linux_dsm_epyc7002/arch/x86/entry/entry_32.S
Joerg Roedel d5e84c21db x86/entry/32: Check for VM86 mode in slow-path check
The SWITCH_TO_KERNEL_STACK macro only checks for CPL == 0 to go down the
slow and paranoid entry path. The problem is that this check also returns
true when coming from VM86 mode. This is not a problem by itself, as the
paranoid path handles VM86 stack-frames just fine, but it is not necessary
as the normal code path handles VM86 mode as well (and faster).

Extend the check to include VM86 mode. This also makes an optimization of
the paranoid path possible.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1532103744-31902-3-git-send-email-joro@8bytes.org
2018-07-20 22:33:41 +02:00

1503 lines
36 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 1991,1992 Linus Torvalds
*
* entry_32.S contains the system-call and low-level fault and trap handling routines.
*
* Stack layout while running C code:
* ptrace needs to have all registers on the stack.
* If the order here is changed, it needs to be
* updated in fork.c:copy_process(), signal.c:do_signal(),
* ptrace.c and ptrace.h
*
* 0(%esp) - %ebx
* 4(%esp) - %ecx
* 8(%esp) - %edx
* C(%esp) - %esi
* 10(%esp) - %edi
* 14(%esp) - %ebp
* 18(%esp) - %eax
* 1C(%esp) - %ds
* 20(%esp) - %es
* 24(%esp) - %fs
* 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
* 2C(%esp) - orig_eax
* 30(%esp) - %eip
* 34(%esp) - %cs
* 38(%esp) - %eflags
* 3C(%esp) - %oldesp
* 40(%esp) - %oldss
*/
#include <linux/linkage.h>
#include <linux/err.h>
#include <asm/thread_info.h>
#include <asm/irqflags.h>
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
#include <asm/percpu.h>
#include <asm/processor-flags.h>
#include <asm/irq_vectors.h>
#include <asm/cpufeatures.h>
#include <asm/alternative-asm.h>
#include <asm/asm.h>
#include <asm/smap.h>
#include <asm/frame.h>
#include <asm/nospec-branch.h>
.section .entry.text, "ax"
/*
* We use macros for low-level operations which need to be overridden
* for paravirtualization. The following will never clobber any registers:
* INTERRUPT_RETURN (aka. "iret")
* GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
* ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
*
* For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
* specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
* Allowing a register to be clobbered can shrink the paravirt replacement
* enough to patch inline, increasing performance.
*/
#ifdef CONFIG_PREEMPT
# define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
#else
# define preempt_stop(clobbers)
# define resume_kernel restore_all_kernel
#endif
.macro TRACE_IRQS_IRET
#ifdef CONFIG_TRACE_IRQFLAGS
testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off?
jz 1f
TRACE_IRQS_ON
1:
#endif
.endm
#define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
/*
* User gs save/restore
*
* %gs is used for userland TLS and kernel only uses it for stack
* canary which is required to be at %gs:20 by gcc. Read the comment
* at the top of stackprotector.h for more info.
*
* Local labels 98 and 99 are used.
*/
#ifdef CONFIG_X86_32_LAZY_GS
/* unfortunately push/pop can't be no-op */
.macro PUSH_GS
pushl $0
.endm
.macro POP_GS pop=0
addl $(4 + \pop), %esp
.endm
.macro POP_GS_EX
.endm
/* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm
#else /* CONFIG_X86_32_LAZY_GS */
.macro PUSH_GS
pushl %gs
.endm
.macro POP_GS pop=0
98: popl %gs
.if \pop <> 0
add $\pop, %esp
.endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
99: movl $0, (%esp)
jmp 98b
.popsection
_ASM_EXTABLE(98b, 99b)
.endm
.macro PTGS_TO_GS
98: mov PT_GS(%esp), %gs
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
99: movl $0, PT_GS(%esp)
jmp 98b
.popsection
_ASM_EXTABLE(98b, 99b)
.endm
.macro GS_TO_REG reg
movl %gs, \reg
.endm
.macro REG_TO_PTGS reg
movl \reg, PT_GS(%esp)
.endm
.macro SET_KERNEL_GS reg
movl $(__KERNEL_STACK_CANARY), \reg
movl \reg, %gs
.endm
#endif /* CONFIG_X86_32_LAZY_GS */
/* Unconditionally switch to user cr3 */
.macro SWITCH_TO_USER_CR3 scratch_reg:req
ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
movl %cr3, \scratch_reg
orl $PTI_SWITCH_MASK, \scratch_reg
movl \scratch_reg, %cr3
.Lend_\@:
.endm
.macro BUG_IF_WRONG_CR3 no_user_check=0
#ifdef CONFIG_DEBUG_ENTRY
ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
.if \no_user_check == 0
/* coming from usermode? */
testl $SEGMENT_RPL_MASK, PT_CS(%esp)
jz .Lend_\@
.endif
/* On user-cr3? */
movl %cr3, %eax
testl $PTI_SWITCH_MASK, %eax
jnz .Lend_\@
/* From userspace with kernel cr3 - BUG */
ud2
.Lend_\@:
#endif
.endm
/*
* Switch to kernel cr3 if not already loaded and return current cr3 in
* \scratch_reg
*/
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
movl %cr3, \scratch_reg
/* Test if we are already on kernel CR3 */
testl $PTI_SWITCH_MASK, \scratch_reg
jz .Lend_\@
andl $(~PTI_SWITCH_MASK), \scratch_reg
movl \scratch_reg, %cr3
/* Return original CR3 in \scratch_reg */
orl $PTI_SWITCH_MASK, \scratch_reg
.Lend_\@:
.endm
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0
cld
PUSH_GS
pushl %fs
pushl %es
pushl %ds
pushl \pt_regs_ax
pushl %ebp
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx
movl $(__USER_DS), %edx
movl %edx, %ds
movl %edx, %es
movl $(__KERNEL_PERCPU), %edx
movl %edx, %fs
SET_KERNEL_GS %edx
/* Switch to kernel stack if necessary */
.if \switch_stacks > 0
SWITCH_TO_KERNEL_STACK
.endif
.endm
.macro SAVE_ALL_NMI cr3_reg:req
SAVE_ALL
BUG_IF_WRONG_CR3
/*
* Now switch the CR3 when PTI is enabled.
