linux_dsm_epyc7002/drivers/net/wireless/ath/ath10k/mac.c
Wolfram Sang 16735d022f tree-wide: use reinit_completion instead of INIT_COMPLETION
Use this new function to make code more comprehensible, since we are
reinitialzing the completion, not initializing.

[akpm@linux-foundation.org: linux-next resyncs]
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Acked-by: Linus Walleij <linus.walleij@linaro.org> (personally at LCE13)
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 09:32:21 +09:00

3526 lines
86 KiB
C

/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "mac.h"
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#include "hif.h"
#include "core.h"
#include "debug.h"
#include "wmi.h"
#include "htt.h"
#include "txrx.h"
/**********/
/* Crypto */
/**********/
static int ath10k_send_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd,
const u8 *macaddr)
{
struct wmi_vdev_install_key_arg arg = {
.vdev_id = arvif->vdev_id,
.key_idx = key->keyidx,
.key_len = key->keylen,
.key_data = key->key,
.macaddr = macaddr,
};
lockdep_assert_held(&arvif->ar->conf_mutex);
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
arg.key_flags = WMI_KEY_PAIRWISE;
else
arg.key_flags = WMI_KEY_GROUP;
switch (key->cipher) {
case WLAN_CIPHER_SUITE_CCMP:
arg.key_cipher = WMI_CIPHER_AES_CCM;
key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
break;
case WLAN_CIPHER_SUITE_TKIP:
arg.key_cipher = WMI_CIPHER_TKIP;
arg.key_txmic_len = 8;
arg.key_rxmic_len = 8;
break;
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
arg.key_cipher = WMI_CIPHER_WEP;
/* AP/IBSS mode requires self-key to be groupwise
* Otherwise pairwise key must be set */
if (memcmp(macaddr, arvif->vif->addr, ETH_ALEN))
arg.key_flags = WMI_KEY_PAIRWISE;
break;
default:
ath10k_warn("cipher %d is not supported\n", key->cipher);
return -EOPNOTSUPP;
}
if (cmd == DISABLE_KEY) {
arg.key_cipher = WMI_CIPHER_NONE;
arg.key_data = NULL;
}
return ath10k_wmi_vdev_install_key(arvif->ar, &arg);
}
static int ath10k_install_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd,
const u8 *macaddr)
{
struct ath10k *ar = arvif->ar;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->install_key_done);
ret = ath10k_send_key(arvif, key, cmd, macaddr);
if (ret)
return ret;
ret = wait_for_completion_timeout(&ar->install_key_done, 3*HZ);
if (ret == 0)
return -ETIMEDOUT;
return 0;
}
static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif,
const u8 *addr)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
spin_unlock_bh(&ar->data_lock);
if (!peer)
return -ENOENT;
for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) {
if (arvif->wep_keys[i] == NULL)
continue;
ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY,
addr);
if (ret)
return ret;
peer->keys[i] = arvif->wep_keys[i];
}
return 0;
}
static int ath10k_clear_peer_keys(struct ath10k_vif *arvif,
const u8 *addr)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
int first_errno = 0;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
spin_unlock_bh(&ar->data_lock);
if (!peer)
return -ENOENT;
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (peer->keys[i] == NULL)
continue;
ret = ath10k_install_key(arvif, peer->keys[i],
DISABLE_KEY, addr);
if (ret && first_errno == 0)
first_errno = ret;
if (ret)
ath10k_warn("could not remove peer wep key %d (%d)\n",
i, ret);
peer->keys[i] = NULL;
}
return first_errno;
}
static int ath10k_clear_vdev_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
u8 addr[ETH_ALEN];
int first_errno = 0;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
for (;;) {
/* since ath10k_install_key we can't hold data_lock all the
* time, so we try to remove the keys incrementally */
spin_lock_bh(&ar->data_lock);
i = 0;
list_for_each_entry(peer, &ar->peers, list) {
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (peer->keys[i] == key) {
memcpy(addr, peer->addr, ETH_ALEN);
peer->keys[i] = NULL;
break;
}
}
if (i < ARRAY_SIZE(peer->keys))
break;
}
spin_unlock_bh(&ar->data_lock);
if (i == ARRAY_SIZE(peer->keys))
break;
ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr);
if (ret && first_errno == 0)
first_errno = ret;
if (ret)
ath10k_warn("could not remove key for %pM\n", addr);
}
return first_errno;
}
/*********************/
/* General utilities */
/*********************/
static inline enum wmi_phy_mode
chan_to_phymode(const struct cfg80211_chan_def *chandef)
{
enum wmi_phy_mode phymode = MODE_UNKNOWN;
switch (chandef->chan->band) {
case IEEE80211_BAND_2GHZ:
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
phymode = MODE_11G;
break;
case NL80211_CHAN_WIDTH_20:
phymode = MODE_11NG_HT20;
break;
case NL80211_CHAN_WIDTH_40:
phymode = MODE_11NG_HT40;
break;
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_80:
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
phymode = MODE_UNKNOWN;
break;
}
break;
case IEEE80211_BAND_5GHZ:
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
phymode = MODE_11A;
break;
case NL80211_CHAN_WIDTH_20:
phymode = MODE_11NA_HT20;
break;
case NL80211_CHAN_WIDTH_40:
phymode = MODE_11NA_HT40;
break;
case NL80211_CHAN_WIDTH_80:
phymode = MODE_11AC_VHT80;
break;
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
phymode = MODE_UNKNOWN;
break;
}
break;
default:
break;
}
WARN_ON(phymode == MODE_UNKNOWN);
return phymode;
}
static u8 ath10k_parse_mpdudensity(u8 mpdudensity)
{
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
1 microsecond */
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
static int ath10k_peer_create(struct ath10k *ar, u32 vdev_id, const u8 *addr)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_peer_create(ar, vdev_id, addr);
if (ret)
return ret;
ret = ath10k_wait_for_peer_created(ar, vdev_id, addr);
if (ret)
return ret;
return 0;
}
static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
if (value != 0xFFFFFFFF)
value = min_t(u32, arvif->ar->hw->wiphy->rts_threshold,
ATH10K_RTS_MAX);
vdev_param = ar->wmi.vdev_param->rts_threshold;
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
}
static int ath10k_mac_set_frag(struct ath10k_vif *arvif, u32 value)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
if (value != 0xFFFFFFFF)
value = clamp_t(u32, arvif->ar->hw->wiphy->frag_threshold,
ATH10K_FRAGMT_THRESHOLD_MIN,
ATH10K_FRAGMT_THRESHOLD_MAX);
vdev_param = ar->wmi.vdev_param->fragmentation_threshold;
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
}
static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_peer_delete(ar, vdev_id, addr);
if (ret)
return ret;
ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
if (ret)
return ret;
return 0;
}
static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_peer *peer, *tmp;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
if (peer->vdev_id != vdev_id)
continue;
ath10k_warn("removing stale peer %pM from vdev_id %d\n",
peer->addr, vdev_id);
list_del(&peer->list);
kfree(peer);
}
spin_unlock_bh(&ar->data_lock);
}
static void ath10k_peer_cleanup_all(struct ath10k *ar)
{
struct ath10k_peer *peer, *tmp;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
list_del(&peer->list);
kfree(peer);
}
spin_unlock_bh(&ar->data_lock);
}
/************************/
/* Interface management */
/************************/
static inline int ath10k_vdev_setup_sync(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = wait_for_completion_timeout(&ar->vdev_setup_done,
ATH10K_VDEV_SETUP_TIMEOUT_HZ);
if (ret == 0)
return -ETIMEDOUT;
return 0;
}
static int ath10k_vdev_start(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct ieee80211_conf *conf = &ar->hw->conf;
struct ieee80211_channel *channel = conf->chandef.chan;
