linux_dsm_epyc7002/tools/perf/util/cpumap.c
Arnaldo Carvalho de Melo 3052ba56bc tools perf: Move from sane_ctype.h obtained from git to the Linux's original
We got the sane_ctype.h headers from git and kept using it so far, but
since that code originally came from the kernel sources to the git
sources, perhaps its better to just use the one in the kernel, so that
we can leverage tools/perf/check_headers.sh to be notified when our copy
gets out of sync, i.e. when fixes or goodies are added to the code we've
copied.

This will help with things like tools/lib/string.c where we want to have
more things in common with the kernel, such as strim(), skip_spaces(),
etc so as to go on removing the things that we have in tools/perf/util/
and instead using the code in the kernel, indirectly and removing things
like EXPORT_SYMBOL(), etc, getting notified when fixes and improvements
are made to the original code.

Hopefully this also should help with reducing the difference of code
hosted in tools/ to the one in the kernel proper.

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/n/tip-7k9868l713wqtgo01xxygn12@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-06-25 21:02:47 -03:00

793 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "util.h"
#include <api/fs/fs.h>
#include "../perf.h"
#include "cpumap.h"
#include <assert.h>
#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>
#include <linux/bitmap.h>
#include "asm/bug.h"
#include <linux/ctype.h>
static int max_cpu_num;
static int max_present_cpu_num;
static int max_node_num;
static int *cpunode_map;
static struct cpu_map *cpu_map__default_new(void)
{
struct cpu_map *cpus;
int nr_cpus;
nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
if (nr_cpus < 0)
return NULL;
cpus = malloc(sizeof(*cpus) + nr_cpus * sizeof(int));
if (cpus != NULL) {
int i;
for (i = 0; i < nr_cpus; ++i)
cpus->map[i] = i;
cpus->nr = nr_cpus;
refcount_set(&cpus->refcnt, 1);
}
return cpus;
}
static struct cpu_map *cpu_map__trim_new(int nr_cpus, int *tmp_cpus)
{
size_t payload_size = nr_cpus * sizeof(int);
struct cpu_map *cpus = malloc(sizeof(*cpus) + payload_size);
if (cpus != NULL) {
cpus->nr = nr_cpus;
memcpy(cpus->map, tmp_cpus, payload_size);
refcount_set(&cpus->refcnt, 1);
}
return cpus;
}
struct cpu_map *cpu_map__read(FILE *file)
{
struct cpu_map *cpus = NULL;
int nr_cpus = 0;
int *tmp_cpus = NULL, *tmp;
int max_entries = 0;
int n, cpu, prev;
char sep;
sep = 0;
prev = -1;
for (;;) {
n = fscanf(file, "%u%c", &cpu, &sep);
if (n <= 0)
break;
if (prev >= 0) {
int new_max = nr_cpus + cpu - prev - 1;
if (new_max >= max_entries) {
max_entries = new_max + MAX_NR_CPUS / 2;
tmp = realloc(tmp_cpus, max_entries * sizeof(int));
if (tmp == NULL)
goto out_free_tmp;
tmp_cpus = tmp;
}
while (++prev < cpu)
tmp_cpus[nr_cpus++] = prev;
}
if (nr_cpus == max_entries) {
max_entries += MAX_NR_CPUS;
tmp = realloc(tmp_cpus, max_entries * sizeof(int));
if (tmp == NULL)
goto out_free_tmp;
tmp_cpus = tmp;
}
tmp_cpus[nr_cpus++] = cpu;
if (n == 2 && sep == '-')
prev = cpu;
else
prev = -1;
if (n == 1 || sep == '\n')
break;
}
if (nr_cpus > 0)
cpus = cpu_map__trim_new(nr_cpus, tmp_cpus);
else
cpus = cpu_map__default_new();
out_free_tmp:
free(tmp_cpus);
return cpus;
}
static struct cpu_map *cpu_map__read_all_cpu_map(void)
{
struct cpu_map *cpus = NULL;
FILE *onlnf;
onlnf = fopen("/sys/devices/system/cpu/online", "r");
if (!onlnf)
return cpu_map__default_new();
cpus = cpu_map__read(onlnf);
fclose(onlnf);
return cpus;
}
struct cpu_map *cpu_map__new(const char *cpu_list)
{
struct cpu_map *cpus = NULL;
unsigned long start_cpu, end_cpu = 0;
char *p = NULL;
int i, nr_cpus = 0;
int *tmp_cpus = NULL, *tmp;
int max_entries = 0;
if (!cpu_list)
return cpu_map__read_all_cpu_map();
/*
* must handle the case of empty cpumap to cover
* TOPOLOGY header for NUMA nodes with no CPU
* ( e.g., because of CPU hotplug)
*/
if (!isdigit(*cpu_list) && *cpu_list != '\0')