*
* We can enter with either user or kernel cr3, the code will
* store the old cr3 in \cr3_reg and switches to the kernel cr3
* if necessary.
*/
SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
.Lend_\@:
.endm
/*
* This is a sneaky trick to help the unwinder find pt_regs on the stack. The
* frame pointer is replaced with an encoded pointer to pt_regs. The encoding
* is just clearing the MSB, which makes it an invalid stack address and is also
* a signal to the unwinder that it's a pt_regs pointer in disguise.
*
* NOTE: This macro must be used *after* SAVE_ALL because it corrupts the
* original rbp.
*/
.macro ENCODE_FRAME_POINTER
#ifdef CONFIG_FRAME_POINTER
mov %esp, %ebp
andl $0x7fffffff, %ebp
#endif
.endm
.macro RESTORE_INT_REGS
popl %ebx
popl %ecx
popl %edx
popl %esi
popl %edi
popl %ebp
popl %eax
.endm
.macro RESTORE_REGS pop=0
RESTORE_INT_REGS
1: popl %ds
2: popl %es
3: popl %fs
POP_GS \pop
.pushsection .fixup, "ax"
4: movl $0, (%esp)
jmp 1b
5: movl $0, (%esp)
jmp 2b
6: movl $0, (%esp)
jmp 3b
.popsection
_ASM_EXTABLE(1b, 4b)
_ASM_EXTABLE(2b, 5b)
_ASM_EXTABLE(3b, 6b)
POP_GS_EX
.endm
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
/*
* Now switch the CR3 when PTI is enabled.
*
* We enter with kernel cr3 and switch the cr3 to the value
* stored on \cr3_reg, which is either a user or a kernel cr3.
*/
ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
testl $PTI_SWITCH_MASK, \cr3_reg
jz .Lswitched_\@
/* User cr3 in \cr3_reg - write it to hardware cr3 */
movl \cr3_reg, %cr3
.Lswitched_\@:
BUG_IF_WRONG_CR3
RESTORE_REGS pop=\pop
.endm
.macro CHECK_AND_APPLY_ESPFIX
#ifdef CONFIG_X86_ESPFIX32
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
/*
* Warning: PT_OLDSS(%esp) contains the wrong/random values if we
* are returning to the kernel.
* See comments in process.c:copy_thread() for details.
*/
movb PT_OLDSS(%esp), %ah
movb PT_CS(%esp), %al
andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
jne .Lend_\@ # returning to user-space with LDT SS
/*
* Setup and switch to ESPFIX stack
*
* We're returning to userspace with a 16 bit stack. The CPU will not
* restore the high word of ESP for us on executing iret... This is an
* "official" bug of all the x86-compatible CPUs, which we can work
* around to make dosemu and wine happy. We do this by preloading the
* high word of ESP with the high word of the userspace ESP while
* compensating for the offset by changing to the ESPFIX segment with
* a base address that matches for the difference.
*/
mov %esp, %edx /* load kernel esp */
mov PT_OLDESP(%esp), %eax /* load userspace esp */
mov %dx, %ax /* eax: new kernel esp */
sub %eax, %edx /* offset (low word is 0) */
shr $16, %edx
mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
pushl $__ESPFIX_SS
pushl %eax /* new kernel esp */
/*
* Disable interrupts, but do not irqtrace this section: we
* will soon execute iret and the tracer was already set to
* the irqstate after the IRET:
*/
DISABLE_INTERRUPTS(CLBR_ANY)
lss (%esp), %esp /* switch to espfix segment */
.Lend_\@:
#endif /* CONFIG_X86_ESPFIX32 */
.endm
/*
* Called with pt_regs fully populated and kernel segments loaded,
* so we can access PER_CPU and use the integer registers.
*
* We need to be very careful here with the %esp switch, because an NMI
* can happen everywhere. If the NMI handler finds itself on the
* entry-stack, it will overwrite the task-stack and everything we
* copied there. So allocate the stack-frame on the task-stack and
* switch to it before we do any copying.
