block_group->key.offset - used -
block_group->bytes_super));
spin_unlock(&ctl->tree_lock);
if (!matched) {
__btrfs_remove_free_space_cache(ctl);
printk(KERN_ERR "block group %llu has an wrong amount of free "
"space\n", block_group->key.objectid);
ret = -1;
}
out:
if (ret < 0) {
/* This cache is bogus, make sure it gets cleared */
spin_lock(&block_group->lock);
block_group->disk_cache_state = BTRFS_DC_CLEAR;
spin_unlock(&block_group->lock);
ret = 0;
printk(KERN_ERR "btrfs: failed to load free space cache "
"for block group %llu\n", block_group->key.objectid);
}
iput(inode);
return ret;
}
/**
* __btrfs_write_out_cache - write out cached info to an inode
* @root - the root the inode belongs to
* @ctl - the free space cache we are going to write out
* @block_group - the block_group for this cache if it belongs to a block_group
* @trans - the trans handle
* @path - the path to use
* @offset - the offset for the key we'll insert
*
* This function writes out a free space cache struct to disk for quick recovery
* on mount. This will return 0 if it was successfull in writing the cache out,
* and -1 if it was not.
*/
int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
struct btrfs_free_space_ctl *ctl,
struct btrfs_block_group_cache *block_group,
struct btrfs_trans_handle *trans,
struct btrfs_path *path, u64 offset)
{
struct btrfs_free_space_header *header;
struct extent_buffer *leaf;
struct rb_node *node;
struct list_head *pos, *n;
struct extent_state *cached_state = NULL;
struct btrfs_free_cluster *cluster = NULL;
struct extent_io_tree *unpin = NULL;
struct io_ctl io_ctl;
struct list_head bitmap_list;
struct btrfs_key key;
u64 start, extent_start, extent_end, len;
int entries = 0;
int bitmaps = 0;
int ret;
int err = -1;
INIT_LIST_HEAD(&bitmap_list);
if (!i_size_read(inode))
return -1;
ret = io_ctl_init(&io_ctl, inode, root);
if (ret)
return -1;
/* Get the cluster for this block_group if it exists */
if (block_group && !list_empty(&block_group->cluster_list))
cluster = list_entry(block_group->cluster_list.next,
struct btrfs_free_cluster,
block_group_list);
/* Lock all pages first so we can lock the extent safely. */
io_ctl_prepare_pages(&io_ctl, inode, 0);
lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
0, &cached_state);
node = rb_first(&ctl->free_space_offset);
if (!node && cluster) {
node = rb_first(&cluster->root);
cluster = NULL;
}
/* Make sure we can fit our crcs into the first page */
if (io_ctl.check_crcs &&
(io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
WARN_ON(1);
goto out_nospc;
}
io_ctl_set_generation(&io_ctl, trans->transid);
/* Write out the extent entries */
while (node) {
struct btrfs_free_space *e;
e = rb_entry(node, struct btrfs_free_space, offset_index);
entries++;
ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
e->bitmap);
if (ret)
goto out_nospc;
if (e->bitmap) {
list_add_tail(&e->list, &bitmap_list);
bitmaps++;
}
node = rb_next(node);
if (!node && cluster) {
node = rb_first(&cluster->root);
cluster = NULL;
}
}
/*
* We want to add any pinned extents to our free space cache
* so we don't leak the space
*/
/*
* We shouldn't have switched the pinned extents yet so this is the
* right one
*/
unpin = root->fs_info->pinned_extents;
if (block_group)
start = block_group->key.objectid;
while (block_group && (start < block_group->key.objectid +
block_group->key.offset)) {
ret = find_first_extent_bit(unpin, start,
&extent_start, &extent_end,
EXTENT_DIRTY, NULL);
if (ret) {
ret = 0;
break;
}
/* This pinned extent is out of our range */
if (extent_start >= block_group->key.objectid +
block_group->key.offset)
break;
extent_start = max(extent_start, start);
extent_end = min(block_group->key.objectid +
block_group->key.offset, extent_end + 1);
len = extent_end - extent_start;
entries++;
ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
if (ret)
goto out_nospc;
start = extent_end;
}
/* Write out the bitmaps */
list_for_each_safe(pos, n, &bitmap_list) {
struct btrfs_free_space *entry =
list_entry(pos, struct btrfs_free_space, list);
ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
if (ret)
goto out_nospc;
list_del_init(&entry->list);
}
/* Zero out the rest of the pages just to make sure */
io_ctl_zero_remaining_pages(&io_ctl);
ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
0, i_size_read(inode), &cached_state);
io_ctl_drop_pages(&io_ctl);
unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
i_size_read(inode) - 1, &cached_state, GFP_NOFS);
if (ret)
goto out;
btrfs_wait_ordered_range(inode, 0, (u64)-1);
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
key.offset = offset;
key.type = 0;
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (ret < 0) {
clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
GFP_NOFS);
goto out;
}
leaf = path->nodes[0];
if (ret > 0) {
struct btrfs_key found_key;
BUG_ON(!path->slots[0]);
path->slots[0]--;
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
found_key.offset != offset) {
clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
inode->i_size - 1,
EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
NULL, GFP_NOFS);
btrfs_release_path(path);
goto out;
}
}
BTRFS_I(inode)->generation = trans->transid;
header = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_free_space_header);
btrfs_set_free_space_entries(leaf, header, entries);
btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
btrfs_set_free_space_generation(leaf, header, trans->transid);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
err = 0;
out:
io_ctl_free(&io_ctl);
if (err) {
invalidate_inode_pages2(inode->i_mapping);
BTRFS_I(inode)->generation = 0;
}
btrfs_update_inode(trans, root, inode);
return err;
out_nospc:
list_for_each_safe(pos, n, &bitmap_list) {
struct btrfs_free_space *entry =
list_entry(pos, struct btrfs_free_space, list);
list_del_init(&entry->list);
}
io_ctl_drop_pages(&io_ctl);
unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
i_size_read(inode) - 1, &cached_state, GFP_NOFS);
goto out;
}
int btrfs_write_out_cache(struct btrfs_root *root,
struct btrfs_trans_handle *trans,
struct btrfs_block_group_cache *block_group,
struct btrfs_path *path)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct inode *inode;
int ret = 0;