struct wmi_vdev_start_request_arg arg = {};
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
arg.vdev_id = arvif->vdev_id;
arg.dtim_period = arvif->dtim_period;
arg.bcn_intval = arvif->beacon_interval;
arg.channel.freq = channel->center_freq;
arg.channel.band_center_freq1 = conf->chandef.center_freq1;
arg.channel.mode = chan_to_phymode(&conf->chandef);
arg.channel.min_power = channel->max_power * 3;
arg.channel.max_power = channel->max_power * 4;
arg.channel.max_reg_power = channel->max_reg_power * 4;
arg.channel.max_antenna_gain = channel->max_antenna_gain;
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
arg.ssid = arvif->u.ap.ssid;
arg.ssid_len = arvif->u.ap.ssid_len;
arg.hidden_ssid = arvif->u.ap.hidden_ssid;
} else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
arg.ssid = arvif->vif->bss_conf.ssid;
arg.ssid_len = arvif->vif->bss_conf.ssid_len;
}
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d start center_freq %d phymode %s\n",
arg.vdev_id, arg.channel.freq,
ath10k_wmi_phymode_str(arg.channel.mode));
ret = ath10k_wmi_vdev_start(ar, &arg);
if (ret) {
ath10k_warn("WMI vdev start failed: ret %d\n", ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn("vdev setup failed %d\n", ret);
return ret;
}
return ret;
}
static int ath10k_vdev_stop(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id);
if (ret) {
ath10k_warn("WMI vdev stop failed: ret %d\n", ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn("vdev setup failed %d\n", ret);
return ret;
}
return ret;
}
static int ath10k_monitor_start(struct ath10k *ar, int vdev_id)
{
struct ieee80211_channel *channel = ar->hw->conf.chandef.chan;
struct wmi_vdev_start_request_arg arg = {};
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
arg.vdev_id = vdev_id;
arg.channel.freq = channel->center_freq;
arg.channel.band_center_freq1 = ar->hw->conf.chandef.center_freq1;
/* TODO setup this dynamically, what in case we
don't have any vifs? */
arg.channel.mode = chan_to_phymode(&ar->hw->conf.chandef);
arg.channel.min_power = channel->max_power * 3;
arg.channel.max_power = channel->max_power * 4;
arg.channel.max_reg_power = channel->max_reg_power * 4;
arg.channel.max_antenna_gain = channel->max_antenna_gain;
ret = ath10k_wmi_vdev_start(ar, &arg);
if (ret) {
ath10k_warn("Monitor vdev start failed: ret %d\n", ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn("Monitor vdev setup failed %d\n", ret);
return ret;
}
ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr);
if (ret) {
ath10k_warn("Monitor vdev up failed: %d\n", ret);
goto vdev_stop;
}
ar->monitor_vdev_id = vdev_id;
ar->monitor_enabled = true;
return 0;
vdev_stop:
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("Monitor vdev stop failed: %d\n", ret);
return ret;
}
static int ath10k_monitor_stop(struct ath10k *ar)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("Monitor vdev down failed: %d\n", ret);
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("Monitor vdev stop failed: %d\n", ret);
ret = ath10k_vdev_setup_sync(ar);
if (ret)
ath10k_warn("Monitor_down sync failed: %d\n", ret);
ar->monitor_enabled = false;
return ret;
}
static int ath10k_monitor_create(struct ath10k *ar)
{
int bit, ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (ar->monitor_present) {
ath10k_warn("Monitor mode already enabled\n");
return 0;
}
bit = ffs(ar->free_vdev_map);
if (bit == 0) {
ath10k_warn("No free VDEV slots\n");
return -ENOMEM;
}
ar->monitor_vdev_id = bit - 1;
ar->free_vdev_map &= ~(1 << ar->monitor_vdev_id);
ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id,
WMI_VDEV_TYPE_MONITOR,
0, ar->mac_addr);
if (ret) {
ath10k_warn("WMI vdev monitor create failed: ret %d\n", ret);
goto vdev_fail;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac monitor vdev %d created\n",
ar->monitor_vdev_id);
ar->monitor_present = true;
return 0;
vdev_fail:
/*
* Restore the ID to the global map.
*/
ar->free_vdev_map |= 1 << (ar->monitor_vdev_id);
return ret;
}
static int ath10k_monitor_destroy(struct ath10k *ar)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (!ar->monitor_present)
return 0;
ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
if (ret) {
ath10k_warn("WMI vdev monitor delete failed: %d\n", ret);
return ret;
}
ar->free_vdev_map |= 1 << (ar->monitor_vdev_id);
ar->monitor_present = false;
ath10k_dbg(ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n",
ar->monitor_vdev_id);
return ret;
}
static void ath10k_control_beaconing(struct ath10k_vif *arvif,
struct ieee80211_bss_conf *info)
{
int ret = 0;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (!info->enable_beacon) {
ath10k_vdev_stop(arvif);
return;
}
arvif->tx_seq_no = 0x1000;
ret = ath10k_vdev_start(arvif);
if (ret)
return;
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, 0, info->bssid);
if (ret) {
ath10k_warn("Failed to bring up VDEV: %d\n",
arvif->vdev_id);
return;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id);
}
static void ath10k_control_ibss(struct ath10k_vif *arvif,
struct ieee80211_bss_conf *info,
const u8 self_peer[ETH_ALEN])
{
u32 vdev_param;
int ret = 0;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (!info->ibss_joined) {
ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, self_peer);
if (ret)
ath10k_warn("Failed to delete IBSS self peer:%pM for VDEV:%d ret:%d\n",
self_peer, arvif->vdev_id, ret);
if (is_zero_ether_addr(arvif->u.ibss.bssid))
return;
ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id,
arvif->u.ibss.bssid);
if (ret) {
ath10k_warn("Failed to delete IBSS BSSID peer:%pM for VDEV:%d ret:%d\n",
arvif->u.ibss.bssid, arvif->vdev_id, ret);
return;
}
memset(arvif->u.ibss.bssid, 0, ETH_ALEN);
return;
}
ret = ath10k_peer_create(arvif->ar, arvif->vdev_id, self_peer);
if (ret) {
ath10k_warn("Failed to create IBSS self peer:%pM for VDEV:%d ret:%d\n",
self_peer, arvif->vdev_id, ret);
return;
}
vdev_param = arvif->ar->wmi.vdev_param->atim_window;
ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param,
ATH10K_DEFAULT_ATIM);
if (ret)
ath10k_warn("Failed to set IBSS ATIM for VDEV:%d ret:%d\n",
arvif->vdev_id, ret);
}
/*
* Review this when mac80211 gains per-interface powersave support.
*/
static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct ieee80211_conf *conf = &ar->hw->conf;
enum wmi_sta_powersave_param param;
enum wmi_sta_ps_mode psmode;
int ret;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (arvif->vif->type != NL80211_IFTYPE_STATION)
return 0;
if (conf->flags & IEEE80211_CONF_PS) {
psmode = WMI_STA_PS_MODE_ENABLED;
param = WMI_STA_PS_PARAM_INACTIVITY_TIME;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
conf->dynamic_ps_timeout);
if (ret) {
ath10k_warn("Failed to set inactivity time for VDEV: %d\n",
arvif->vdev_id);
return ret;
}
} else {
psmode = WMI_STA_PS_MODE_DISABLED;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d psmode %s\n",
arvif->vdev_id, psmode ? "enable" : "disable");
ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode);
if (ret) {
ath10k_warn("Failed to set PS Mode: %d for VDEV: %d\n",
psmode, arvif->vdev_id);
return ret;
}
return 0;
}
/**********************/
/* Station management */
/**********************/
static void ath10k_peer_assoc_h_basic(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
lockdep_assert_held(&ar->conf_mutex);
memcpy(arg->addr, sta->addr, ETH_ALEN);
arg->vdev_id = arvif->vdev_id;
arg->peer_aid = sta->aid;
arg->peer_flags |= WMI_PEER_AUTH;
if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
/*
* Seems FW have problems with Power Save in STA
* mode when we setup this parameter to high (eg. 5).
