mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 10:54:48 +07:00
6da2ec5605
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
473 lines
13 KiB
C
473 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Setup routines for AGP 3.5 compliant bridges.
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/agp_backend.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "agp.h"
|
|
|
|
/* Generic AGP 3.5 enabling routines */
|
|
|
|
struct agp_3_5_dev {
|
|
struct list_head list;
|
|
u8 capndx;
|
|
u32 maxbw;
|
|
struct pci_dev *dev;
|
|
};
|
|
|
|
static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
|
|
{
|
|
struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
|
|
struct list_head *pos;
|
|
|
|
list_for_each(pos, head) {
|
|
cur = list_entry(pos, struct agp_3_5_dev, list);
|
|
if (cur->maxbw > n->maxbw)
|
|
break;
|
|
}
|
|
list_add_tail(new, pos);
|
|
}
|
|
|
|
static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
|
|
{
|
|
struct agp_3_5_dev *cur;
|
|
struct pci_dev *dev;
|
|
struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
|
|
u32 nistat;
|
|
|
|
INIT_LIST_HEAD(head);
|
|
|
|
for (pos=start; pos!=head; ) {
|
|
cur = list_entry(pos, struct agp_3_5_dev, list);
|
|
dev = cur->dev;
|
|
|
|
pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
|
|
cur->maxbw = (nistat >> 16) & 0xff;
|
|
|
|
tmp = pos;
|
|
pos = pos->next;
|
|
agp_3_5_dev_list_insert(head, tmp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize all isochronous transfer parameters for an AGP 3.0
|
|
* node (i.e. a host bridge in combination with the adapters
|
|
* lying behind it...)
|
|
*/
|
|
|
|
static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
|
|
struct agp_3_5_dev *dev_list, unsigned int ndevs)
|
|
{
|
|
/*
|
|
* Convenience structure to make the calculations clearer
|
|
* here. The field names come straight from the AGP 3.0 spec.
|
|
*/
|
|
struct isoch_data {
|
|
u32 maxbw;
|
|
u32 n;
|
|
u32 y;
|
|
u32 l;
|
|
u32 rq;
|
|
struct agp_3_5_dev *dev;
|
|
};
|
|
|
|
struct pci_dev *td = bridge->dev, *dev;
|
|
struct list_head *head = &dev_list->list, *pos;
|
|
struct agp_3_5_dev *cur;
|
|
struct isoch_data *master, target;
|
|
unsigned int cdev = 0;
|
|
u32 mnistat, tnistat, tstatus, mcmd;
|
|
u16 tnicmd, mnicmd;
|
|
u8 mcapndx;
|
|
u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
|
|
u32 step, rem, rem_isoch, rem_async;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We'll work with an array of isoch_data's (one for each
|
|
* device in dev_list) throughout this function.
|
|
*/
|
|
master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
|
|
if (master == NULL) {
|
|
ret = -ENOMEM;
|
|
goto get_out;
|
|
}
|
|
|
|
/*
|
|
* Sort the device list by maxbw. We need to do this because the
|
|
* spec suggests that the devices with the smallest requirements
|
|
* have their resources allocated first, with all remaining resources
|
|
* falling to the device with the largest requirement.
|
|
*
|
|
* We don't exactly do this, we divide target resources by ndevs
|
|
* and split them amongst the AGP 3.0 devices. The remainder of such
|
|
* division operations are dropped on the last device, sort of like
|
|
* the spec mentions it should be done.
|
|
*
|
|
* We can't do this sort when we initially construct the dev_list
|
|
* because we don't know until this function whether isochronous
|
|
* transfers are enabled and consequently whether maxbw will mean
|
|
* anything.
|
|
*/
|
|
agp_3_5_dev_list_sort(dev_list, ndevs);
|
|
|
|
pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
|
|
pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
|
|
|
|
/* Extract power-on defaults from the target */
|
|
target.maxbw = (tnistat >> 16) & 0xff;
|
|
target.n = (tnistat >> 8) & 0xff;
|
|
target.y = (tnistat >> 6) & 0x3;
|
|
target.l = (tnistat >> 3) & 0x7;
|
|
target.rq = (tstatus >> 24) & 0xff;
|
|
|
|
y_max = target.y;
|
|
|
|
/*
|
|
* Extract power-on defaults for each device in dev_list. Along
|
|
* the way, calculate the total isochronous bandwidth required
|
|
* by these devices and the largest requested payload size.