*/
#define CS_FROM_ENTRY_STACK (1 << 31)
#define CS_FROM_USER_CR3 (1 << 30)
.macro SWITCH_TO_KERNEL_STACK
ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
BUG_IF_WRONG_CR3
SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
/*
* %eax now contains the entry cr3 and we carry it forward in
* that register for the time this macro runs
*/
/* Are we on the entry stack? Bail out if not! */
movl PER_CPU_VAR(cpu_entry_area), %ecx
addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
cmpl $SIZEOF_entry_stack, %ecx
jae .Lend_\@
/* Load stack pointer into %esi and %edi */
movl %esp, %esi
movl %esi, %edi
/* Move %edi to the top of the entry stack */
andl $(MASK_entry_stack), %edi
addl $(SIZEOF_entry_stack), %edi
/* Load top of task-stack into %edi */
movl TSS_entry2task_stack(%edi), %edi
/*
* Clear unused upper bits of the dword containing the word-sized CS
* slot in pt_regs in case hardware didn't clear it for us.
*/
andl $(0x0000ffff), PT_CS(%esp)
/* Special case - entry from kernel mode via entry stack */
#ifdef CONFIG_VM86
movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
movb PT_CS(%esp), %cl
andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
#else
movl PT_CS(%esp), %ecx
andl $SEGMENT_RPL_MASK, %ecx
#endif
cmpl $USER_RPL, %ecx
jb .Lentry_from_kernel_\@
/* Bytes to copy */
movl $PTREGS_SIZE, %ecx
#ifdef CONFIG_VM86
testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
jz .Lcopy_pt_regs_\@
/*
* Stack-frame contains 4 additional segment registers when
* coming from VM86 mode
*/
addl $(4 * 4), %ecx
#endif
.Lcopy_pt_regs_\@:
/* Allocate frame on task-stack */
subl %ecx, %edi
/* Switch to task-stack */
movl %edi, %esp
/*
* We are now on the task-stack and can safely copy over the
* stack-frame
*/
shrl $2, %ecx
cld
rep movsl
jmp .Lend_\@
.Lentry_from_kernel_\@:
/*
* This handles the case when we enter the kernel from
* kernel-mode and %esp points to the entry-stack. When this
* happens we need to switch to the task-stack to run C code,
* but switch back to the entry-stack again when we approach
* iret and return to the interrupted code-path. This usually
* happens when we hit an exception while restoring user-space
* segment registers on the way back to user-space or when the
* sysenter handler runs with eflags.tf set.
*
* When we switch to the task-stack here, we can't trust the
* contents of the entry-stack anymore, as the exception handler
* might be scheduled out or moved to another CPU. Therefore we
* copy the complete entry-stack to the task-stack and set a
* marker in the iret-frame (bit 31 of the CS dword) to detect
* what we've done on the iret path.
*
* On the iret path we copy everything back and switch to the
* entry-stack, so that the interrupted kernel code-path
* continues on the same stack it was interrupted with.
*
* Be aware that an NMI can happen anytime in this code.
*
* %esi: Entry-Stack pointer (same as %esp)
* %edi: Top of the task stack
* %eax: CR3 on kernel entry
*/
/* Calculate number of bytes on the entry stack in %ecx */
movl %esi, %ecx
/* %ecx to the top of entry-stack */
andl $(MASK_entry_stack), %ecx
addl $(SIZEOF_entry_stack), %ecx
/* Number of bytes on the entry stack to %ecx */
sub %esi, %ecx
/* Mark stackframe as coming from entry stack */
orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
/*
* Test the cr3 used to enter the kernel and add a marker
* so that we can switch back to it before iret.
*/
testl $PTI_SWITCH_MASK, %eax
jz .Lcopy_pt_regs_\@
orl $CS_FROM_USER_CR3, PT_CS(%esp)
/*
* %esi and %edi are unchanged, %ecx contains the number of
* bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
* the stack-frame on task-stack and copy everything over
*/
jmp .Lcopy_pt_regs_\@
.Lend_\@:
.endm
/*
* Switch back from the kernel stack to the entry stack.
*
* The %esp register must point to pt_regs on the task stack. It will
* first calculate the size of the stack-frame to copy, depending on
* whether we return to VM86 mode or not. With that it uses 'rep movsl'
* to copy the contents of the stack over to the entry stack.
*
* We must be very careful here, as we can't trust the contents of the
* task-stack once we switched to the entry-stack. When an NMI happens
* while on the entry-stack, the NMI handler will switch back to the top
* of the task stack, overwriting our stack-frame we are about to copy.
* Therefore we switch the stack only after everything is copied over.
*/
.macro SWITCH_TO_ENTRY_STACK
ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
/* Bytes to copy */
movl $PTREGS_SIZE, %ecx
#ifdef CONFIG_VM86
testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
jz .Lcopy_pt_regs_\@
/* Additional 4 registers to copy when returning to VM86 mode */
addl $(4 * 4), %ecx
.Lcopy_pt_regs_\@:
#endif
/* Initialize source and destination for movsl */
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
subl %ecx, %edi
movl %esp, %esi
/* Save future stack pointer in %ebx */
movl %edi, %ebx
/* Copy over the stack-frame */
shrl $2, %ecx
cld
rep movsl
/*
* Switch to entry-stack - needs to happen after everything is
* copied because the NMI handler will overwrite the task-stack
* when on entry-stack
*/
movl %ebx, %esp
.Lend_\@:
.endm
/*
* This macro handles the case when we return to kernel-mode on the iret
* path and have to switch back to the entry stack and/or user-cr3
*
* See the comments below the .Lentry_from_kernel_\@ label in the
* SWITCH_TO_KERNEL_STACK macro for more details.