goto out;
while (isdigit(*cpu_list)) {
p = NULL;
start_cpu = strtoul(cpu_list, &p, 0);
if (start_cpu >= INT_MAX
|| (*p != '\0' && *p != ',' && *p != '-'))
goto invalid;
if (*p == '-') {
cpu_list = ++p;
p = NULL;
end_cpu = strtoul(cpu_list, &p, 0);
if (end_cpu >= INT_MAX || (*p != '\0' && *p != ','))
goto invalid;
if (end_cpu < start_cpu)
goto invalid;
} else {
end_cpu = start_cpu;
}
for (; start_cpu <= end_cpu; start_cpu++) {
/* check for duplicates */
for (i = 0; i < nr_cpus; i++)
if (tmp_cpus[i] == (int)start_cpu)
goto invalid;
if (nr_cpus == max_entries) {
max_entries += MAX_NR_CPUS;
tmp = realloc(tmp_cpus, max_entries * sizeof(int));
if (tmp == NULL)
goto invalid;
tmp_cpus = tmp;
}
tmp_cpus[nr_cpus++] = (int)start_cpu;
}
if (*p)
++p;
cpu_list = p;
}
if (nr_cpus > 0)
cpus = cpu_map__trim_new(nr_cpus, tmp_cpus);
else if (*cpu_list != '\0')
cpus = cpu_map__default_new();
else
cpus = cpu_map__dummy_new();
invalid:
free(tmp_cpus);
out:
return cpus;
}
static struct cpu_map *cpu_map__from_entries(struct cpu_map_entries *cpus)
{
struct cpu_map *map;
map = cpu_map__empty_new(cpus->nr);
if (map) {
unsigned i;
for (i = 0; i < cpus->nr; i++) {
/*
* Special treatment for -1, which is not real cpu number,
* and we need to use (int) -1 to initialize map[i],
* otherwise it would become 65535.
*/
if (cpus->cpu[i] == (u16) -1)
map->map[i] = -1;
else
map->map[i] = (int) cpus->cpu[i];
}
}
return map;
}
static struct cpu_map *cpu_map__from_mask(struct cpu_map_mask *mask)
{
struct cpu_map *map;
int nr, nbits = mask->nr * mask->long_size * BITS_PER_BYTE;
nr = bitmap_weight(mask->mask, nbits);
map = cpu_map__empty_new(nr);
if (map) {
int cpu, i = 0;
for_each_set_bit(cpu, mask->mask, nbits)
map->map[i++] = cpu;
}
return map;
}
struct cpu_map *cpu_map__new_data(struct cpu_map_data *data)
{
if (data->type == PERF_CPU_MAP__CPUS)
return cpu_map__from_entries((struct cpu_map_entries *)data->data);
else
return cpu_map__from_mask((struct cpu_map_mask *)data->data);
}
size_t cpu_map__fprintf(struct cpu_map *map, FILE *fp)
{
#define BUFSIZE 1024
char buf[BUFSIZE];
cpu_map__snprint(map, buf, sizeof(buf));
return fprintf(fp, "%s\n", buf);
#undef BUFSIZE
}
struct cpu_map *cpu_map__dummy_new(void)
{
struct cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int));
if (cpus != NULL) {
cpus->nr = 1;
cpus->map[0] = -1;
refcount_set(&cpus->refcnt, 1);
}
return cpus;
}
struct cpu_map *cpu_map__empty_new(int nr)
{
struct cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr);
if (cpus != NULL) {
int i;
cpus->nr = nr;
for (i = 0; i < nr; i++)
cpus->map[i] = -1;
refcount_set(&cpus->refcnt, 1);
}
return cpus;
}
static void cpu_map__delete(struct cpu_map *map)
{
if (map) {
WARN_ONCE(refcount_read(&map->refcnt) != 0,
"cpu_map refcnt unbalanced\n");
free(map);
}
}
struct cpu_map *cpu_map__get(struct cpu_map *map)
{
if (map)
refcount_inc(&map->refcnt);
return map;
}
void cpu_map__put(struct cpu_map *map)
{
if (map && refcount_dec_and_test(&map->refcnt))
cpu_map__delete(map);
}
static int cpu__get_topology_int(int cpu, const char *name, int *value)
{
char path[PATH_MAX];
snprintf(path, PATH_MAX,
"devices/system/cpu/cpu%d/topology/%s", cpu, name);
return sysfs__read_int(path, value);
}
int cpu_map__get_socket_id(int cpu)
{
int value, ret = cpu__get_topology_int(cpu, "physical_package_id", &value);
return ret ?: value;
}
int cpu_map__get_socket(struct cpu_map *map, int idx, void *data __maybe_unused)
{
int cpu;
if (idx > map->nr)
return -1;
cpu = map->map[idx];
return cpu_map__get_socket_id(cpu);
}
static int cmp_ids(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
int cpu_map__build_map(struct cpu_map *cpus, struct cpu_map **res,
int (*f)(struct cpu_map *map, int cpu, void *data),
void *data)
{
struct cpu_map *c;
int nr = cpus->nr;
int cpu, s1, s2;
/* allocate as much as possible */
c = calloc(1, sizeof(*c) + nr * sizeof(int));
if (!c)
return -1;