* Often we see that FW don't send NULL (with clean P flags)
* frame even there is info about buffered frames in beacons.
* Sometimes we have to wait more than 10 seconds before FW
* will wakeup. Often sending one ping from AP to our device
* just fail (more than 50%).
*
* Seems setting this FW parameter to 1 couse FW
* will check every beacon and will wakup immediately
* after detection buffered data.
*/
arg->peer_listen_intval = 1;
else
arg->peer_listen_intval = ar->hw->conf.listen_interval;
arg->peer_num_spatial_streams = 1;
/*
* The assoc capabilities are available only in managed mode.
*/
if (arvif->vdev_type == WMI_VDEV_TYPE_STA && bss_conf)
arg->peer_caps = bss_conf->assoc_capability;
}
static void ath10k_peer_assoc_h_crypto(struct ath10k *ar,
struct ath10k_vif *arvif,
struct wmi_peer_assoc_complete_arg *arg)
{
struct ieee80211_vif *vif = arvif->vif;
struct ieee80211_bss_conf *info = &vif->bss_conf;
struct cfg80211_bss *bss;
const u8 *rsnie = NULL;
const u8 *wpaie = NULL;
lockdep_assert_held(&ar->conf_mutex);
bss = cfg80211_get_bss(ar->hw->wiphy, ar->hw->conf.chandef.chan,
info->bssid, NULL, 0, 0, 0);
if (bss) {
const struct cfg80211_bss_ies *ies;
rcu_read_lock();
rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);
ies = rcu_dereference(bss->ies);
wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
WLAN_OUI_TYPE_MICROSOFT_WPA,
ies->data,
ies->len);
rcu_read_unlock();
cfg80211_put_bss(ar->hw->wiphy, bss);
}
/* FIXME: base on RSN IE/WPA IE is a correct idea? */
if (rsnie || wpaie) {
ath10k_dbg(ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__);
arg->peer_flags |= WMI_PEER_NEED_PTK_4_WAY;
}
if (wpaie) {
ath10k_dbg(ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__);
arg->peer_flags |= WMI_PEER_NEED_GTK_2_WAY;
}
}
static void ath10k_peer_assoc_h_rates(struct ath10k *ar,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates;
const struct ieee80211_supported_band *sband;
const struct ieee80211_rate *rates;
u32 ratemask;
int i;
lockdep_assert_held(&ar->conf_mutex);
sband = ar->hw->wiphy->bands[ar->hw->conf.chandef.chan->band];
ratemask = sta->supp_rates[ar->hw->conf.chandef.chan->band];
rates = sband->bitrates;
rateset->num_rates = 0;
for (i = 0; i < 32; i++, ratemask >>= 1, rates++) {
if (!(ratemask & 1))
continue;
rateset->rates[rateset->num_rates] = rates->hw_value;
rateset->num_rates++;
}
}
static void ath10k_peer_assoc_h_ht(struct ath10k *ar,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
const struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
int smps;
int i, n;
lockdep_assert_held(&ar->conf_mutex);
if (!ht_cap->ht_supported)
return;
arg->peer_flags |= WMI_PEER_HT;
arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ht_cap->ampdu_factor)) - 1;
arg->peer_mpdu_density =
ath10k_parse_mpdudensity(ht_cap->ampdu_density);
arg->peer_ht_caps = ht_cap->cap;
arg->peer_rate_caps |= WMI_RC_HT_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)
arg->peer_flags |= WMI_PEER_LDPC;
if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) {
arg->peer_flags |= WMI_PEER_40MHZ;
arg->peer_rate_caps |= WMI_RC_CW40_FLAG;
}
if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20)
arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40)
arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) {
arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG;
arg->peer_flags |= WMI_PEER_STBC;
}
if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) {
u32 stbc;
stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC;
stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc = stbc << WMI_RC_RX_STBC_FLAG_S;
arg->peer_rate_caps |= stbc;
arg->peer_flags |= WMI_PEER_STBC;
}
smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS;
smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT;
if (smps == WLAN_HT_CAP_SM_PS_STATIC) {
arg->peer_flags |= WMI_PEER_SPATIAL_MUX;
arg->peer_flags |= WMI_PEER_STATIC_MIMOPS;
} else if (smps == WLAN_HT_CAP_SM_PS_DYNAMIC) {
arg->peer_flags |= WMI_PEER_SPATIAL_MUX;
arg->peer_flags |= WMI_PEER_DYN_MIMOPS;
}
if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2])
arg->peer_rate_caps |= WMI_RC_TS_FLAG;
else if (ht_cap->mcs.rx_mask[1])
arg->peer_rate_caps |= WMI_RC_DS_FLAG;
for (i = 0, n = 0; i < IEEE80211_HT_MCS_MASK_LEN*8; i++)
if (ht_cap->mcs.rx_mask[i/8] & (1 << i%8))
arg->peer_ht_rates.rates[n++] = i;
arg->peer_ht_rates.num_rates = n;
arg->peer_num_spatial_streams = max((n+7) / 8, 1);
ath10k_dbg(ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n",
arg->addr,
arg->peer_ht_rates.num_rates,
arg->peer_num_spatial_streams);
}
static void ath10k_peer_assoc_h_qos_ap(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
u32 uapsd = 0;
u32 max_sp = 0;
lockdep_assert_held(&ar->conf_mutex);
if (sta->wme)
arg->peer_flags |= WMI_PEER_QOS;
if (sta->wme && sta->uapsd_queues) {
ath10k_dbg(ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n",
sta->uapsd_queues, sta->max_sp);
arg->peer_flags |= WMI_PEER_APSD;
arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;
if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP)
max_sp = sta->max_sp;
ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_UAPSD,
uapsd);
ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_MAX_SP,
max_sp);
/* TODO setup this based on STA listen interval and
beacon interval. Currently we don't know
sta->listen_interval - mac80211 patch required.
Currently use 10 seconds */
ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_AGEOUT_TIME,
10);
}
}
static void ath10k_peer_assoc_h_qos_sta(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
if (bss_conf->qos)
arg->peer_flags |= WMI_PEER_QOS;
}
static void ath10k_peer_assoc_h_vht(struct ath10k *ar,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
const struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
u8 ampdu_factor;
if (!vht_cap->vht_supported)
return;
arg->peer_flags |= WMI_PEER_VHT;
arg->peer_vht_caps = vht_cap->cap;
ampdu_factor = (vht_cap->cap &
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
/* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
* zero in VHT IE. Using it would result in degraded throughput.