*/
.macro PARANOID_EXIT_TO_KERNEL_MODE
/*
* Test if we entered the kernel with the entry-stack. Most
* likely we did not, because this code only runs on the
* return-to-kernel path.
*/
testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
jz .Lend_\@
/* Unlikely slow-path */
/* Clear marker from stack-frame */
andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
/* Copy the remaining task-stack contents to entry-stack */
movl %esp, %esi
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
/* Bytes on the task-stack to ecx */
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
subl %esi, %ecx
/* Allocate stack-frame on entry-stack */
subl %ecx, %edi
/*
* Save future stack-pointer, we must not switch until the
* copy is done, otherwise the NMI handler could destroy the
* contents of the task-stack we are about to copy.
*/
movl %edi, %ebx
/* Do the copy */
shrl $2, %ecx
cld
rep movsl
/* Safe to switch to entry-stack now */
movl %ebx, %esp
/*
* We came from entry-stack and need to check if we also need to
* switch back to user cr3.
*/
testl $CS_FROM_USER_CR3, PT_CS(%esp)
jz .Lend_\@
/* Clear marker from stack-frame */
andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
SWITCH_TO_USER_CR3 scratch_reg=%eax
.Lend_\@:
.endm
/*
* %eax: prev task
* %edx: next task
*/
ENTRY(__switch_to_asm)
/*
* Save callee-saved registers
* This must match the order in struct inactive_task_frame
*/
pushl %ebp
pushl %ebx
pushl %edi
pushl %esi
/* switch stack */
movl %esp, TASK_threadsp(%eax)
movl TASK_threadsp(%edx), %esp
#ifdef CONFIG_STACKPROTECTOR
movl TASK_stack_canary(%edx), %ebx
movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif
#ifdef CONFIG_RETPOLINE
/*
* When switching from a shallower to a deeper call stack
* the RSB may either underflow or use entries populated
* with userspace addresses. On CPUs where those concerns
* exist, overwrite the RSB with entries which capture
* speculative execution to prevent attack.
*/
FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
#endif
/* restore callee-saved registers */
popl %esi
popl %edi
popl %ebx
popl %ebp
jmp __switch_to
END(__switch_to_asm)
/*
* The unwinder expects the last frame on the stack to always be at the same
* offset from the end of the page, which allows it to validate the stack.
* Calling schedule_tail() directly would break that convention because its an
* asmlinkage function so its argument has to be pushed on the stack. This
* wrapper creates a proper "end of stack" frame header before the call.
*/
ENTRY(schedule_tail_wrapper)
FRAME_BEGIN
pushl %eax
call schedule_tail
popl %eax
FRAME_END
ret
ENDPROC(schedule_tail_wrapper)
/*
* A newly forked process directly context switches into this address.
*
* eax: prev task we switched from
* ebx: kernel thread func (NULL for user thread)
* edi: kernel thread arg
*/
ENTRY(ret_from_fork)
call schedule_tail_wrapper
testl %ebx, %ebx
jnz 1f /* kernel threads are uncommon */
2:
/* When we fork, we trace the syscall return in the child, too. */
movl %esp, %eax
call syscall_return_slowpath
jmp restore_all
/* kernel thread */
1: movl %edi, %eax
CALL_NOSPEC %ebx
/*
* A kernel thread is allowed to return here after successfully
* calling do_execve(). Exit to userspace to complete the execve()
* syscall.
*/
movl $0, PT_EAX(%esp)
jmp 2b
END(ret_from_fork)
/*
* Return to user mode is not as complex as all this looks,
* but we want the default path for a system call return to
* go as quickly as possible which is why some of this is
* less clear than it otherwise should be.
*/
# userspace resumption stub bypassing syscall exit tracing
ALIGN
ret_from_exception:
preempt_stop(CLBR_ANY)
ret_from_intr:
#ifdef CONFIG_VM86
movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
movb PT_CS(%esp), %al
andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
#else
/*
* We can be coming here from child spawned by kernel_thread().
*/
movl PT_CS(%esp), %eax
andl $SEGMENT_RPL_MASK, %eax
#endif
cmpl $USER_RPL, %eax
jb resume_kernel # not returning to v8086 or userspace
ENTRY(resume_userspace)
DISABLE_INTERRUPTS(CLBR_ANY)
TRACE_IRQS_OFF
movl %esp, %eax
call prepare_exit_to_usermode
jmp restore_all
END(ret_from_exception)
#ifdef CONFIG_PREEMPT
ENTRY(resume_kernel)
DISABLE_INTERRUPTS(CLBR_ANY)
.Lneed_resched:
cmpl $0, PER_CPU_VAR(__preempt_count)
jnz restore_all_kernel
testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ?
jz restore_all_kernel
call preempt_schedule_irq
jmp .Lneed_resched
END(resume_kernel)
#endif
GLOBAL(__begin_SYSENTER_singlestep_region)
/*
* All code from here through __end_SYSENTER_singlestep_region is subject
* to being single-stepped if a user program sets TF and executes SYSENTER.