for (cpu = 0; cpu < nr; cpu++) {
s1 = f(cpus, cpu, data);
for (s2 = 0; s2 < c->nr; s2++) {
if (s1 == c->map[s2])
break;
}
if (s2 == c->nr) {
c->map[c->nr] = s1;
c->nr++;
}
}
/* ensure we process id in increasing order */
qsort(c->map, c->nr, sizeof(int), cmp_ids);
refcount_set(&c->refcnt, 1);
*res = c;
return 0;
}
int cpu_map__get_die_id(int cpu)
{
int value, ret = cpu__get_topology_int(cpu, "die_id", &value);
return ret ?: value;
}
int cpu_map__get_die(struct cpu_map *map, int idx, void *data)
{
int cpu, die_id, s;
if (idx > map->nr)
return -1;
cpu = map->map[idx];
die_id = cpu_map__get_die_id(cpu);
/* There is no die_id on legacy system. */
if (die_id == -1)
die_id = 0;
s = cpu_map__get_socket(map, idx, data);
if (s == -1)
return -1;
/*
* Encode socket in bit range 15:8
* die_id is relative to socket, and
* we need a global id. So we combine
* socket + die id
*/
if (WARN_ONCE(die_id >> 8, "The die id number is too big.\n"))
return -1;
if (WARN_ONCE(s >> 8, "The socket id number is too big.\n"))
return -1;
return (s << 8) | (die_id & 0xff);
}
int cpu_map__get_core_id(int cpu)
{
int value, ret = cpu__get_topology_int(cpu, "core_id", &value);
return ret ?: value;
}
int cpu_map__get_core(struct cpu_map *map, int idx, void *data)
{
int cpu, s_die;
if (idx > map->nr)
return -1;
cpu = map->map[idx];
cpu = cpu_map__get_core_id(cpu);
/* s_die is the combination of socket + die id */
s_die = cpu_map__get_die(map, idx, data);
if (s_die == -1)
return -1;
/*
* encode socket in bit range 31:24
* encode die id in bit range 23:16
* core_id is relative to socket and die,
* we need a global id. So we combine
* socket + die id + core id
*/
if (WARN_ONCE(cpu >> 16, "The core id number is too big.\n"))
return -1;
return (s_die << 16) | (cpu & 0xffff);
}
int cpu_map__build_socket_map(struct cpu_map *cpus, struct cpu_map **sockp)
{
return cpu_map__build_map(cpus, sockp, cpu_map__get_socket, NULL);
}
int cpu_map__build_die_map(struct cpu_map *cpus, struct cpu_map **diep)
{
return cpu_map__build_map(cpus, diep, cpu_map__get_die, NULL);
}
int cpu_map__build_core_map(struct cpu_map *cpus, struct cpu_map **corep)
{
return cpu_map__build_map(cpus, corep, cpu_map__get_core, NULL);
}
/* setup simple routines to easily access node numbers given a cpu number */
static int get_max_num(char *path, int *max)
{
size_t num;
char *buf;
int err = 0;
if (filename__read_str(path, &buf, &num))
return -1;
buf[num] = '\0';
/* start on the right, to find highest node num */
while (--num) {
if ((buf[num] == ',') || (buf[num] == '-')) {
num++;
break;
}
}
if (sscanf(&buf[num], "%d", max) < 1) {
err = -1;
goto out;
}
/* convert from 0-based to 1-based */
(*max)++;
out:
free(buf);
return err;
}
/* Determine highest possible cpu in the system for sparse allocation */
static void set_max_cpu_num(void)
{
const char *mnt;
char path[PATH_MAX];
int ret = -1;
/* set up default */
max_cpu_num = 4096;
max_present_cpu_num = 4096;
mnt = sysfs__mountpoint();
if (!mnt)
goto out;
/* get the highest possible cpu number for a sparse allocation */
ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
if (ret == PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
goto out;
}
ret = get_max_num(path, &max_cpu_num);
if (ret)
goto out;
/* get the highest present cpu number for a sparse allocation */
ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
if (ret == PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
goto out;
}
ret = get_max_num(path, &max_present_cpu_num);
out:
if (ret)
pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num);
}
/* Determine highest possible node in the system for sparse allocation */
static void set_max_node_num(void)
{
const char *mnt;
char path[PATH_MAX];
int ret = -1;
/* set up default */
max_node_num = 8;
mnt = sysfs__mountpoint();
if (!mnt)
goto out;
/* get the highest possible cpu number for a sparse allocation */
ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
if (ret == PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
goto out;
}
ret = get_max_num(path, &max_node_num);
out:
if (ret)
pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
}
int cpu__max_node(void)
{
if (unlikely(!max_node_num))
set_max_node_num();
return max_node_num;
}
int cpu__max_cpu(void)
{
if (unlikely(!max_cpu_num))
set_max_cpu_num();
return max_cpu_num;
}
int cpu__max_present_cpu(void)
{
if (unlikely(!max_present_cpu_num))
set_max_cpu_num();
return max_present_cpu_num;
}
int cpu__get_node(int cpu)
{
if (unlikely(cpunode_map == NULL)) {
pr_debug("cpu_map not initialized\n");
return -1;
}
return cpunode_map[cpu];
}
static int init_cpunode_map(void)
{
int i;
set_max_cpu_num();
set_max_node_num();
cpunode_map = calloc(max_cpu_num, sizeof(int));
if (!cpunode_map) {
pr_err("%s: calloc failed\n", __func__);
return -1;
}
for (i = 0; i < max_cpu_num; i++)
cpunode_map[i] = -1;
return 0;
}
int cpu__setup_cpunode_map(void)
{
struct dirent *dent1, *dent2;
DIR *dir1, *dir2;
unsigned int cpu, mem;
char buf[PATH_MAX];
char path[PATH_MAX];
const char *mnt;
int n;
/* initialize globals */
if (init_cpunode_map())
return -1;
mnt = sysfs__mountpoint();
if (!mnt)
return 0;
n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
if (n == PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
return -1;
}
dir1 = opendir(path);
if (!dir1)
return 0;
/* walk tree and setup map */
while ((dent1 = readdir(dir1)) != NULL) {
if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
continue;
n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
if (n == PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
continue;
}
dir2 = opendir(buf);
if (!dir2)
continue;
while ((dent2 = readdir(dir2)) != NULL) {
if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
continue;
cpunode_map[cpu] = mem;
}
closedir(dir2);
}
closedir(dir1);
return 0;
}
bool cpu_map__has(struct cpu_map *cpus, int cpu)
{
return cpu_map__idx(cpus, cpu) != -1;
}
int cpu_map__idx(struct cpu_map *cpus, int cpu)
{
int i;
for (i = 0; i < cpus->nr; ++i) {
if (cpus->map[i] == cpu)
return i;
}
return -1;
}
int cpu_map__cpu(struct cpu_map *cpus, int idx)
{
return cpus->map[idx];
}
size_t cpu_map__snprint(struct cpu_map *map, char *buf, size_t size)
{
int i, cpu, start = -1;
bool first = true;
size_t ret = 0;
#define COMMA first ? "" : ","
for (i = 0; i < map->nr + 1; i++) {
bool last = i == map->nr;
cpu = last ? INT_MAX : map->map[i];
if (start == -1) {
start = i;
if (last) {
ret += snprintf(buf + ret, size - ret,
"%s%d", COMMA,
map->map[i]);
}
} else if (((i - start) != (cpu - map->map[start])) || last) {
int end = i - 1;
if (start == end) {
ret += snprintf(buf + ret, size - ret,
"%s%d", COMMA,
map->map[start]);
} else {
ret += snprintf(buf + ret, size - ret,
"%s%d-%d", COMMA,
map->map[start], map->map[end]);
}
first = false;
start = i;
}
}
#undef COMMA
pr_debug2("cpumask list: %s\n", buf);
return ret;
}
static char hex_char(unsigned char val)
{
if (val < 10)
return val + '0';
if (val < 16)
return val - 10 + 'a';
return '?';
}
size_t cpu_map__snprint_mask(struct cpu_map *map, char *buf, size_t size)
{
int i, cpu;
char *ptr = buf;
unsigned char *bitmap;
int last_cpu = cpu_map__cpu(map, map->nr - 1);
bitmap = zalloc((last_cpu + 7) / 8);
if (bitmap == NULL) {
buf[0] = '\0';
return 0;
}
for (i = 0; i < map->nr; i++) {
cpu = cpu_map__cpu(map, i);
bitmap[cpu / 8] |= 1 << (cpu % 8);
}
for (cpu = last_cpu / 4 * 4; cpu >= 0; cpu -= 4) {
unsigned char bits = bitmap[cpu / 8];
if (cpu % 8)
bits >>= 4;
else
bits &= 0xf;
*ptr++ = hex_char(bits);
if ((cpu % 32) == 0 && cpu > 0)
*ptr++ = ',';
}
*ptr = '\0';
free(bitmap);
buf[size - 1] = '\0';
return ptr - buf;
}
const struct cpu_map *cpu_map__online(void) /* thread unsafe */
{
static const struct cpu_map *online = NULL;
if (!online)
online = cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */
return online;
}