root = root->fs_info->tree_root;
spin_lock(&block_group->lock);
if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
spin_unlock(&block_group->lock);
return 0;
}
spin_unlock(&block_group->lock);
inode = lookup_free_space_inode(root, block_group, path);
if (IS_ERR(inode))
return 0;
ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
path, block_group->key.objectid);
if (ret) {
spin_lock(&block_group->lock);
block_group->disk_cache_state = BTRFS_DC_ERROR;
spin_unlock(&block_group->lock);
ret = 0;
#ifdef DEBUG
printk(KERN_ERR "btrfs: failed to write free space cache "
"for block group %llu\n", block_group->key.objectid);
#endif
}
iput(inode);
return ret;
}
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
u64 offset)
{
BUG_ON(offset < bitmap_start);
offset -= bitmap_start;
return (unsigned long)(div_u64(offset, unit));
}
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
{
return (unsigned long)(div_u64(bytes, unit));
}
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
u64 offset)
{
u64 bitmap_start;
u64 bytes_per_bitmap;
bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
bitmap_start = offset - ctl->start;
bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
bitmap_start *= bytes_per_bitmap;
bitmap_start += ctl->start;
return bitmap_start;
}
static int tree_insert_offset(struct rb_root *root, u64 offset,
struct rb_node *node, int bitmap)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct btrfs_free_space *info;
while (*p) {
parent = *p;
info = rb_entry(parent, struct btrfs_free_space, offset_index);
if (offset < info->offset) {
p = &(*p)->rb_left;
} else if (offset > info->offset) {
p = &(*p)->rb_right;
} else {
/*
* we could have a bitmap entry and an extent entry
* share the same offset. If this is the case, we want
* the extent entry to always be found first if we do a
* linear search through the tree, since we want to have
* the quickest allocation time, and allocating from an
* extent is faster than allocating from a bitmap. So
* if we're inserting a bitmap and we find an entry at
* this offset, we want to go right, or after this entry
* logically. If we are inserting an extent and we've
* found a bitmap, we want to go left, or before
* logically.
*/
if (bitmap) {
if (info->bitmap) {
WARN_ON_ONCE(1);
return -EEXIST;
}
p = &(*p)->rb_right;
} else {
if (!info->bitmap) {
WARN_ON_ONCE(1);
return -EEXIST;
}
p = &(*p)->rb_left;
}
}
}
rb_link_node(node, parent, p);
rb_insert_color(node, root);
return 0;
}
/*
* searches the tree for the given offset.
*
* fuzzy - If this is set, then we are trying to make an allocation, and we just
* want a section that has at least bytes size and comes at or after the given
* offset.
*/
static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl *ctl,
u64 offset, int bitmap_only, int fuzzy)
{
struct rb_node *n = ctl->free_space_offset.rb_node;
struct btrfs_free_space *entry, *prev = NULL;
/* find entry that is closest to the 'offset' */
while (1) {
if (!n) {
entry = NULL;
break;
}
entry = rb_entry(n, struct btrfs_free_space, offset_index);
prev = entry;
if (offset < entry->offset)
n = n->rb_left;
else if (offset > entry->offset)
n = n->rb_right;
else
break;
}
if (bitmap_only) {
if (!entry)
return NULL;
if (entry->bitmap)
return entry;
/*
* bitmap entry and extent entry may share same offset,
* in that case, bitmap entry comes after extent entry.
*/
n = rb_next(n);
if (!n)
return NULL;
entry = rb_entry(n, struct btrfs_free_space, offset_index);
if (entry->offset != offset)
return NULL;
WARN_ON(!entry->bitmap);
return entry;
} else if (entry) {
if (entry->bitmap) {
/*
* if previous extent entry covers the offset,
* we should return it instead of the bitmap entry
*/
n = rb_prev(&entry->offset_index);
if (n) {
prev = rb_entry(n, struct btrfs_free_space,
offset_index);
if (!prev->bitmap &&
prev->offset + prev->bytes > offset)
entry = prev;
}
}
return entry;
}
if (!prev)
return NULL;
/* find last entry before the 'offset' */
entry = prev;
if (entry->offset > offset) {
n = rb_prev(&entry->offset_index);
if (n) {
entry = rb_entry(n, struct btrfs_free_space,
offset_index);
BUG_ON(entry->offset > offset);
} else {
if (fuzzy)
return entry;
else
return NULL;
}
}
if (entry->bitmap) {
n = rb_prev(&entry->offset_index);
if (n) {
prev = rb_entry(n, struct btrfs_free_space,
offset_index);
if (!prev->bitmap &&
prev->offset + prev->bytes > offset)
return prev;
}
if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
return entry;
} else if (entry->offset + entry->bytes > offset)
return entry;
if (!fuzzy)
return NULL;
while (1) {
if (entry->bitmap) {
if (entry->offset + BITS_PER_BITMAP *
ctl->unit > offset)
break;
} else {
if (entry->offset + entry->bytes > offset)
break;
}
n = rb_next(&entry->offset_index);
if (!n)
return NULL;
entry = rb_entry(n, struct btrfs_free_space, offset_index);
}
return entry;
}
static inline void
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info)
{
rb_erase(&info->offset_index, &ctl->free_space_offset);
ctl->free_extents--;
}
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info)
{
__unlink_free_space(ctl, info);
ctl->free_space -= info->bytes;
}
static int link_free_space(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info)
{
int ret = 0;
BUG_ON(!info->bitmap && !info->bytes);
ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
&info->offset_index, (info->bitmap != NULL));
if (ret)
return ret;
ctl->free_space += info->bytes;
ctl->free_extents++;
return ret;
}
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
{
struct btrfs_block_group_cache *block_group = ctl->private;
u64 max_bytes;
u64 bitmap_bytes;
u64 extent_bytes;
u64 size = block_group->key.offset;
u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
BUG_ON(ctl->total_bitmaps > max_bitmaps);
/*
* The goal is to keep the total amount of memory used per 1gb of space
* at or below 32k, so we need to adjust how much memory we allow to be
* used by extent based free space tracking
*/
if (size < 1024 * 1024 * 1024)
max_bytes = MAX_CACHE_BYTES_PER_GIG;
else
max_bytes = MAX_CACHE_BYTES_PER_GIG *
div64_u64(size, 1024 * 1024 * 1024);
/*
* we want to account for 1 more bitmap than what we have so we can make
* sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
* we add more bitmaps.