* There is absolutely nothing that we can do to prevent this from happening
* (thanks Intel!). To keep our handling of this situation as simple as
* possible, we handle TF just like AC and NT, except that our #DB handler
* will ignore all of the single-step traps generated in this range.
*/
#ifdef CONFIG_XEN
/*
* Xen doesn't set %esp to be precisely what the normal SYSENTER
* entry point expects, so fix it up before using the normal path.
*/
ENTRY(xen_sysenter_target)
addl $5*4, %esp /* remove xen-provided frame */
jmp .Lsysenter_past_esp
#endif
/*
* 32-bit SYSENTER entry.
*
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
* if X86_FEATURE_SEP is available. This is the preferred system call
* entry on 32-bit systems.
*
* The SYSENTER instruction, in principle, should *only* occur in the
* vDSO. In practice, a small number of Android devices were shipped
* with a copy of Bionic that inlined a SYSENTER instruction. This
* never happened in any of Google's Bionic versions -- it only happened
* in a narrow range of Intel-provided versions.
*
* SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
* IF and VM in RFLAGS are cleared (IOW: interrupts are off).
* SYSENTER does not save anything on the stack,
* and does not save old EIP (!!!), ESP, or EFLAGS.
*
* To avoid losing track of EFLAGS.VM (and thus potentially corrupting
* user and/or vm86 state), we explicitly disable the SYSENTER
* instruction in vm86 mode by reprogramming the MSRs.
*
* Arguments:
* eax system call number
* ebx arg1
* ecx arg2
* edx arg3
* esi arg4
* edi arg5
* ebp user stack
* 0(%ebp) arg6
*/
ENTRY(entry_SYSENTER_32)
/*
* On entry-stack with all userspace-regs live - save and
* restore eflags and %eax to use it as scratch-reg for the cr3
* switch.
*/
pushfl
pushl %eax
BUG_IF_WRONG_CR3 no_user_check=1
SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
popl %eax
popfl
/* Stack empty again, switch to task stack */
movl TSS_entry2task_stack(%esp), %esp
.Lsysenter_past_esp:
pushl $__USER_DS /* pt_regs->ss */
pushl %ebp /* pt_regs->sp (stashed in bp) */
pushfl /* pt_regs->flags (except IF = 0) */
orl $X86_EFLAGS_IF, (%esp) /* Fix IF */
pushl $__USER_CS /* pt_regs->cs */
pushl $0 /* pt_regs->ip = 0 (placeholder) */
pushl %eax /* pt_regs->orig_ax */
SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
/*
* SYSENTER doesn't filter flags, so we need to clear NT, AC
* and TF ourselves. To save a few cycles, we can check whether
* either was set instead of doing an unconditional popfq.
* This needs to happen before enabling interrupts so that
* we don't get preempted with NT set.
*
* If TF is set, we will single-step all the way to here -- do_debug
* will ignore all the traps. (Yes, this is slow, but so is
* single-stepping in general. This allows us to avoid having
* a more complicated code to handle the case where a user program
* forces us to single-step through the SYSENTER entry code.)
*
* NB.: .Lsysenter_fix_flags is a label with the code under it moved
* out-of-line as an optimization: NT is unlikely to be set in the
* majority of the cases and instead of polluting the I$ unnecessarily,
* we're keeping that code behind a branch which will predict as
* not-taken and therefore its instructions won't be fetched.
*/
testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
jnz .Lsysenter_fix_flags
.Lsysenter_flags_fixed:
/*
* User mode is traced as though IRQs are on, and SYSENTER
* turned them off.
*/
TRACE_IRQS_OFF
movl %esp, %eax
call do_fast_syscall_32
/* XEN PV guests always use IRET path */
ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
"jmp .Lsyscall_32_done", X86_FEATURE_XENPV
/* Opportunistic SYSEXIT */
TRACE_IRQS_ON /* User mode traces as IRQs on. */
/*
* Setup entry stack - we keep the pointer in %eax and do the
* switch after almost all user-state is restored.
*/
/* Load entry stack pointer and allocate frame for eflags/eax */
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
subl $(2*4), %eax
/* Copy eflags and eax to entry stack */
movl PT_EFLAGS(%esp), %edi
movl PT_EAX(%esp), %esi
movl %edi, (%eax)
movl %esi, 4(%eax)
/* Restore user registers and segments */
movl PT_EIP(%esp), %edx /* pt_regs->ip */
movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
1: mov PT_FS(%esp), %fs
PTGS_TO_GS
popl %ebx /* pt_regs->bx */
addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
popl %esi /* pt_regs->si */
popl %edi /* pt_regs->di */
popl %ebp /* pt_regs->bp */
/* Switch to entry stack */
movl %eax, %esp
/* Now ready to switch the cr3 */
SWITCH_TO_USER_CR3 scratch_reg=%eax
/*
* Restore all flags except IF. (We restore IF separately because
* STI gives a one-instruction window in which we won't be interrupted,
* whereas POPF does not.)
*/
btrl $X86_EFLAGS_IF_BIT, (%esp)
BUG_IF_WRONG_CR3 no_user_check=1
popfl
popl %eax
/*
* Return back to the vDSO, which will pop ecx and edx.