|
|
*/
|
|
list_for_each(pos, head) {
|
|
cur = list_entry(pos, struct agp_3_5_dev, list);
|
|
dev = cur->dev;
|
|
|
|
mcapndx = cur->capndx;
|
|
|
|
pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
|
|
|
|
master[cdev].maxbw = (mnistat >> 16) & 0xff;
|
|
master[cdev].n = (mnistat >> 8) & 0xff;
|
|
master[cdev].y = (mnistat >> 6) & 0x3;
|
|
master[cdev].dev = cur;
|
|
|
|
tot_bw += master[cdev].maxbw;
|
|
y_max = max(y_max, master[cdev].y);
|
|
|
|
cdev++;
|
|
}
|
|
|
|
/* Check if this configuration has any chance of working */
|
|
if (tot_bw > target.maxbw) {
|
|
dev_err(&td->dev, "isochronous bandwidth required "
|
|
"by AGP 3.0 devices exceeds that which is supported by "
|
|
"the AGP 3.0 bridge!\n");
|
|
ret = -ENODEV;
|
|
goto free_and_exit;
|
|
}
|
|
|
|
target.y = y_max;
|
|
|
|
/*
|
|
* Write the calculated payload size into the target's NICMD
|
|
* register. Doing this directly effects the ISOCH_N value
|
|
* in the target's NISTAT register, so we need to do this now
|
|
* to get an accurate value for ISOCH_N later.
|
|
*/
|
|
pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
|
|
tnicmd &= ~(0x3 << 6);
|
|
tnicmd |= target.y << 6;
|
|
pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
|
|
|
|
/* Reread the target's ISOCH_N */
|
|
pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
|
|
target.n = (tnistat >> 8) & 0xff;
|
|
|
|
/* Calculate the minimum ISOCH_N needed by each master */
|
|
for (cdev=0; cdev<ndevs; cdev++) {
|
|
master[cdev].y = target.y;
|
|
master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
|
|
|
|
tot_n += master[cdev].n;
|
|
}
|
|
|
|
/* Exit if the minimal ISOCH_N allocation among the masters is more
|
|
* than the target can handle. */
|
|
if (tot_n > target.n) {
|
|
dev_err(&td->dev, "number of isochronous "
|
|
"transactions per period required by AGP 3.0 devices "
|
|
"exceeds that which is supported by the AGP 3.0 "
|
|
"bridge!\n");
|
|
ret = -ENODEV;
|
|
goto free_and_exit;
|
|
}
|
|
|
|
/* Calculate left over ISOCH_N capability in the target. We'll give
|
|
* this to the hungriest device (as per the spec) */
|
|
rem = target.n - tot_n;
|
|
|
|
/*
|
|
* Calculate the minimum isochronous RQ depth needed by each master.
|
|
* Along the way, distribute the extra ISOCH_N capability calculated
|
|
* above.
|
|
*/
|
|
for (cdev=0; cdev<ndevs; cdev++) {
|
|
/*
|
|
* This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y
|
|
* byte isochronous writes will be broken into 64B pieces.
|
|
* This means we need to budget more RQ depth to account for
|
|
* these kind of writes (each isochronous write is actually
|
|
* many writes on the AGP bus).