*/
bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
if (bitmap_bytes >= max_bytes) {
ctl->extents_thresh = 0;
return;
}
/*
* we want the extent entry threshold to always be at most 1/2 the maxw
* bytes we can have, or whatever is less than that.
*/
extent_bytes = max_bytes - bitmap_bytes;
extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
ctl->extents_thresh =
div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
}
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info,
u64 offset, u64 bytes)
{
unsigned long start, count;
start = offset_to_bit(info->offset, ctl->unit, offset);
count = bytes_to_bits(bytes, ctl->unit);
BUG_ON(start + count > BITS_PER_BITMAP);
bitmap_clear(info->bitmap, start, count);
info->bytes -= bytes;
}
static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info, u64 offset,
u64 bytes)
{
__bitmap_clear_bits(ctl, info, offset, bytes);
ctl->free_space -= bytes;
}
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info, u64 offset,
u64 bytes)
{
unsigned long start, count;
start = offset_to_bit(info->offset, ctl->unit, offset);
count = bytes_to_bits(bytes, ctl->unit);
BUG_ON(start + count > BITS_PER_BITMAP);
bitmap_set(info->bitmap, start, count);
info->bytes += bytes;
ctl->free_space += bytes;
}
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *bitmap_info, u64 *offset,
u64 *bytes)
{
unsigned long found_bits = 0;
unsigned long bits, i;
unsigned long next_zero;
i = offset_to_bit(bitmap_info->offset, ctl->unit,
max_t(u64, *offset, bitmap_info->offset));
bits = bytes_to_bits(*bytes, ctl->unit);
for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
next_zero = find_next_zero_bit(bitmap_info->bitmap,
BITS_PER_BITMAP, i);
if ((next_zero - i) >= bits) {
found_bits = next_zero - i;
break;
}
i = next_zero;
}
if (found_bits) {
*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
*bytes = (u64)(found_bits) * ctl->unit;
return 0;
}
return -1;
}
static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
{
struct btrfs_free_space *entry;
struct rb_node *node;
int ret;
if (!ctl->free_space_offset.rb_node)
return NULL;
entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
if (!entry)
return NULL;
for (node = &entry->offset_index; node; node = rb_next(node)) {
entry = rb_entry(node, struct btrfs_free_space, offset_index);
if (entry->bytes < *bytes)
continue;
if (entry->bitmap) {
ret = search_bitmap(ctl, entry, offset, bytes);
if (!ret)
return entry;
continue;
}
*offset = entry->offset;
*bytes = entry->bytes;
return entry;
}
return NULL;
}
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info, u64 offset)
{
info->offset = offset_to_bitmap(ctl, offset);
info->bytes = 0;
INIT_LIST_HEAD(&info->list);
link_free_space(ctl, info);
ctl->total_bitmaps++;
ctl->op->recalc_thresholds(ctl);
}
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *bitmap_info)
{
unlink_free_space(ctl, bitmap_info);
kfree(bitmap_info->bitmap);
kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
ctl->total_bitmaps--;
ctl->op->recalc_thresholds(ctl);
}
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *bitmap_info,
u64 *offset, u64 *bytes)
{
u64 end;
u64 search_start, search_bytes;
int ret;
again:
end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
/*
* We need to search for bits in this bitmap. We could only cover some
* of the extent in this bitmap thanks to how we add space, so we need
* to search for as much as it as we can and clear that amount, and then
* go searching for the next bit.
*/
search_start = *offset;
search_bytes = ctl->unit;
search_bytes = min(search_bytes, end - search_start + 1);
ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
BUG_ON(ret < 0 || search_start != *offset);
/* We may have found more bits than what we need */
search_bytes = min(search_bytes, *bytes);
/* Cannot clear past the end of the bitmap */
search_bytes = min(search_bytes, end - search_start + 1);
bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
*offset += search_bytes;
*bytes -= search_bytes;
if (*bytes) {
struct rb_node *next = rb_next(&bitmap_info->offset_index);
if (!bitmap_info->bytes)
free_bitmap(ctl, bitmap_info);
/*
* no entry after this bitmap, but we still have bytes to
* remove, so something has gone wrong.
*/
if (!next)
return -EINVAL;
bitmap_info = rb_entry(next, struct btrfs_free_space,
offset_index);
/*
* if the next entry isn't a bitmap we need to return to let the
* extent stuff do its work.
*/
if (!bitmap_info->bitmap)
return -EAGAIN;
/*
* Ok the next item is a bitmap, but it may not actually hold
* the information for the rest of this free space stuff, so
* look for it, and if we don't find it return so we can try
* everything over again.
*/
search_start = *offset;
search_bytes = ctl->unit;
ret = search_bitmap(ctl, bitmap_info, &search_start,
&search_bytes);
if (ret < 0 || search_start != *offset)
return -EAGAIN;
goto again;
} else if (!bitmap_info->bytes)
free_bitmap(ctl, bitmap_info);
return 0;
}
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info, u64 offset,
u64 bytes)
{
u64 bytes_to_set = 0;
u64 end;
end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
bytes_to_set = min(end - offset, bytes);
bitmap_set_bits(ctl, info, offset, bytes_to_set);
return bytes_to_set;
}
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info)
{
struct btrfs_block_group_cache *block_group = ctl->private;
/*
* If we are below the extents threshold then we can add this as an
* extent, and don't have to deal with the bitmap
*/
if (ctl->free_extents < ctl->extents_thresh) {
/*
* If this block group has some small extents we don't want to
* use up all of our free slots in the cache with them, we want
* to reserve them to larger extents, however if we have plent
* of cache left then go ahead an dadd them, no sense in adding
* the overhead of a bitmap if we don't have to.