* Don't bother with DS and ES (they already contain __USER_DS).
*/
sti
sysexit
.pushsection .fixup, "ax"
2: movl $0, PT_FS(%esp)
jmp 1b
.popsection
_ASM_EXTABLE(1b, 2b)
PTGS_TO_GS_EX
.Lsysenter_fix_flags:
pushl $X86_EFLAGS_FIXED
popfl
jmp .Lsysenter_flags_fixed
GLOBAL(__end_SYSENTER_singlestep_region)
ENDPROC(entry_SYSENTER_32)
/*
* 32-bit legacy system call entry.
*
* 32-bit x86 Linux system calls traditionally used the INT $0x80
* instruction. INT $0x80 lands here.
*
* This entry point can be used by any 32-bit perform system calls.
* Instances of INT $0x80 can be found inline in various programs and
* libraries. It is also used by the vDSO's __kernel_vsyscall
* fallback for hardware that doesn't support a faster entry method.
* Restarted 32-bit system calls also fall back to INT $0x80
* regardless of what instruction was originally used to do the system
* call. (64-bit programs can use INT $0x80 as well, but they can
* only run on 64-bit kernels and therefore land in
* entry_INT80_compat.)
*
* This is considered a slow path. It is not used by most libc
* implementations on modern hardware except during process startup.
*
* Arguments:
* eax system call number
* ebx arg1
* ecx arg2
* edx arg3
* esi arg4
* edi arg5
* ebp arg6
*/
ENTRY(entry_INT80_32)
ASM_CLAC
pushl %eax /* pt_regs->orig_ax */
SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
/*
* User mode is traced as though IRQs are on, and the interrupt gate
* turned them off.
*/
TRACE_IRQS_OFF
movl %esp, %eax
call do_int80_syscall_32
.Lsyscall_32_done:
restore_all:
TRACE_IRQS_IRET
SWITCH_TO_ENTRY_STACK
.Lrestore_all_notrace:
CHECK_AND_APPLY_ESPFIX
.Lrestore_nocheck:
/* Switch back to user CR3 */
SWITCH_TO_USER_CR3 scratch_reg=%eax
BUG_IF_WRONG_CR3
/* Restore user state */
RESTORE_REGS pop=4 # skip orig_eax/error_code
.Lirq_return:
/*
* ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
* when returning from IPI handler and when returning from
* scheduler to user-space.
*/
INTERRUPT_RETURN
restore_all_kernel:
TRACE_IRQS_IRET
PARANOID_EXIT_TO_KERNEL_MODE
BUG_IF_WRONG_CR3
RESTORE_REGS 4
jmp .Lirq_return
.section .fixup, "ax"
ENTRY(iret_exc )
pushl $0 # no error code
pushl $do_iret_error
#ifdef CONFIG_DEBUG_ENTRY
/*
* The stack-frame here is the one that iret faulted on, so its a
* return-to-user frame. We are on kernel-cr3 because we come here from
* the fixup code. This confuses the CR3 checker, so switch to user-cr3
* as the checker expects it.
*/
pushl %eax
SWITCH_TO_USER_CR3 scratch_reg=%eax
popl %eax
#endif
jmp common_exception
.previous
_ASM_EXTABLE(.Lirq_return, iret_exc)
ENDPROC(entry_INT80_32)
.macro FIXUP_ESPFIX_STACK
/*
* Switch back for ESPFIX stack to the normal zerobased stack
*
* We can't call C functions using the ESPFIX stack. This code reads
* the high word of the segment base from the GDT and swiches to the
* normal stack and adjusts ESP with the matching offset.
*/
#ifdef CONFIG_X86_ESPFIX32
/* fixup the stack */
mov GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
mov GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
shl $16, %eax
addl %esp, %eax /* the adjusted stack pointer */
pushl $__KERNEL_DS
pushl %eax
lss (%esp), %esp /* switch to the normal stack segment */
#endif
.endm
.macro UNWIND_ESPFIX_STACK
#ifdef CONFIG_X86_ESPFIX32
movl %ss, %eax
/* see if on espfix stack */
cmpw $__ESPFIX_SS, %ax
jne 27f
movl $__KERNEL_DS, %eax
movl %eax, %ds
movl %eax, %es
/* switch to normal stack */
FIXUP_ESPFIX_STACK
27:
#endif
.endm
/*
* Build the entry stubs with some assembler magic.
* We pack 1 stub into every 8-byte block.