* arg->peer_max_mpdu at this point contains HT max_mpdu so keep
* it if VHT max_mpdu is smaller. */
arg->peer_max_mpdu = max(arg->peer_max_mpdu,
(1U << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ampdu_factor)) - 1);
if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
arg->peer_flags |= WMI_PEER_80MHZ;
arg->peer_vht_rates.rx_max_rate =
__le16_to_cpu(vht_cap->vht_mcs.rx_highest);
arg->peer_vht_rates.rx_mcs_set =
__le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map);
arg->peer_vht_rates.tx_max_rate =
__le16_to_cpu(vht_cap->vht_mcs.tx_highest);
arg->peer_vht_rates.tx_mcs_set =
__le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map);
ath10k_dbg(ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n",
sta->addr, arg->peer_max_mpdu, arg->peer_flags);
}
static void ath10k_peer_assoc_h_qos(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
switch (arvif->vdev_type) {
case WMI_VDEV_TYPE_AP:
ath10k_peer_assoc_h_qos_ap(ar, arvif, sta, bss_conf, arg);
break;
case WMI_VDEV_TYPE_STA:
ath10k_peer_assoc_h_qos_sta(ar, arvif, sta, bss_conf, arg);
break;
default:
break;
}
}
static void ath10k_peer_assoc_h_phymode(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
enum wmi_phy_mode phymode = MODE_UNKNOWN;
switch (ar->hw->conf.chandef.chan->band) {
case IEEE80211_BAND_2GHZ:
if (sta->ht_cap.ht_supported) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11NG_HT40;
else
phymode = MODE_11NG_HT20;
} else {
phymode = MODE_11G;
}
break;
case IEEE80211_BAND_5GHZ:
/*
* Check VHT first.
*/
if (sta->vht_cap.vht_supported) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
phymode = MODE_11AC_VHT80;
else if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11AC_VHT40;
else if (sta->bandwidth == IEEE80211_STA_RX_BW_20)
phymode = MODE_11AC_VHT20;
} else if (sta->ht_cap.ht_supported) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11NA_HT40;
else
phymode = MODE_11NA_HT20;
} else {
phymode = MODE_11A;
}
break;
default:
break;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac peer %pM phymode %s\n",
sta->addr, ath10k_wmi_phymode_str(phymode));
arg->peer_phymode = phymode;
WARN_ON(phymode == MODE_UNKNOWN);
}
static int ath10k_peer_assoc_prepare(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
lockdep_assert_held(&ar->conf_mutex);
memset(arg, 0, sizeof(*arg));
ath10k_peer_assoc_h_basic(ar, arvif, sta, bss_conf, arg);
ath10k_peer_assoc_h_crypto(ar, arvif, arg);
ath10k_peer_assoc_h_rates(ar, sta, arg);
ath10k_peer_assoc_h_ht(ar, sta, arg);
ath10k_peer_assoc_h_vht(ar, sta, arg);
ath10k_peer_assoc_h_qos(ar, arvif, sta, bss_conf, arg);
ath10k_peer_assoc_h_phymode(ar, arvif, sta, arg);
return 0;
}
/* can be called only in mac80211 callbacks due to `key_count` usage */
static void ath10k_bss_assoc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct wmi_peer_assoc_complete_arg peer_arg;
struct ieee80211_sta *ap_sta;
int ret;
lockdep_assert_held(&ar->conf_mutex);
rcu_read_lock();
ap_sta = ieee80211_find_sta(vif, bss_conf->bssid);
if (!ap_sta) {
ath10k_warn("Failed to find station entry for %pM\n",
bss_conf->bssid);
rcu_read_unlock();
return;
}
ret = ath10k_peer_assoc_prepare(ar, arvif, ap_sta,
bss_conf, &peer_arg);
if (ret) {
ath10k_warn("Peer assoc prepare failed for %pM\n: %d",
bss_conf->bssid, ret);
rcu_read_unlock();
return;
}
rcu_read_unlock();
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret) {
ath10k_warn("Peer assoc failed for %pM\n: %d",
bss_conf->bssid, ret);
return;
}
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d up (associated) bssid %pM aid %d\n",
arvif->vdev_id, bss_conf->bssid, bss_conf->aid);
ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, bss_conf->aid,
bss_conf->bssid);
if (ret)
ath10k_warn("VDEV: %d up failed: ret %d\n",
arvif->vdev_id, ret);
}
/*
* FIXME: flush TIDs
*/
static void ath10k_bss_disassoc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret;
lockdep_assert_held(&ar->conf_mutex);
/*
* For some reason, calling VDEV-DOWN before VDEV-STOP
* makes the FW to send frames via HTT after disassociation.
* No idea why this happens, even though VDEV-DOWN is supposed
* to be analogous to link down, so just stop the VDEV.
*/
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d stop (disassociated\n",
arvif->vdev_id);
/* FIXME: check return value */
ret = ath10k_vdev_stop(arvif);
/*
* If we don't call VDEV-DOWN after VDEV-STOP FW will remain active and
* report beacons from previously associated network through HTT.
* This in turn would spam mac80211 WARN_ON if we bring down all
* interfaces as it expects there is no rx when no interface is
* running.
*/
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d down\n", arvif->vdev_id);
/* FIXME: why don't we print error if wmi call fails? */
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
arvif->def_wep_key_idx = 0;
}
static int ath10k_station_assoc(struct ath10k *ar, struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
struct wmi_peer_assoc_complete_arg peer_arg;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_peer_assoc_prepare(ar, arvif, sta, NULL, &peer_arg);
if (ret) {
ath10k_warn("WMI peer assoc prepare failed for %pM\n",
sta->addr);
return ret;
}
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret) {
ath10k_warn("Peer assoc failed for STA %pM\n: %d",
sta->addr, ret);
return ret;
}
ret = ath10k_install_peer_wep_keys(arvif, sta->addr);
if (ret) {
ath10k_warn("could not install peer wep keys (%d)\n", ret);
return ret;
}
return ret;
}
static int ath10k_station_disassoc(struct ath10k *ar, struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_clear_peer_keys(arvif, sta->addr);
if (ret) {
ath10k_warn("could not clear all peer wep keys (%d)\n", ret);
return ret;
}
return ret;
}
/**************/
/* Regulatory */
/**************/
static int ath10k_update_channel_list(struct ath10k *ar)
{
struct ieee80211_hw *hw = ar->hw;
struct ieee80211_supported_band **bands;
enum ieee80211_band band;
struct ieee80211_channel *channel;
struct wmi_scan_chan_list_arg arg = {0};
struct wmi_channel_arg *ch;
bool passive;
int len;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
bands = hw->wiphy->bands;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
if (bands[band]->channels[i].flags &
IEEE80211_CHAN_DISABLED)
continue;
arg.n_channels++;
}
}
len = sizeof(struct wmi_channel_arg) * arg.n_channels;
arg.channels = kzalloc(len, GFP_KERNEL);
if (!arg.channels)
return -ENOMEM;
ch = arg.channels;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
channel = &bands[band]->channels[i];
if (channel->flags & IEEE80211_CHAN_DISABLED)
continue;
ch->allow_ht = true;
/* FIXME: when should we really allow VHT? */
ch->allow_vht = true;
ch->allow_ibss =
!(channel->flags & IEEE80211_CHAN_NO_IBSS);
ch->ht40plus =
!(channel->flags & IEEE80211_CHAN_NO_HT40PLUS);
passive = channel->flags & IEEE80211_CHAN_PASSIVE_SCAN;
ch->passive = passive;
ch->freq = channel->center_freq;
ch->min_power = channel->max_power * 3;
ch->max_power = channel->max_power * 4;
ch->max_reg_power = channel->max_reg_power * 4;
ch->max_antenna_gain = channel->max_antenna_gain;
ch->reg_class_id = 0; /* FIXME */
/* FIXME: why use only legacy modes, why not any
* HT/VHT modes? Would that even make any
* difference? */
if (channel->band == IEEE80211_BAND_2GHZ)
ch->mode = MODE_11G;
else
ch->mode = MODE_11A;
if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN))
continue;
ath10k_dbg(ATH10K_DBG_WMI,
"mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
ch - arg.channels, arg.n_channels,
ch->freq, ch->max_power, ch->max_reg_power,
ch->max_antenna_gain, ch->mode);
ch++;
}
}
ret = ath10k_wmi_scan_chan_list(ar, &arg);
kfree(arg.channels);
return ret;
}
static void ath10k_regd_update(struct ath10k *ar)
{
struct reg_dmn_pair_mapping *regpair;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_update_channel_list(ar);
if (ret)
ath10k_warn("could not update channel list (%d)\n", ret);
regpair = ar->ath_common.regulatory.regpair;
/* Target allows setting up per-band regdomain but ath_common provides
* a combined one only */
ret = ath10k_wmi_pdev_set_regdomain(ar,
regpair->regDmnEnum,
regpair->regDmnEnum, /* 2ghz */
regpair->regDmnEnum, /* 5ghz */
regpair->reg_2ghz_ctl,
regpair->reg_5ghz_ctl);
if (ret)
ath10k_warn("could not set pdev regdomain (%d)\n", ret);
}
static void ath10k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath10k *ar = hw->priv;
ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory);
mutex_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_ON)
ath10k_regd_update(ar);
mutex_unlock(&ar->conf_mutex);
}
/***************/
/* TX handlers */
/***************/
static u8 ath10k_tx_h_get_tid(struct ieee80211_hdr *hdr)
{
if (ieee80211_is_mgmt(hdr->frame_control))
return HTT_DATA_TX_EXT_TID_MGMT;
if (!ieee80211_is_data_qos(hdr->frame_control))
return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
if (!is_unicast_ether_addr(ieee80211_get_DA(hdr)))
return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
return ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
}
static u8 ath10k_tx_h_get_vdev_id(struct ath10k *ar,
struct ieee80211_tx_info *info)
{
if (info->control.vif)
return ath10k_vif_to_arvif(info->control.vif)->vdev_id;
if (ar->monitor_enabled)
return ar->monitor_vdev_id;
ath10k_warn("could not resolve vdev id\n");
return 0;
}
/*
* Frames sent to the FW have to be in "Native Wifi" format.