*/
if (info->bytes <= block_group->sectorsize * 4) {
if (ctl->free_extents * 2 <= ctl->extents_thresh)
return false;
} else {
return false;
}
}
/*
* some block groups are so tiny they can't be enveloped by a bitmap, so
* don't even bother to create a bitmap for this
*/
if (BITS_PER_BITMAP * ctl->unit > block_group->key.offset)
return false;
return true;
}
static struct btrfs_free_space_op free_space_op = {
.recalc_thresholds = recalculate_thresholds,
.use_bitmap = use_bitmap,
};
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info)
{
struct btrfs_free_space *bitmap_info;
struct btrfs_block_group_cache *block_group = NULL;
int added = 0;
u64 bytes, offset, bytes_added;
int ret;
bytes = info->bytes;
offset = info->offset;
if (!ctl->op->use_bitmap(ctl, info))
return 0;
if (ctl->op == &free_space_op)
block_group = ctl->private;
again:
/*
* Since we link bitmaps right into the cluster we need to see if we
* have a cluster here, and if so and it has our bitmap we need to add
* the free space to that bitmap.
*/
if (block_group && !list_empty(&block_group->cluster_list)) {
struct btrfs_free_cluster *cluster;
struct rb_node *node;
struct btrfs_free_space *entry;
cluster = list_entry(block_group->cluster_list.next,
struct btrfs_free_cluster,
block_group_list);
spin_lock(&cluster->lock);
node = rb_first(&cluster->root);
if (!node) {
spin_unlock(&cluster->lock);
goto no_cluster_bitmap;
}
entry = rb_entry(node, struct btrfs_free_space, offset_index);
if (!entry->bitmap) {
spin_unlock(&cluster->lock);
goto no_cluster_bitmap;
}
if (entry->offset == offset_to_bitmap(ctl, offset)) {
bytes_added = add_bytes_to_bitmap(ctl, entry,
offset, bytes);
bytes -= bytes_added;
offset += bytes_added;
}
spin_unlock(&cluster->lock);
if (!bytes) {
ret = 1;
goto out;
}
}
no_cluster_bitmap:
bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1, 0);
if (!bitmap_info) {
BUG_ON(added);
goto new_bitmap;
}
bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
bytes -= bytes_added;
offset += bytes_added;
added = 0;
if (!bytes) {
ret = 1;
goto out;
} else
goto again;
new_bitmap:
if (info && info->bitmap) {
add_new_bitmap(ctl, info, offset);
added = 1;
info = NULL;
goto again;
} else {
spin_unlock(&ctl->tree_lock);
/* no pre-allocated info, allocate a new one */
if (!info) {
info = kmem_cache_zalloc(btrfs_free_space_cachep,
GFP_NOFS);
if (!info) {
spin_lock(&ctl->tree_lock);
ret = -ENOMEM;
goto out;
}
}
/* allocate the bitmap */
info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
spin_lock(&ctl->tree_lock);
if (!info->bitmap) {
ret = -ENOMEM;
goto out;
}
goto again;
}
out:
if (info) {
if (info->bitmap)
kfree(info->bitmap);
kmem_cache_free(btrfs_free_space_cachep, info);
}
return ret;
}
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
struct btrfs_free_space *info, bool update_stat)
{
struct btrfs_free_space *left_info;
struct btrfs_free_space *right_info;
bool merged = false;
u64 offset = info->offset;
u64 bytes = info->bytes;
/*
* first we want to see if there is free space adjacent to the range we
* are adding, if there is remove that struct and add a new one to
* cover the entire range
*/
right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
if (right_info && rb_prev(&right_info->offset_index))
left_info = rb_entry(rb_prev(&right_info->offset_index),
struct btrfs_free_space, offset_index);
else
left_info = tree_search_offset(ctl, offset - 1, 0, 0);
if (right_info && !right_info->bitmap) {
if (update_stat)
unlink_free_space(ctl, right_info);
else
__unlink_free_space(ctl, right_info);
info->bytes += right_info->bytes;
kmem_cache_free(btrfs_free_space_cachep, right_info);
merged = true;
}
if (left_info && !left_info->bitmap &&
left_info->offset + left_info->bytes == offset) {
if (update_stat)
unlink_free_space(ctl, left_info);
else
__unlink_free_space(ctl, left_info);
info->offset = left_info->offset;
info->bytes += left_info->bytes;
kmem_cache_free(btrfs_free_space_cachep, left_info);
merged = true;
}
return merged;
}
int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
u64 offset, u64 bytes)
{
struct btrfs_free_space *info;
int ret = 0;
info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
if (!info)
return -ENOMEM;
info->offset = offset;
info->bytes = bytes;
spin_lock(&ctl->tree_lock);
if (try_merge_free_space(ctl, info, true))
goto link;
/*
* There was no extent directly to the left or right of this new
* extent then we know we're going to have to allocate a new extent, so
* before we do that see if we need to drop this into a bitmap
*/
ret = insert_into_bitmap(ctl, info);
if (ret < 0) {
goto out;
} else if (ret) {
ret = 0;
goto out;
}
link:
ret = link_free_space(ctl, info);
if (ret)
kmem_cache_free(btrfs_free_space_cachep, info);
out:
spin_unlock(&ctl->tree_lock);
if (ret) {
printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
BUG_ON(ret == -EEXIST);
}
return ret;
}
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
u64 offset, u64 bytes)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *info;
int ret;
bool re_search = false;
spin_lock(&ctl->tree_lock);
again:
ret = 0;
if (!bytes)
goto out_lock;
info = tree_search_offset(ctl, offset, 0, 0);
if (!info) {
/*
* oops didn't find an extent that matched the space we wanted
* to remove, look for a bitmap instead
*/
info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1, 0);
if (!info) {
/*
* If we found a partial bit of our free space in a
* bitmap but then couldn't find the other part this may
* be a problem, so WARN about it.