*/
.align 8
ENTRY(irq_entries_start)
vector=FIRST_EXTERNAL_VECTOR
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
pushl $(~vector+0x80) /* Note: always in signed byte range */
vector=vector+1
jmp common_interrupt
.align 8
.endr
END(irq_entries_start)
/*
* the CPU automatically disables interrupts when executing an IRQ vector,
* so IRQ-flags tracing has to follow that:
*/
.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
ASM_CLAC
addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
SAVE_ALL switch_stacks=1
ENCODE_FRAME_POINTER
TRACE_IRQS_OFF
movl %esp, %eax
call do_IRQ
jmp ret_from_intr
ENDPROC(common_interrupt)
#define BUILD_INTERRUPT3(name, nr, fn) \
ENTRY(name) \
ASM_CLAC; \
pushl $~(nr); \
SAVE_ALL switch_stacks=1; \
ENCODE_FRAME_POINTER; \
TRACE_IRQS_OFF \
movl %esp, %eax; \
call fn; \
jmp ret_from_intr; \
ENDPROC(name)
#define BUILD_INTERRUPT(name, nr) \
BUILD_INTERRUPT3(name, nr, smp_##name); \
/* The include is where all of the SMP etc. interrupts come from */
#include <asm/entry_arch.h>
ENTRY(coprocessor_error)
ASM_CLAC
pushl $0
pushl $do_coprocessor_error
jmp common_exception
END(coprocessor_error)
ENTRY(simd_coprocessor_error)
ASM_CLAC
pushl $0
#ifdef CONFIG_X86_INVD_BUG
/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
ALTERNATIVE "pushl $do_general_protection", \
"pushl $do_simd_coprocessor_error", \
X86_FEATURE_XMM
#else
pushl $do_simd_coprocessor_error
#endif
jmp common_exception
END(simd_coprocessor_error)
ENTRY(device_not_available)
ASM_CLAC
pushl $-1 # mark this as an int
pushl $do_device_not_available
jmp common_exception
END(device_not_available)
#ifdef CONFIG_PARAVIRT
ENTRY(native_iret)
iret
_ASM_EXTABLE(native_iret, iret_exc)
END(native_iret)
#endif
ENTRY(overflow)
ASM_CLAC
pushl $0
pushl $do_overflow
jmp common_exception
END(overflow)
ENTRY(bounds)
ASM_CLAC
pushl $0
pushl $do_bounds
jmp common_exception
END(bounds)
ENTRY(invalid_op)
ASM_CLAC
pushl $0
pushl $do_invalid_op
jmp common_exception
END(invalid_op)
ENTRY(coprocessor_segment_overrun)
ASM_CLAC
pushl $0
pushl $do_coprocessor_segment_overrun
jmp common_exception
END(coprocessor_segment_overrun)
ENTRY(invalid_TSS)
ASM_CLAC
pushl $do_invalid_TSS
jmp common_exception
END(invalid_TSS)
ENTRY(segment_not_present)
ASM_CLAC
pushl $do_segment_not_present
jmp common_exception
END(segment_not_present)
ENTRY(stack_segment)
ASM_CLAC
pushl $do_stack_segment
jmp common_exception
END(stack_segment)
ENTRY(alignment_check)
ASM_CLAC
pushl $do_alignment_check
jmp common_exception
END(alignment_check)
ENTRY(divide_error)
ASM_CLAC
pushl $0 # no error code
pushl $do_divide_error
jmp common_exception
END(divide_error)
#ifdef CONFIG_X86_MCE
ENTRY(machine_check)
ASM_CLAC
pushl $0
pushl machine_check_vector
jmp common_exception
END(machine_check)
#endif
ENTRY(spurious_interrupt_bug)
ASM_CLAC
pushl $0
pushl $do_spurious_interrupt_bug
jmp common_exception
END(spurious_interrupt_bug)
#ifdef CONFIG_XEN
ENTRY(xen_hypervisor_callback)
pushl $-1 /* orig_ax = -1 => not a system call */
SAVE_ALL
ENCODE_FRAME_POINTER
TRACE_IRQS_OFF
/*
* Check to see if we got the event in the critical
* region in xen_iret_direct, after we've reenabled
* events and checked for pending events. This simulates
* iret instruction's behaviour where it delivers a
* pending interrupt when enabling interrupts:
*/
movl PT_EIP(%esp), %eax
cmpl $xen_iret_start_crit, %eax
jb 1f
cmpl $xen_iret_end_crit, %eax
jae 1f
jmp xen_iret_crit_fixup
ENTRY(xen_do_upcall)
1: mov %esp, %eax
call xen_evtchn_do_upcall
#ifndef CONFIG_PREEMPT
call xen_maybe_preempt_hcall
#endif
jmp ret_from_intr
ENDPROC(xen_hypervisor_callback)
/*
* Hypervisor uses this for application faults while it executes.
* We get here for two reasons:
* 1. Fault while reloading DS, ES, FS or GS
* 2. Fault while executing IRET
* Category 1 we fix up by reattempting the load, and zeroing the segment
* register if the load fails.
* Category 2 we fix up by jumping to do_iret_error. We cannot use the
* normal Linux return path in this case because if we use the IRET hypercall
* to pop the stack frame we end up in an infinite loop of failsafe callbacks.
* We distinguish between categories by maintaining a status value in EAX.