* Strip the QoS field from the 802.11 header.
*/
static void ath10k_tx_h_qos_workaround(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (void *)skb->data;
u8 *qos_ctl;
if (!ieee80211_is_data_qos(hdr->frame_control))
return;
qos_ctl = ieee80211_get_qos_ctl(hdr);
memmove(skb->data + IEEE80211_QOS_CTL_LEN,
skb->data, (void *)qos_ctl - (void *)skb->data);
skb_pull(skb, IEEE80211_QOS_CTL_LEN);
}
static void ath10k_tx_wep_key_work(struct work_struct *work)
{
struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
wep_key_work);
int ret, keyidx = arvif->def_wep_key_newidx;
if (arvif->def_wep_key_idx == keyidx)
return;
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n",
arvif->vdev_id, keyidx);
ret = ath10k_wmi_vdev_set_param(arvif->ar,
arvif->vdev_id,
arvif->ar->wmi.vdev_param->def_keyid,
keyidx);
if (ret) {
ath10k_warn("could not update wep keyidx (%d)\n", ret);
return;
}
arvif->def_wep_key_idx = keyidx;
}
static void ath10k_tx_h_update_wep_key(struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k *ar = arvif->ar;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_key_conf *key = info->control.hw_key;
if (!ieee80211_has_protected(hdr->frame_control))
return;
if (!key)
return;
if (key->cipher != WLAN_CIPHER_SUITE_WEP40 &&
key->cipher != WLAN_CIPHER_SUITE_WEP104)
return;
if (key->keyidx == arvif->def_wep_key_idx)
return;
/* FIXME: Most likely a few frames will be TXed with an old key. Simply
* queueing frames until key index is updated is not an option because
* sk_buff may need more processing to be done, e.g. offchannel */
arvif->def_wep_key_newidx = key->keyidx;
ieee80211_queue_work(ar->hw, &arvif->wep_key_work);
}
static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
/* This is case only for P2P_GO */
if (arvif->vdev_type != WMI_VDEV_TYPE_AP ||
arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
return;
if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) {
spin_lock_bh(&ar->data_lock);
if (arvif->u.ap.noa_data)
if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len,
GFP_ATOMIC))
memcpy(skb_put(skb, arvif->u.ap.noa_len),
arvif->u.ap.noa_data,
arvif->u.ap.noa_len);
spin_unlock_bh(&ar->data_lock);
}
}
static void ath10k_tx_htt(struct ath10k *ar, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int ret = 0;
if (ar->htt.target_version_major >= 3) {
/* Since HTT 3.0 there is no separate mgmt tx command */
ret = ath10k_htt_tx(&ar->htt, skb);
goto exit;
}
if (ieee80211_is_mgmt(hdr->frame_control)) {
if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
ar->fw_features)) {
if (skb_queue_len(&ar->wmi_mgmt_tx_queue) >=
ATH10K_MAX_NUM_MGMT_PENDING) {
ath10k_warn("wmi mgmt_tx queue limit reached\n");
ret = -EBUSY;
goto exit;
}
skb_queue_tail(&ar->wmi_mgmt_tx_queue, skb);
ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work);
} else {
ret = ath10k_htt_mgmt_tx(&ar->htt, skb);
}
} else if (!test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
ar->fw_features) &&
ieee80211_is_nullfunc(hdr->frame_control)) {
/* FW does not report tx status properly for NullFunc frames
* unless they are sent through mgmt tx path. mac80211 sends
* those frames when it detects link/beacon loss and depends
* on the tx status to be correct. */
ret = ath10k_htt_mgmt_tx(&ar->htt, skb);
} else {
ret = ath10k_htt_tx(&ar->htt, skb);
}
exit:
if (ret) {
ath10k_warn("tx failed (%d). dropping packet.\n", ret);
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_offchan_tx_purge(struct ath10k *ar)
{
struct sk_buff *skb;
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb)
break;
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_offchan_tx_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work);
struct ath10k_peer *peer;
struct ieee80211_hdr *hdr;
struct sk_buff *skb;
const u8 *peer_addr;
int vdev_id;
int ret;
/* FW requirement: We must create a peer before FW will send out
* an offchannel frame. Otherwise the frame will be stuck and
* never transmitted. We delete the peer upon tx completion.
* It is unlikely that a peer for offchannel tx will already be
* present. However it may be in some rare cases so account for that.
* Otherwise we might remove a legitimate peer and break stuff. */
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb)
break;
mutex_lock(&ar->conf_mutex);
ath10k_dbg(ATH10K_DBG_MAC, "mac offchannel skb %p\n",
skb);
hdr = (struct ieee80211_hdr *)skb->data;
peer_addr = ieee80211_get_DA(hdr);
vdev_id = ATH10K_SKB_CB(skb)->vdev_id;
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, vdev_id, peer_addr);
spin_unlock_bh(&ar->data_lock);
if (peer)
/* FIXME: should this use ath10k_warn()? */
ath10k_dbg(ATH10K_DBG_MAC, "peer %pM on vdev %d already present\n",
peer_addr, vdev_id);
if (!peer) {
ret = ath10k_peer_create(ar, vdev_id, peer_addr);
if (ret)
ath10k_warn("peer %pM on vdev %d not created (%d)\n",
peer_addr, vdev_id, ret);
}
spin_lock_bh(&ar->data_lock);
reinit_completion(&ar->offchan_tx_completed);
ar->offchan_tx_skb = skb;
spin_unlock_bh(&ar->data_lock);
ath10k_tx_htt(ar, skb);
ret = wait_for_completion_timeout(&ar->offchan_tx_completed,
3 * HZ);
if (ret <= 0)
ath10k_warn("timed out waiting for offchannel skb %p\n",
skb);
if (!peer) {
ret = ath10k_peer_delete(ar, vdev_id, peer_addr);
if (ret)
ath10k_warn("peer %pM on vdev %d not deleted (%d)\n",
peer_addr, vdev_id, ret);
}
mutex_unlock(&ar->conf_mutex);
}
}
void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar)
{
struct sk_buff *skb;
for (;;) {
skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
if (!skb)
break;
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work);
struct sk_buff *skb;
int ret;
for (;;) {
skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
if (!skb)
break;
ret = ath10k_wmi_mgmt_tx(ar, skb);
if (ret)
ath10k_warn("wmi mgmt_tx failed (%d)\n", ret);
}
}
/************/
/* Scanning */
/************/
/*
* This gets called if we dont get a heart-beat during scan.