|
|
*/
|
|
master[cdev].rq = master[cdev].n;
|
|
if (master[cdev].y > 0x1)
|
|
master[cdev].rq *= (1 << (master[cdev].y - 1));
|
|
|
|
tot_rq += master[cdev].rq;
|
|
}
|
|
master[ndevs-1].n += rem;
|
|
|
|
/* Figure the number of isochronous and asynchronous RQ slots the
|
|
* target is providing. */
|
|
rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
|
|
rq_async = target.rq - rq_isoch;
|
|
|
|
/* Exit if the minimal RQ needs of the masters exceeds what the target
|
|
* can provide. */
|
|
if (tot_rq > rq_isoch) {
|
|
dev_err(&td->dev, "number of request queue slots "
|
|
"required by the isochronous bandwidth requested by "
|
|
"AGP 3.0 devices exceeds the number provided by the "
|
|
"AGP 3.0 bridge!\n");
|
|
ret = -ENODEV;
|
|
goto free_and_exit;
|
|
}
|
|
|
|
/* Calculate asynchronous RQ capability in the target (per master) as
|
|
* well as the total number of leftover isochronous RQ slots. */
|
|
step = rq_async / ndevs;
|
|
rem_async = step + (rq_async % ndevs);
|
|
rem_isoch = rq_isoch - tot_rq;
|
|
|
|
/* Distribute the extra RQ slots calculated above and write our
|
|
* isochronous settings out to the actual devices. */
|
|
for (cdev=0; cdev<ndevs; cdev++) {
|
|
cur = master[cdev].dev;
|
|
dev = cur->dev;
|
|
|
|
mcapndx = cur->capndx;
|
|
|
|
master[cdev].rq += (cdev == ndevs - 1)
|
|
? (rem_async + rem_isoch) : step;
|
|
|
|
pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
|
|
pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
|
|
|
|
mnicmd &= ~(0xff << 8);
|
|
mnicmd &= ~(0x3 << 6);
|
|
mcmd &= ~(0xff << 24);
|
|
|
|
mnicmd |= master[cdev].n << 8;
|
|
mnicmd |= master[cdev].y << 6;
|
|
mcmd |= master[cdev].rq << 24;
|
|
|
|
pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
|
|
pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
|
|
}
|
|
|
|
free_and_exit:
|
|
kfree(master);
|
|
|
|
get_out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function basically allocates request queue slots among the
|
|
* AGP 3.0 systems in nonisochronous nodes. The algorithm is
|
|
* pretty stupid, divide the total number of RQ slots provided by the
|
|
* target by ndevs. Distribute this many slots to each AGP 3.0 device,
|
|
* giving any left over slots to the last device in dev_list.
|
|
*/
|
|
static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
|
|
struct agp_3_5_dev *dev_list, unsigned int ndevs)
|
|
{
|
|
struct agp_3_5_dev *cur;
|
|
struct list_head *head = &dev_list->list, *pos;
|
|
u32 tstatus, mcmd;
|
|
u32 trq, mrq, rem;
|
|
unsigned int cdev = 0;
|
|
|
|
pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
|
|
|
|
trq = (tstatus >> 24) & 0xff;
|
|
mrq = trq / ndevs;
|
|
|
|
rem = mrq + (trq % ndevs);
|
|
|
|
for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
|
|
cur = list_entry(pos, struct agp_3_5_dev, list);
|
|
|
|
pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
|
|
mcmd &= ~(0xff << 24);
|
|
mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
|
|
pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fully configure and enable an AGP 3.0 host bridge and all the devices
|
|
* lying behind it.
|
|
*/
|
|
int agp_3_5_enable(struct agp_bridge_data *bridge)
|
|
{
|
|
struct pci_dev *td = bridge->dev, *dev = NULL;
|
|
u8 mcapndx;
|
|
u32 isoch, arqsz;
|
|
u32 tstatus, mstatus, ncapid;
|
|
u32 mmajor;
|
|
u16 mpstat;
|
|
struct agp_3_5_dev *dev_list, *cur;
|
|
struct list_head *head, *pos;
|
|
unsigned int ndevs = 0;
|
|
int ret = 0;
|
|
|
|
/* Extract some power-on defaults from the target */
|
|
pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
|
|
isoch = (tstatus >> 17) & 0x1;
|
|
if (isoch == 0) /* isoch xfers not available, bail out. */
|
|
return -ENODEV;
|
|
|
|
arqsz = (tstatus >> 13) & 0x7;
|
|
|
|
/*
|
|
* Allocate a head for our AGP 3.5 device list
|
|
* (multiple AGP v3 devices are allowed behind a single bridge).