*/
ENTRY(xen_failsafe_callback)
pushl %eax
movl $1, %eax
1: mov 4(%esp), %ds
2: mov 8(%esp), %es
3: mov 12(%esp), %fs
4: mov 16(%esp), %gs
/* EAX == 0 => Category 1 (Bad segment)
EAX != 0 => Category 2 (Bad IRET) */
testl %eax, %eax
popl %eax
lea 16(%esp), %esp
jz 5f
jmp iret_exc
5: pushl $-1 /* orig_ax = -1 => not a system call */
SAVE_ALL
ENCODE_FRAME_POINTER
jmp ret_from_exception
.section .fixup, "ax"
6: xorl %eax, %eax
movl %eax, 4(%esp)
jmp 1b
7: xorl %eax, %eax
movl %eax, 8(%esp)
jmp 2b
8: xorl %eax, %eax
movl %eax, 12(%esp)
jmp 3b
9: xorl %eax, %eax
movl %eax, 16(%esp)
jmp 4b
.previous
_ASM_EXTABLE(1b, 6b)
_ASM_EXTABLE(2b, 7b)
_ASM_EXTABLE(3b, 8b)
_ASM_EXTABLE(4b, 9b)
ENDPROC(xen_failsafe_callback)
BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
xen_evtchn_do_upcall)
#endif /* CONFIG_XEN */
#if IS_ENABLED(CONFIG_HYPERV)
BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
hyperv_vector_handler)
BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
hyperv_reenlightenment_intr)
BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
hv_stimer0_vector_handler)
#endif /* CONFIG_HYPERV */
ENTRY(page_fault)
ASM_CLAC
pushl $do_page_fault
ALIGN
jmp common_exception
END(page_fault)
common_exception:
/* the function address is in %gs's slot on the stack */
pushl %fs
pushl %es
pushl %ds
pushl %eax
movl $(__USER_DS), %eax
movl %eax, %ds
movl %eax, %es
movl $(__KERNEL_PERCPU), %eax
movl %eax, %fs
pushl %ebp
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx
SWITCH_TO_KERNEL_STACK
ENCODE_FRAME_POINTER
cld
UNWIND_ESPFIX_STACK
GS_TO_REG %ecx
movl PT_GS(%esp), %edi # get the function address
movl PT_ORIG_EAX(%esp), %edx # get the error code
movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
REG_TO_PTGS %ecx
SET_KERNEL_GS %ecx
TRACE_IRQS_OFF
movl %esp, %eax # pt_regs pointer
CALL_NOSPEC %edi
jmp ret_from_exception
END(common_exception)
ENTRY(debug)
/*
* Entry from sysenter is now handled in common_exception
*/
ASM_CLAC
pushl $-1 # mark this as an int
pushl $do_debug
jmp common_exception
END(debug)
/*
* NMI is doubly nasty. It can happen on the first instruction of
* entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
* of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
* switched stacks. We handle both conditions by simply checking whether we
* interrupted kernel code running on the SYSENTER stack.
*/
ENTRY(nmi)
ASM_CLAC
#ifdef CONFIG_X86_ESPFIX32
pushl %eax
movl %ss, %eax
cmpw $__ESPFIX_SS, %ax
popl %eax
je .Lnmi_espfix_stack
#endif
pushl %eax # pt_regs->orig_ax
SAVE_ALL_NMI cr3_reg=%edi
ENCODE_FRAME_POINTER
xorl %edx, %edx # zero error code
movl %esp, %eax # pt_regs pointer
/* Are we currently on the SYSENTER stack? */
movl PER_CPU_VAR(cpu_entry_area), %ecx
addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
cmpl $SIZEOF_entry_stack, %ecx
jb .Lnmi_from_sysenter_stack
/* Not on SYSENTER stack. */
call do_nmi
jmp .Lnmi_return
.Lnmi_from_sysenter_stack:
/*
* We're on the SYSENTER stack. Switch off. No one (not even debug)
* is using the thread stack right now, so it's safe for us to use it.
*/
movl %esp, %ebx
movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
call do_nmi
movl %ebx, %esp
.Lnmi_return:
CHECK_AND_APPLY_ESPFIX
RESTORE_ALL_NMI cr3_reg=%edi pop=4
jmp .Lirq_return
#ifdef CONFIG_X86_ESPFIX32
.Lnmi_espfix_stack:
/*
* create the pointer to lss back
*/
pushl %ss
pushl %esp
addl $4, (%esp)
/* copy the iret frame of 12 bytes */
.rept 3
pushl 16(%esp)
.endr
pushl %eax
SAVE_ALL_NMI cr3_reg=%edi
ENCODE_FRAME_POINTER
FIXUP_ESPFIX_STACK # %eax == %esp
xorl %edx, %edx # zero error code
call do_nmi
RESTORE_ALL_NMI cr3_reg=%edi
lss 12+4(%esp), %esp # back to espfix stack
jmp .Lirq_return
#endif
END(nmi)
ENTRY(int3)
ASM_CLAC
pushl $-1 # mark this as an int
SAVE_ALL switch_stacks=1
ENCODE_FRAME_POINTER
TRACE_IRQS_OFF
xorl %edx, %edx # zero error code
movl %esp, %eax # pt_regs pointer
call do_int3
jmp ret_from_exception
END(int3)
ENTRY(general_protection)
pushl $do_general_protection
jmp common_exception
END(general_protection)
#ifdef CONFIG_KVM_GUEST
ENTRY(async_page_fault)
ASM_CLAC
pushl $do_async_page_fault
jmp common_exception
END(async_page_fault)
#endif
ENTRY(rewind_stack_do_exit)
/* Prevent any naive code from trying to unwind to our caller. */
xorl %ebp, %ebp
movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
call do_exit
1: jmp 1b
END(rewind_stack_do_exit)