* This may indicate the FW has hung and we need to abort the
* scan manually to prevent cancel_hw_scan() from deadlocking
*/
void ath10k_reset_scan(unsigned long ptr)
{
struct ath10k *ar = (struct ath10k *)ptr;
spin_lock_bh(&ar->data_lock);
if (!ar->scan.in_progress) {
spin_unlock_bh(&ar->data_lock);
return;
}
ath10k_warn("scan timeout. resetting. fw issue?\n");
if (ar->scan.is_roc)
ieee80211_remain_on_channel_expired(ar->hw);
else
ieee80211_scan_completed(ar->hw, 1 /* aborted */);
ar->scan.in_progress = false;
complete_all(&ar->scan.completed);
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_abort_scan(struct ath10k *ar)
{
struct wmi_stop_scan_arg arg = {
.req_id = 1, /* FIXME */
.req_type = WMI_SCAN_STOP_ONE,
.u.scan_id = ATH10K_SCAN_ID,
};
int ret;
lockdep_assert_held(&ar->conf_mutex);
del_timer_sync(&ar->scan.timeout);
spin_lock_bh(&ar->data_lock);
if (!ar->scan.in_progress) {
spin_unlock_bh(&ar->data_lock);
return 0;
}
ar->scan.aborting = true;
spin_unlock_bh(&ar->data_lock);
ret = ath10k_wmi_stop_scan(ar, &arg);
if (ret) {
ath10k_warn("could not submit wmi stop scan (%d)\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.in_progress = false;
ath10k_offchan_tx_purge(ar);
spin_unlock_bh(&ar->data_lock);
return -EIO;
}
ret = wait_for_completion_timeout(&ar->scan.completed, 3*HZ);
if (ret == 0)
ath10k_warn("timed out while waiting for scan to stop\n");
/* scan completion may be done right after we timeout here, so let's
* check the in_progress and tell mac80211 scan is completed. if we
* don't do that and FW fails to send us scan completion indication
* then userspace won't be able to scan anymore */
ret = 0;
spin_lock_bh(&ar->data_lock);
if (ar->scan.in_progress) {
ath10k_warn("could not stop scan. its still in progress\n");
ar->scan.in_progress = false;
ath10k_offchan_tx_purge(ar);
ret = -ETIMEDOUT;
}
spin_unlock_bh(&ar->data_lock);
return ret;
}
static int ath10k_start_scan(struct ath10k *ar,
const struct wmi_start_scan_arg *arg)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_start_scan(ar, arg);
if (ret)
return ret;
ret = wait_for_completion_timeout(&ar->scan.started, 1*HZ);
if (ret == 0) {
ath10k_abort_scan(ar);
return ret;
}
/* the scan can complete earlier, before we even
* start the timer. in that case the timer handler
* checks ar->scan.in_progress and bails out if its
* false. Add a 200ms margin to account event/command
* processing. */
mod_timer(&ar->scan.timeout, jiffies +
msecs_to_jiffies(arg->max_scan_time+200));
return 0;
}
/**********************/
/* mac80211 callbacks */
/**********************/
static void ath10k_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ath10k *ar = hw->priv;
u8 tid, vdev_id;
/* We should disable CCK RATE due to P2P */
if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE)
ath10k_dbg(ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n");
/* we must calculate tid before we apply qos workaround
* as we'd lose the qos control field */
tid = ath10k_tx_h_get_tid(hdr);
vdev_id = ath10k_tx_h_get_vdev_id(ar, info);
/* it makes no sense to process injected frames like that */
if (info->control.vif &&
info->control.vif->type != NL80211_IFTYPE_MONITOR) {
ath10k_tx_h_qos_workaround(hw, control, skb);
ath10k_tx_h_update_wep_key(skb);
ath10k_tx_h_add_p2p_noa_ie(ar, skb);
ath10k_tx_h_seq_no(skb);
}
ATH10K_SKB_CB(skb)->vdev_id = vdev_id;
ATH10K_SKB_CB(skb)->htt.is_offchan = false;
ATH10K_SKB_CB(skb)->htt.tid = tid;
if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
spin_lock_bh(&ar->data_lock);
ATH10K_SKB_CB(skb)->htt.is_offchan = true;
ATH10K_SKB_CB(skb)->vdev_id = ar->scan.vdev_id;
spin_unlock_bh(&ar->data_lock);
ath10k_dbg(ATH10K_DBG_MAC, "queued offchannel skb %p\n", skb);
skb_queue_tail(&ar->offchan_tx_queue, skb);
ieee80211_queue_work(hw, &ar->offchan_tx_work);
return;
}
ath10k_tx_htt(ar, skb);
}
/*
* Initialize various parameters with default vaules.
*/
void ath10k_halt(struct ath10k *ar)
{
lockdep_assert_held(&ar->conf_mutex);
del_timer_sync(&ar->scan.timeout);
ath10k_offchan_tx_purge(ar);
ath10k_mgmt_over_wmi_tx_purge(ar);
ath10k_peer_cleanup_all(ar);
ath10k_core_stop(ar);
ath10k_hif_power_down(ar);
spin_lock_bh(&ar->data_lock);
if (ar->scan.in_progress) {
del_timer(&ar->scan.timeout);
ar->scan.in_progress = false;
ieee80211_scan_completed(ar->hw, true);
}
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_start(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
int ret = 0;
mutex_lock(&ar->conf_mutex);
if (ar->state != ATH10K_STATE_OFF &&
ar->state != ATH10K_STATE_RESTARTING) {
ret = -EINVAL;
goto exit;
}
ret = ath10k_hif_power_up(ar);
if (ret) {
ath10k_err("could not init hif (%d)\n", ret);
ar->state = ATH10K_STATE_OFF;
goto exit;
}
ret = ath10k_core_start(ar);
if (ret) {
ath10k_err("could not init core (%d)\n", ret);
ath10k_hif_power_down(ar);
ar->state = ATH10K_STATE_OFF;
goto exit;
}
if (ar->state == ATH10K_STATE_OFF)
ar->state = ATH10K_STATE_ON;
else if (ar->state == ATH10K_STATE_RESTARTING)
ar->state = ATH10K_STATE_RESTARTED;
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->pmf_qos, 1);
if (ret)
ath10k_warn("could not enable WMI_PDEV_PARAM_PMF_QOS (%d)\n",
ret);
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->dynamic_bw, 0);
if (ret)
ath10k_warn("could not init WMI_PDEV_PARAM_DYNAMIC_BW (%d)\n",
ret);
ath10k_regd_update(ar);
exit:
mutex_unlock(&ar->conf_mutex);
return 0;
}
static void ath10k_stop(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_ON ||
ar->state == ATH10K_STATE_RESTARTED ||
ar->state == ATH10K_STATE_WEDGED)
ath10k_halt(ar);
ar->state = ATH10K_STATE_OFF;
mutex_unlock(&ar->conf_mutex);
ath10k_mgmt_over_wmi_tx_purge(ar);
cancel_work_sync(&ar->offchan_tx_work);
cancel_work_sync(&ar->wmi_mgmt_tx_work);
cancel_work_sync(&ar->restart_work);
}
static int ath10k_config_ps(struct ath10k *ar)
{
struct ath10k_vif *arvif;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ret = ath10k_mac_vif_setup_ps(arvif);
if (ret) {
ath10k_warn("could not setup powersave (%d)\n", ret);
break;
}
}
return ret;
}
static int ath10k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath10k *ar = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
int ret = 0;
mutex_lock(&ar->conf_mutex);
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
ath10k_dbg(ATH10K_DBG_MAC, "mac config channel %d mhz\n",
conf->chandef.chan->center_freq);
spin_lock_bh(&ar->data_lock);
ar->rx_channel = conf->chandef.chan;
spin_unlock_bh(&ar->data_lock);
}
if (changed & IEEE80211_CONF_CHANGE_PS)
ath10k_config_ps(ar);
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
if (conf->flags & IEEE80211_CONF_MONITOR)
ret = ath10k_monitor_create(ar);
else
ret = ath10k_monitor_destroy(ar);
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
/*
* TODO:
* Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE,
* because we will send mgmt frames without CCK. This requirement
* for P2P_FIND/GO_NEG should be handled by checking CCK flag
* in the TX packet.