*/
WARN_ON(re_search);
goto out_lock;
}
}
re_search = false;
if (!info->bitmap) {
unlink_free_space(ctl, info);
if (offset == info->offset) {
u64 to_free = min(bytes, info->bytes);
info->bytes -= to_free;
info->offset += to_free;
if (info->bytes) {
ret = link_free_space(ctl, info);
WARN_ON(ret);
} else {
kmem_cache_free(btrfs_free_space_cachep, info);
}
offset += to_free;
bytes -= to_free;
goto again;
} else {
u64 old_end = info->bytes + info->offset;
info->bytes = offset - info->offset;
ret = link_free_space(ctl, info);
WARN_ON(ret);
if (ret)
goto out_lock;
/* Not enough bytes in this entry to satisfy us */
if (old_end < offset + bytes) {
bytes -= old_end - offset;
offset = old_end;
goto again;
} else if (old_end == offset + bytes) {
/* all done */
goto out_lock;
}
spin_unlock(&ctl->tree_lock);
ret = btrfs_add_free_space(block_group, offset + bytes,
old_end - (offset + bytes));
WARN_ON(ret);
goto out;
}
}
ret = remove_from_bitmap(ctl, info, &offset, &bytes);
if (ret == -EAGAIN) {
re_search = true;
goto again;
}
BUG_ON(ret); /* logic error */
out_lock:
spin_unlock(&ctl->tree_lock);
out:
return ret;
}
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
u64 bytes)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *info;
struct rb_node *n;
int count = 0;
for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
info = rb_entry(n, struct btrfs_free_space, offset_index);
if (info->bytes >= bytes && !block_group->ro)
count++;
printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
(unsigned long long)info->offset,
(unsigned long long)info->bytes,
(info->bitmap) ? "yes" : "no");
}
printk(KERN_INFO "block group has cluster?: %s\n",
list_empty(&block_group->cluster_list) ? "no" : "yes");
printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
"\n", count);
}
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
spin_lock_init(&ctl->tree_lock);
ctl->unit = block_group->sectorsize;
ctl->start = block_group->key.objectid;
ctl->private = block_group;
ctl->op = &free_space_op;
/*
* we only want to have 32k of ram per block group for keeping
* track of free space, and if we pass 1/2 of that we want to
* start converting things over to using bitmaps
*/
ctl->extents_thresh = ((1024 * 32) / 2) /
sizeof(struct btrfs_free_space);
}
/*
* for a given cluster, put all of its extents back into the free
* space cache. If the block group passed doesn't match the block group
* pointed to by the cluster, someone else raced in and freed the
* cluster already. In that case, we just return without changing anything
*/
static int
__btrfs_return_cluster_to_free_space(
struct btrfs_block_group_cache *block_group,
struct btrfs_free_cluster *cluster)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *entry;
struct rb_node *node;
spin_lock(&cluster->lock);
if (cluster->block_group != block_group)
goto out;
cluster->block_group = NULL;
cluster->window_start = 0;
list_del_init(&cluster->block_group_list);
node = rb_first(&cluster->root);
while (node) {
bool bitmap;
entry = rb_entry(node, struct btrfs_free_space, offset_index);
node = rb_next(&entry->offset_index);
rb_erase(&entry->offset_index, &cluster->root);
bitmap = (entry->bitmap != NULL);
if (!bitmap)
try_merge_free_space(ctl, entry, false);
tree_insert_offset(&ctl->free_space_offset,
entry->offset, &entry->offset_index, bitmap);
}
cluster->root = RB_ROOT;
out:
spin_unlock(&cluster->lock);
btrfs_put_block_group(block_group);
return 0;
}
void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
{
struct btrfs_free_space *info;
struct rb_node *node;
while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
info = rb_entry(node, struct btrfs_free_space, offset_index);
if (!info->bitmap) {
unlink_free_space(ctl, info);
kmem_cache_free(btrfs_free_space_cachep, info);
} else {
free_bitmap(ctl, info);
}
if (need_resched()) {
spin_unlock(&ctl->tree_lock);
cond_resched();
spin_lock(&ctl->tree_lock);
}
}
}
void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
spin_lock(&ctl->tree_lock);
__btrfs_remove_free_space_cache_locked(ctl);
spin_unlock(&ctl->tree_lock);
}
void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_cluster *cluster;
struct list_head *head;
spin_lock(&ctl->tree_lock);
while ((head = block_group->cluster_list.next) !=
&block_group->cluster_list) {
cluster = list_entry(head, struct btrfs_free_cluster,
block_group_list);
WARN_ON(cluster->block_group != block_group);
__btrfs_return_cluster_to_free_space(block_group, cluster);
if (need_resched()) {
spin_unlock(&ctl->tree_lock);
cond_resched();
spin_lock(&ctl->tree_lock);
}
}
__btrfs_remove_free_space_cache_locked(ctl);
spin_unlock(&ctl->tree_lock);
}
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
u64 offset, u64 bytes, u64 empty_size)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *entry = NULL;
u64 bytes_search = bytes + empty_size;
u64 ret = 0;
spin_lock(&ctl->tree_lock);
entry = find_free_space(ctl, &offset, &bytes_search);
if (!entry)
goto out;
ret = offset;
if (entry->bitmap) {
bitmap_clear_bits(ctl, entry, offset, bytes);
if (!entry->bytes)
free_bitmap(ctl, entry);
} else {
unlink_free_space(ctl, entry);
entry->offset += bytes;
entry->bytes -= bytes;
if (!entry->bytes)
kmem_cache_free(btrfs_free_space_cachep, entry);
else
link_free_space(ctl, entry);
}
out:
spin_unlock(&ctl->tree_lock);
return ret;
}
/*
* given a cluster, put all of its extents back into the free space
* cache. If a block group is passed, this function will only free
* a cluster that belongs to the passed block group.
*
* Otherwise, it'll get a reference on the block group pointed to by the
* cluster and remove the cluster from it.