|
|
*/
|
|
if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
|
|
ret = -ENOMEM;
|
|
goto get_out;
|
|
}
|
|
head = &dev_list->list;
|
|
INIT_LIST_HEAD(head);
|
|
|
|
/* Find all AGP devices, and add them to dev_list. */
|
|
for_each_pci_dev(dev) {
|
|
mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
|
|
if (mcapndx == 0)
|
|
continue;
|
|
|
|
switch ((dev->class >>8) & 0xff00) {
|
|
case 0x0600: /* Bridge */
|
|
/* Skip bridges. We should call this function for each one. */
|
|
continue;
|
|
|
|
case 0x0001: /* Unclassified device */
|
|
/* Don't know what this is, but log it for investigation. */
|
|
if (mcapndx != 0) {
|
|
dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
|
|
pci_name(dev),
|
|
dev->vendor, dev->device);
|
|
}
|
|
continue;
|
|
|
|
case 0x0300: /* Display controller */
|
|
case 0x0400: /* Multimedia controller */
|
|
if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
|
|
ret = -ENOMEM;
|
|
goto free_and_exit;
|
|
}
|
|
cur->dev = dev;
|
|
|
|
pos = &cur->list;
|
|
list_add(pos, head);
|
|
ndevs++;
|
|
continue;
|
|
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Take an initial pass through the devices lying behind our host
|
|
* bridge. Make sure each one is actually an AGP 3.0 device, otherwise
|
|
* exit with an error message. Along the way store the AGP 3.0
|
|
* cap_ptr for each device
|
|
*/
|
|
list_for_each(pos, head) {
|
|
cur = list_entry(pos, struct agp_3_5_dev, list);
|
|
dev = cur->dev;
|
|
|
|
pci_read_config_word(dev, PCI_STATUS, &mpstat);
|
|
if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
|
|
continue;
|
|
|
|
pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
|
|
if (mcapndx != 0) {
|
|
do {
|
|
pci_read_config_dword(dev, mcapndx, &ncapid);
|
|
if ((ncapid & 0xff) != 2)
|
|
mcapndx = (ncapid >> 8) & 0xff;
|
|
}
|
|
while (((ncapid & 0xff) != 2) && (mcapndx != 0));
|
|
}
|
|
|
|
if (mcapndx == 0) {
|
|
dev_err(&td->dev, "woah! Non-AGP device %s on "
|
|
"secondary bus of AGP 3.5 bridge!\n",
|
|
pci_name(dev));
|
|
ret = -ENODEV;
|
|
goto free_and_exit;
|
|
}
|
|
|
|
mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
|
|
if (mmajor < 3) {
|
|
dev_err(&td->dev, "woah! AGP 2.0 device %s on "
|
|
"secondary bus of AGP 3.5 bridge operating "
|
|
"with AGP 3.0 electricals!\n", pci_name(dev));
|
|
ret = -ENODEV;
|
|
goto free_and_exit;
|
|
}
|
|
|
|
cur->capndx = mcapndx;
|
|
|
|
pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
|
|
|
|
if (((mstatus >> 3) & 0x1) == 0) {
|
|
dev_err(&td->dev, "woah! AGP 3.x device %s not "
|
|
"operating in AGP 3.x mode on secondary bus "
|
|
"of AGP 3.5 bridge operating with AGP 3.0 "
|
|
"electricals!\n", pci_name(dev));
|
|
ret = -ENODEV;
|
|
goto free_and_exit;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Call functions to divide target resources amongst the AGP 3.0
|
|
* masters. This process is dramatically different depending on
|
|
* whether isochronous transfers are supported.
|
|
*/
|
|
if (isoch) {
|
|
ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
|
|
if (ret) {
|
|
dev_info(&td->dev, "something bad happened setting "
|
|
"up isochronous xfers; falling back to "
|
|
"non-isochronous xfer mode\n");
|
|
} else {
|
|
goto free_and_exit;
|
|
}
|
|
}
|
|
agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
|
|
|
|
free_and_exit:
|
|
/* Be sure to free the dev_list */
|
|
for (pos=head->next; pos!=head; ) {
|
|
cur = list_entry(pos, struct agp_3_5_dev, list);
|
|
|
|
pos = pos->next;
|
|
kfree(cur);
|
|
}
|
|
kfree(dev_list);
|
|
|
|
get_out:
|
|
return ret;
|
|
}
|