*/
static int ath10k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
enum wmi_sta_powersave_param param;
int ret = 0;
u32 value;
int bit;
u32 vdev_param;
mutex_lock(&ar->conf_mutex);
memset(arvif, 0, sizeof(*arvif));
arvif->ar = ar;
arvif->vif = vif;
INIT_WORK(&arvif->wep_key_work, ath10k_tx_wep_key_work);
if ((vif->type == NL80211_IFTYPE_MONITOR) && ar->monitor_present) {
ath10k_warn("Only one monitor interface allowed\n");
ret = -EBUSY;
goto err;
}
bit = ffs(ar->free_vdev_map);
if (bit == 0) {
ret = -EBUSY;
goto err;
}
arvif->vdev_id = bit - 1;
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE;
if (ar->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE;
switch (vif->type) {
case NL80211_IFTYPE_UNSPECIFIED:
case NL80211_IFTYPE_STATION:
arvif->vdev_type = WMI_VDEV_TYPE_STA;
if (vif->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT;
break;
case NL80211_IFTYPE_ADHOC:
arvif->vdev_type = WMI_VDEV_TYPE_IBSS;
break;
case NL80211_IFTYPE_AP:
arvif->vdev_type = WMI_VDEV_TYPE_AP;
if (vif->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO;
break;
case NL80211_IFTYPE_MONITOR:
arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
break;
default:
WARN_ON(1);
break;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d\n",
arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype);
ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type,
arvif->vdev_subtype, vif->addr);
if (ret) {
ath10k_warn("WMI vdev create failed: ret %d\n", ret);
goto err;
}
ar->free_vdev_map &= ~BIT(arvif->vdev_id);
list_add(&arvif->list, &ar->arvifs);
vdev_param = ar->wmi.vdev_param->def_keyid;
ret = ath10k_wmi_vdev_set_param(ar, 0, vdev_param,
arvif->def_wep_key_idx);
if (ret) {
ath10k_warn("Failed to set default keyid: %d\n", ret);
goto err_vdev_delete;
}
vdev_param = ar->wmi.vdev_param->tx_encap_type;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
ATH10K_HW_TXRX_NATIVE_WIFI);
/* 10.X firmware does not support this VDEV parameter. Do not warn */
if (ret && ret != -EOPNOTSUPP) {
ath10k_warn("Failed to set TX encap: %d\n", ret);
goto err_vdev_delete;
}
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
ret = ath10k_peer_create(ar, arvif->vdev_id, vif->addr);
if (ret) {
ath10k_warn("Failed to create peer for AP: %d\n", ret);
goto err_vdev_delete;
}
}
if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
param = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn("Failed to set RX wake policy: %d\n", ret);
goto err_peer_delete;
}
param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn("Failed to set TX wake thresh: %d\n", ret);
goto err_peer_delete;
}
param = WMI_STA_PS_PARAM_PSPOLL_COUNT;
value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn("Failed to set PSPOLL count: %d\n", ret);
goto err_peer_delete;
}
}
ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold);
if (ret) {
ath10k_warn("failed to set rts threshold for vdev %d (%d)\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
ret = ath10k_mac_set_frag(arvif, ar->hw->wiphy->frag_threshold);
if (ret) {
ath10k_warn("failed to set frag threshold for vdev %d (%d)\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
ar->monitor_present = true;
mutex_unlock(&ar->conf_mutex);
return 0;
err_peer_delete:
if (arvif->vdev_type == WMI_VDEV_TYPE_AP)
ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr);
err_vdev_delete:
ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
ar->free_vdev_map &= ~BIT(arvif->vdev_id);
list_del(&arvif->list);
err:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret;
mutex_lock(&ar->conf_mutex);
cancel_work_sync(&arvif->wep_key_work);
spin_lock_bh(&ar->data_lock);
if (arvif->beacon) {
dev_kfree_skb_any(arvif->beacon);
arvif->beacon = NULL;
}
spin_unlock_bh(&ar->data_lock);
ar->free_vdev_map |= 1 << (arvif->vdev_id);
list_del(&arvif->list);
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, vif->addr);
if (ret)
ath10k_warn("Failed to remove peer for AP: %d\n", ret);
kfree(arvif->u.ap.noa_data);
}
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev delete %d (remove interface)\n",
arvif->vdev_id);
ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
if (ret)
ath10k_warn("WMI vdev delete failed: %d\n", ret);
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
ar->monitor_present = false;
ath10k_peer_cleanup(ar, arvif->vdev_id);
mutex_unlock(&ar->conf_mutex);
}
/*
* FIXME: Has to be verified.
*/
#define SUPPORTED_FILTERS \
(FIF_PROMISC_IN_BSS | \
FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_PSPOLL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_PROBE_REQ | \
FIF_FCSFAIL)
static void ath10k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
changed_flags &= SUPPORTED_FILTERS;
*total_flags &= SUPPORTED_FILTERS;
ar->filter_flags = *total_flags;
if ((ar->filter_flags & FIF_PROMISC_IN_BSS) &&
!ar->monitor_enabled) {
ath10k_dbg(ATH10K_DBG_MAC, "mac monitor %d start\n",
ar->monitor_vdev_id);
ret = ath10k_monitor_start(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("Unable to start monitor mode\n");
} else if (!(ar->filter_flags & FIF_PROMISC_IN_BSS) &&
ar->monitor_enabled) {
ath10k_dbg(ATH10K_DBG_MAC, "mac monitor %d stop\n",
ar->monitor_vdev_id);
ret = ath10k_monitor_stop(ar);
if (ret)
ath10k_warn("Unable to stop monitor mode\n");
}
mutex_unlock(&ar->conf_mutex);
}
static void ath10k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret = 0;
u32 vdev_param, pdev_param;
mutex_lock(&ar->conf_mutex);
if (changed & BSS_CHANGED_IBSS)
ath10k_control_ibss(arvif, info, vif->addr);
if (changed & BSS_CHANGED_BEACON_INT) {
arvif->beacon_interval = info->beacon_int;
vdev_param = ar->wmi.vdev_param->beacon_interval;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->beacon_interval);
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d beacon_interval %d\n",
arvif->vdev_id, arvif->beacon_interval);
if (ret)
ath10k_warn("Failed to set beacon interval for VDEV: %d\n",
arvif->vdev_id);
}
if (changed & BSS_CHANGED_BEACON) {
ath10k_dbg(ATH10K_DBG_MAC,
"vdev %d set beacon tx mode to staggered\n",
arvif->vdev_id);
pdev_param = ar->wmi.pdev_param->beacon_tx_mode;
ret = ath10k_wmi_pdev_set_param(ar, pdev_param,
WMI_BEACON_STAGGERED_MODE);
if (ret)
ath10k_warn("Failed to set beacon mode for VDEV: %d\n",
arvif->vdev_id);
}
if (changed & BSS_CHANGED_BEACON_INFO) {
arvif->dtim_period = info->dtim_period;
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d dtim_period %d\n",
arvif->vdev_id, arvif->dtim_period);
vdev_param = ar->wmi.vdev_param->dtim_period;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->dtim_period);
if (ret)
ath10k_warn("Failed to set dtim period for VDEV: %d\n",
arvif->vdev_id);
}
if (changed & BSS_CHANGED_SSID &&
vif->type == NL80211_IFTYPE_AP) {
arvif->u.ap.ssid_len = info->ssid_len;
if (info->ssid_len)
memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len);
arvif->u.ap.hidden_ssid = info->hidden_ssid;
}
if (changed & BSS_CHANGED_BSSID) {
if (!is_zero_ether_addr(info->bssid)) {
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d create peer %pM\n",
arvif->vdev_id, info->bssid);
ret = ath10k_peer_create(ar, arvif->vdev_id,
info->bssid);
if (ret)
ath10k_warn("Failed to add peer: %pM for VDEV: %d\n",
info->bssid, arvif->vdev_id);
if (vif->type == NL80211_IFTYPE_STATION) {
/*
* this is never erased as we it for crypto key
* clearing; this is FW requirement
*/
memcpy(arvif->u.sta.bssid, info->bssid,
ETH_ALEN);
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d start %pM\n",
arvif->vdev_id, info->bssid);
/* FIXME: check return value */
ret = ath10k_vdev_start(arvif);
}
/*
* Mac80211 does not keep IBSS bssid when leaving IBSS,
* so driver need to store it. It is needed when leaving
* IBSS in order to remove BSSID peer.