*/
int btrfs_return_cluster_to_free_space(
struct btrfs_block_group_cache *block_group,
struct btrfs_free_cluster *cluster)
{
struct btrfs_free_space_ctl *ctl;
int ret;
/* first, get a safe pointer to the block group */
spin_lock(&cluster->lock);
if (!block_group) {
block_group = cluster->block_group;
if (!block_group) {
spin_unlock(&cluster->lock);
return 0;
}
} else if (cluster->block_group != block_group) {
/* someone else has already freed it don't redo their work */
spin_unlock(&cluster->lock);
return 0;
}
atomic_inc(&block_group->count);
spin_unlock(&cluster->lock);
ctl = block_group->free_space_ctl;
/* now return any extents the cluster had on it */
spin_lock(&ctl->tree_lock);
ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&ctl->tree_lock);
/* finally drop our ref */
btrfs_put_block_group(block_group);
return ret;
}
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
struct btrfs_free_cluster *cluster,
struct btrfs_free_space *entry,
u64 bytes, u64 min_start)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
int err;
u64 search_start = cluster->window_start;
u64 search_bytes = bytes;
u64 ret = 0;
search_start = min_start;
search_bytes = bytes;
err = search_bitmap(ctl, entry, &search_start, &search_bytes);
if (err)
return 0;
ret = search_start;
__bitmap_clear_bits(ctl, entry, ret, bytes);
return ret;
}
/*
* given a cluster, try to allocate 'bytes' from it, returns 0
* if it couldn't find anything suitably large, or a logical disk offset
* if things worked out
*/
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
struct btrfs_free_cluster *cluster, u64 bytes,
u64 min_start)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *entry = NULL;
struct rb_node *node;
u64 ret = 0;
spin_lock(&cluster->lock);
if (bytes > cluster->max_size)
goto out;
if (cluster->block_group != block_group)
goto out;
node = rb_first(&cluster->root);
if (!node)
goto out;
entry = rb_entry(node, struct btrfs_free_space, offset_index);
while(1) {
if (entry->bytes < bytes ||
(!entry->bitmap && entry->offset < min_start)) {
node = rb_next(&entry->offset_index);
if (!node)
break;
entry = rb_entry(node, struct btrfs_free_space,
offset_index);
continue;
}
if (entry->bitmap) {
ret = btrfs_alloc_from_bitmap(block_group,
cluster, entry, bytes,
cluster->window_start);
if (ret == 0) {
node = rb_next(&entry->offset_index);
if (!node)
break;
entry = rb_entry(node, struct btrfs_free_space,
offset_index);
continue;
}
cluster->window_start += bytes;
} else {
ret = entry->offset;
entry->offset += bytes;
entry->bytes -= bytes;
}
if (entry->bytes == 0)
rb_erase(&entry->offset_index, &cluster->root);
break;
}
out:
spin_unlock(&cluster->lock);
if (!ret)
return 0;
spin_lock(&ctl->tree_lock);
ctl->free_space -= bytes;
if (entry->bytes == 0) {
ctl->free_extents--;
if (entry->bitmap) {
kfree(entry->bitmap);
ctl->total_bitmaps--;
ctl->op->recalc_thresholds(ctl);
}
kmem_cache_free(btrfs_free_space_cachep, entry);
}
spin_unlock(&ctl->tree_lock);
return ret;
}
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
struct btrfs_free_space *entry,
struct btrfs_free_cluster *cluster,
u64 offset, u64 bytes,
u64 cont1_bytes, u64 min_bytes)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
unsigned long next_zero;
unsigned long i;
unsigned long want_bits;
unsigned long min_bits;
unsigned long found_bits;
unsigned long start = 0;
unsigned long total_found = 0;
int ret;
i = offset_to_bit(entry->offset, ctl->unit,
max_t(u64, offset, entry->offset));
want_bits = bytes_to_bits(bytes, ctl->unit);
min_bits = bytes_to_bits(min_bytes, ctl->unit);
again:
found_bits = 0;
for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
next_zero = find_next_zero_bit(entry->bitmap,
BITS_PER_BITMAP, i);
if (next_zero - i >= min_bits) {
found_bits = next_zero - i;
break;
}
i = next_zero;
}
if (!found_bits)
return -ENOSPC;
if (!total_found) {
start = i;
cluster->max_size = 0;
}
total_found += found_bits;
if (cluster->max_size < found_bits * ctl->unit)
cluster->max_size = found_bits * ctl->unit;
if (total_found < want_bits || cluster->max_size < cont1_bytes) {
i = next_zero + 1;
goto again;
}
cluster->window_start = start * ctl->unit + entry->offset;
rb_erase(&entry->offset_index, &ctl->free_space_offset);
ret = tree_insert_offset(&cluster->root, entry->offset,
&entry->offset_index, 1);
BUG_ON(ret); /* -EEXIST; Logic error */
trace_btrfs_setup_cluster(block_group, cluster,
total_found * ctl->unit, 1);
return 0;
}
/*
* This searches the block group for just extents to fill the cluster with.
* Try to find a cluster with at least bytes total bytes, at least one
* extent of cont1_bytes, and other clusters of at least min_bytes.
*/
static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
struct btrfs_free_cluster *cluster,
struct list_head *bitmaps, u64 offset, u64 bytes,
u64 cont1_bytes, u64 min_bytes)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *first = NULL;
struct btrfs_free_space *entry = NULL;
struct btrfs_free_space *last;
struct rb_node *node;
u64 window_start;
u64 window_free;
u64 max_extent;
u64 total_size = 0;
entry = tree_search_offset(ctl, offset, 0, 1);
if (!entry)
return -ENOSPC;
/*
* We don't want bitmaps, so just move along until we find a normal
* extent entry.
*/
while (entry->bitmap || entry->bytes < min_bytes) {
if (entry->bitmap && list_empty(&entry->list))
list_add_tail(&entry->list, bitmaps);
node = rb_next(&entry->offset_index);
if (!node)
return -ENOSPC;
entry = rb_entry(node, struct btrfs_free_space, offset_index);
}
window_start = entry->offset;
window_free = entry->bytes;
max_extent = entry->bytes;
first = entry;
last = entry;
for (node = rb_next(&entry->offset_index); node;
node = rb_next(&entry->offset_index)) {
entry = rb_entry(node, struct btrfs_free_space, offset_index);
if (entry->bitmap) {
if (list_empty(&entry->list))
list_add_tail(&entry->list, bitmaps);
continue;
}
if (entry->bytes < min_bytes)
continue;
last = entry;
window_free += entry->bytes;
if (entry->bytes > max_extent)
max_extent = entry->bytes;
}
if (window_free < bytes || max_extent < cont1_bytes)
return -ENOSPC;
cluster->window_start = first->offset;
node = &first->offset_index;
/*
* now we've found our entries, pull them out of the free space
* cache and put them into the cluster rbtree
*/
do {
int ret;
entry = rb_entry(node, struct btrfs_free_space, offset_index);
node = rb_next(&entry->offset_index);
if (entry->bitmap || entry->bytes < min_bytes)
continue;
rb_erase(&entry->offset_index, &ctl->free_space_offset);
ret = tree_insert_offset(&cluster->root, entry->offset,
&entry->offset_index, 0);
total_size += entry->bytes;
BUG_ON(ret); /* -EEXIST; Logic error */
} while (node && entry != last);
cluster->max_size = max_extent;
trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
return 0;
}
/*
* This specifically looks for bitmaps that may work in the cluster, we assume
* that we have already failed to find extents that will work.
*/
static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
struct btrfs_free_cluster *cluster,
struct list_head *bitmaps, u64 offset, u64 bytes,
u64 cont1_bytes, u64 min_bytes)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *entry;
int ret = -ENOSPC;
u64 bitmap_offset = offset_to_bitmap(ctl, offset);
if (ctl->total_bitmaps == 0)
return -ENOSPC;
/*
* The bitmap that covers offset won't be in the list unless offset
* is just its start offset.
*/
entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
if (entry->offset != bitmap_offset) {
entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
if (entry && list_empty(&entry->list))
list_add(&entry->list, bitmaps);
}
list_for_each_entry(entry, bitmaps, list) {
if (entry->bytes < bytes)
continue;
ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
bytes, cont1_bytes, min_bytes);
if (!ret)
return 0;
}
/*
* The bitmaps list has all the bitmaps that record free space
* starting after offset, so no more search is required.
*/
return -ENOSPC;
}
/*
* here we try to find a cluster of blocks in a block group. The goal
* is to find at least bytes+empty_size.
* We might not find them all in one contiguous area.
*
* returns zero and sets up cluster if things worked out, otherwise
* it returns -enospc
*/
int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_block_group_cache *block_group,
struct btrfs_free_cluster *cluster,
u64 offset, u64 bytes, u64 empty_size)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *entry, *tmp;
LIST_HEAD(bitmaps);
u64 min_bytes;
u64 cont1_bytes;
int ret;
/*
* Choose the minimum extent size we'll require for this
* cluster. For SSD_SPREAD, don't allow any fragmentation.
* For metadata, allow allocates with smaller extents. For
* data, keep it dense.
*/
if (btrfs_test_opt(root, SSD_SPREAD)) {
cont1_bytes = min_bytes = bytes + empty_size;
} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
cont1_bytes = bytes;
min_bytes = block_group->sectorsize;
} else {
cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
min_bytes = block_group->sectorsize;
}
spin_lock(&ctl->tree_lock);
/*
* If we know we don't have enough space to make a cluster don't even
* bother doing all the work to try and find one.
*/
if (ctl->free_space < bytes) {
spin_unlock(&ctl->tree_lock);
return -ENOSPC;
}
spin_lock(&cluster->lock);
/* someone already found a cluster, hooray */
if (cluster->block_group) {
ret = 0;
goto out;
}
trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
min_bytes);
INIT_LIST_HEAD(&bitmaps);
ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
bytes + empty_size,
cont1_bytes, min_bytes);
if (ret)
ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
offset, bytes + empty_size,
cont1_bytes, min_bytes);
/* Clear our temporary list */
list_for_each_entry_safe(entry, tmp, &bitmaps, list)
list_del_init(&entry->list);
if (!ret) {
atomic_inc(&block_group->count);
list_add_tail(&cluster->block_group_list,
&block_group->cluster_list);
cluster->block_group = block_group;
} else {
trace_btrfs_failed_cluster_setup(block_group);
}
out:
spin_unlock(&cluster->lock);
spin_unlock(&ctl->tree_lock);
return ret;
}
/*
* simple code to zero out a cluster
*/
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
spin_lock_init(&cluster->lock);
spin_lock_init(&cluster->refill_lock);
cluster->root = RB_ROOT;
cluster->max_size = 0;
INIT_LIST_HEAD(&cluster->block_group_list);
cluster->block_group = NULL;
}
static int do_trimming(struct btrfs_block_group_cache *block_group,
u64 *total_trimmed, u64 start, u64 bytes,
u64 reserved_start, u64 reserved_bytes)
{
struct btrfs_space_info *space_info = block_group->space_info;
struct btrfs_fs_info *fs_info = block_group->fs_info;
int ret;
int update = 0;
u64 trimmed = 0;
spin_lock(&space_info->lock);
spin_lock(&block_group->lock);
if (!block_group->ro) {
block_group->reserved += reserved_bytes;
space_info->bytes_reserved += reserved_bytes;
update = 1;
}
spin_unlock(&block_group->lock);
spin_unlock(&space_info->lock);
ret = btrfs_error_discard_extent(fs_info->extent_root,
start, bytes, &trimmed);
if (!ret)
*total_trimmed += trimmed;
btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
if (update) {
spin_lock(&space_info->lock);
spin_lock(&block_group->lock);
if (block_group->ro)
space_info->bytes_readonly += reserved_bytes;
block_group->reserved -= reserved_bytes;
space_info->bytes_reserved -= reserved_bytes;
spin_unlock(&space_info->lock);
spin_unlock(&block_group->lock);
}
return ret;
}
static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *entry;
struct rb_node *node;
int ret = 0;
u64 extent_start;
u64 extent_bytes;
u64 bytes;
while (start < end) {
spin_lock(&ctl->tree_lock);
if (ctl->free_space < minlen) {
spin_unlock(&ctl->tree_lock);
break;
}
entry = tree_search_offset(ctl, start, 0, 1);
if (!entry) {
spin_unlock(&ctl->tree_lock);
break;
}
/* skip bitmaps */
while (entry->bitmap) {
node = rb_next(&entry->offset_index);
if (!node) {
spin_unlock(&ctl->tree_lock);
goto out;
}
entry = rb_entry(node, struct btrfs_free_space,
offset_index);
}
if (entry->offset >= end) {
spin_unlock(&ctl->tree_lock);
break;
}
extent_start = entry->offset;
extent_bytes = entry->bytes;
start = max(start, extent_start);
bytes = min(extent_start + extent_bytes, end) - start;
if (bytes < minlen) {
spin_unlock(&ctl->tree_lock);
goto next;
}
unlink_free_space(ctl, entry);
kmem_cache_free(btrfs_free_space_cachep, entry);
spin_unlock(&ctl->tree_lock);
ret = do_trimming(block_group, total_trimmed, start, bytes,
extent_start, extent_bytes);
if (ret)
break;
next:
start += bytes;
if (fatal_signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
cond_resched();
}
out:
return ret;
}
static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
struct btrfs_free_space *entry;
int ret = 0;
int ret2;
u64 bytes;
u64 offset = offset_to_bitmap(ctl, start);
while (offset < end) {
bool next_bitmap = false;
spin_lock(&ctl->tree_lock);
if (ctl->free_space < minlen) {
spin_unlock(&ctl->tree_lock);
break;
}
entry = tree_search_offset(ctl, offset, 1, 0);
if (!entry) {
spin_unlock(&ctl->tree_lock);
next_bitmap = true;
goto next;
}
bytes = minlen;
ret2 = search_bitmap(ctl, entry, &start, &bytes);
if (ret2 || start >= end) {
spin_unlock(&ctl->tree_lock);
next_bitmap = true;
goto next;
}
bytes = min(bytes, end - start);
if (bytes < minlen) {
spin_unlock(&ctl->tree_lock);
goto next;
}
bitmap_clear_bits(ctl, entry, start, bytes);
if (entry->bytes == 0)
free_bitmap(ctl, entry);
spin_unlock(&ctl->tree_lock);
ret = do_trimming(block_group, total_trimmed, start, bytes,
start, bytes);
if (ret)
break;
next:
if (next_bitmap) {
offset += BITS_PER_BITMAP * ctl->unit;
} else {
start += bytes;
if (start >= offset + BITS_PER_BITMAP * ctl->unit)
offset += BITS_PER_BITMAP * ctl->unit;
}
if (fatal_signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
cond_resched();
}
return ret;
}
int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
u64 *trimmed, u64 start, u64 end, u64 minlen)
{
int ret;
*trimmed = 0;
ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
if (ret)
return ret;
ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
return ret;
}
/*
* Find the left-most item in the cache tree, and then return the
* smallest inode number in the item.
*
* Note: the returned inode number may not be the smallest one in
* the tree, if the left-most item is a bitmap.
*/
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
struct btrfs_free_space *entry = NULL;
u64 ino = 0;
spin_lock(&ctl->tree_lock);
if (RB_EMPTY_ROOT(&ctl->free_space_offset))
goto out;
entry = rb_entry(rb_first(&ctl->free_space_offset),
struct btrfs_free_space, offset_index);
if (!entry->bitmap) {
ino = entry->offset;
unlink_free_space(ctl, entry);
entry->offset++;
entry->bytes--;
if (!entry->bytes)
kmem_cache_free(btrfs_free_space_cachep, entry);
else
link_free_space(ctl, entry);
} else {
u64 offset = 0;
u64 count = 1;
int ret;
ret = search_bitmap(ctl, entry, &offset, &count);
/* Logic error; Should be empty if it can't find anything */
BUG_ON(ret);
ino = offset;
bitmap_clear_bits(ctl, entry, offset, 1);
if (entry->bytes == 0)
free_bitmap(ctl, entry);
}
out:
spin_unlock(&ctl->tree_lock);
return ino;
}
struct inode *lookup_free_ino_inode(struct btrfs_root *root,
struct btrfs_path *path)
{
struct inode *inode = NULL;
spin_lock(&root->cache_lock);
if (root->cache_inode)
inode = igrab(root->cache_inode);
spin_unlock(&root->cache_lock);
if (inode)
return inode;
inode = __lookup_free_space_inode(root, path, 0);
if (IS_ERR(inode))
return inode;
spin_lock(&root->cache_lock);
if (!btrfs_fs_closing(root->fs_info))
root->cache_inode = igrab(inode);
spin_unlock(&root->cache_lock);
return inode;
}
int create_free_ino_inode(struct btrfs_root *root,
struct btrfs_trans_handle *trans,
struct btrfs_path *path)
{
return __create_free_space_inode(root, trans, path,
BTRFS_FREE_INO_OBJECTID, 0);
}
int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
struct btrfs_path *path;
struct inode *inode;
int ret = 0;
u64 root_gen = btrfs_root_generation(&root->root_item);
if (!btrfs_test_opt(root, INODE_MAP_CACHE))
return 0;
/*
* If we're unmounting then just return, since this does a search on the
* normal root and not the commit root and we could deadlock.
*/
if (btrfs_fs_closing(fs_info))
return 0;
path = btrfs_alloc_path();
if (!path)
return 0;
inode = lookup_free_ino_inode(root, path);
if (IS_ERR(inode))
goto out;
if (root_gen != BTRFS_I(inode)->generation)
goto out_put;
ret = __load_free_space_cache(root, inode, ctl, path, 0);
if (ret < 0)
printk(KERN_ERR "btrfs: failed to load free ino cache for "
"root %llu\n", root->root_key.objectid);
out_put:
iput(inode);
out:
btrfs_free_path(path);
return ret;
}
int btrfs_write_out_ino_cache(struct btrfs_root *root,
struct btrfs_trans_handle *trans,
struct btrfs_path *path)
{
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
struct inode *inode;
int ret;
if (!btrfs_test_opt(root, INODE_MAP_CACHE))
return 0;
inode = lookup_free_ino_inode(root, path);
if (IS_ERR(inode))
return 0;
ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
if (ret) {
btrfs_delalloc_release_metadata(inode, inode->i_size);
#ifdef DEBUG
printk(KERN_ERR "btrfs: failed to write free ino cache "
"for root %llu\n", root->root_key.objectid);
#endif
}
iput(inode);
return ret;
}