*/
if (vif->type == NL80211_IFTYPE_ADHOC)
memcpy(arvif->u.ibss.bssid, info->bssid,
ETH_ALEN);
}
}
if (changed & BSS_CHANGED_BEACON_ENABLED)
ath10k_control_beaconing(arvif, info);
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
u32 cts_prot;
if (info->use_cts_prot)
cts_prot = 1;
else
cts_prot = 0;
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d cts_prot %d\n",
arvif->vdev_id, cts_prot);
vdev_param = ar->wmi.vdev_param->enable_rtscts;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
cts_prot);
if (ret)
ath10k_warn("Failed to set CTS prot for VDEV: %d\n",
arvif->vdev_id);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
u32 slottime;
if (info->use_short_slot)
slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */
else
slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n",
arvif->vdev_id, slottime);
vdev_param = ar->wmi.vdev_param->slot_time;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
slottime);
if (ret)
ath10k_warn("Failed to set erp slot for VDEV: %d\n",
arvif->vdev_id);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
u32 preamble;
if (info->use_short_preamble)
preamble = WMI_VDEV_PREAMBLE_SHORT;
else
preamble = WMI_VDEV_PREAMBLE_LONG;
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d preamble %dn",
arvif->vdev_id, preamble);
vdev_param = ar->wmi.vdev_param->preamble;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
preamble);
if (ret)
ath10k_warn("Failed to set preamble for VDEV: %d\n",
arvif->vdev_id);
}
if (changed & BSS_CHANGED_ASSOC) {
if (info->assoc)
ath10k_bss_assoc(hw, vif, info);
}
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_scan_request *req)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct wmi_start_scan_arg arg;
int ret = 0;
int i;
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
if (ar->scan.in_progress) {
spin_unlock_bh(&ar->data_lock);
ret = -EBUSY;
goto exit;
}
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
ar->scan.in_progress = true;
ar->scan.aborting = false;
ar->scan.is_roc = false;
ar->scan.vdev_id = arvif->vdev_id;
spin_unlock_bh(&ar->data_lock);
memset(&arg, 0, sizeof(arg));
ath10k_wmi_start_scan_init(ar, &arg);
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH10K_SCAN_ID;
if (!req->no_cck)
arg.scan_ctrl_flags |= WMI_SCAN_ADD_CCK_RATES;
if (req->ie_len) {
arg.ie_len = req->ie_len;
memcpy(arg.ie, req->ie, arg.ie_len);
}
if (req->n_ssids) {
arg.n_ssids = req->n_ssids;
for (i = 0; i < arg.n_ssids; i++) {
arg.ssids[i].len = req->ssids[i].ssid_len;
arg.ssids[i].ssid = req->ssids[i].ssid;
}
} else {
arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
}
if (req->n_channels) {
arg.n_channels = req->n_channels;
for (i = 0; i < arg.n_channels; i++)
arg.channels[i] = req->channels[i]->center_freq;
}
ret = ath10k_start_scan(ar, &arg);
if (ret) {
ath10k_warn("could not start hw scan (%d)\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.in_progress = false;
spin_unlock_bh(&ar->data_lock);
}
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
ret = ath10k_abort_scan(ar);
if (ret) {
ath10k_warn("couldn't abort scan (%d). forcefully sending scan completion to mac80211\n",
ret);
ieee80211_scan_completed(hw, 1 /* aborted */);
}
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k_peer *peer;
const u8 *peer_addr;
bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
key->cipher == WLAN_CIPHER_SUITE_WEP104;
int ret = 0;
if (key->keyidx > WMI_MAX_KEY_INDEX)
return -ENOSPC;
mutex_lock(&ar->conf_mutex);
if (sta)
peer_addr = sta->addr;
else if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
peer_addr = vif->bss_conf.bssid;
else
peer_addr = vif->addr;
key->hw_key_idx = key->keyidx;
/* the peer should not disappear in mid-way (unless FW goes awry) since
* we already hold conf_mutex. we just make sure its there now. */
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
spin_unlock_bh(&ar->data_lock);
if (!peer) {
if (cmd == SET_KEY) {
ath10k_warn("cannot install key for non-existent peer %pM\n",
peer_addr);
ret = -EOPNOTSUPP;
goto exit;
} else {
/* if the peer doesn't exist there is no key to disable
* anymore */
goto exit;
}
}
if (is_wep) {
if (cmd == SET_KEY)
arvif->wep_keys[key->keyidx] = key;
else
arvif->wep_keys[key->keyidx] = NULL;
if (cmd == DISABLE_KEY)
ath10k_clear_vdev_key(arvif, key);
}
ret = ath10k_install_key(arvif, key, cmd, peer_addr);
if (ret) {
ath10k_warn("ath10k_install_key failed (%d)\n", ret);
goto exit;
}
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
if (peer && cmd == SET_KEY)
peer->keys[key->keyidx] = key;
else if (peer && cmd == DISABLE_KEY)
peer->keys[key->keyidx] = NULL;
else if (peer == NULL)
/* impossible unless FW goes crazy */
ath10k_warn("peer %pM disappeared!\n", peer_addr);
spin_unlock_bh(&ar->data_lock);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_sta_state(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
enum ieee80211_sta_state old_state,
enum ieee80211_sta_state new_state)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret = 0;
mutex_lock(&ar->conf_mutex);
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE &&
vif->type != NL80211_IFTYPE_STATION) {
/*
* New station addition.
*/
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d peer create %pM (new sta)\n",
arvif->vdev_id, sta->addr);
ret = ath10k_peer_create(ar, arvif->vdev_id, sta->addr);
if (ret)
ath10k_warn("Failed to add peer: %pM for VDEV: %d\n",
sta->addr, arvif->vdev_id);
} else if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST)) {
/*
* Existing station deletion.
*/
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d peer delete %pM (sta gone)\n",
arvif->vdev_id, sta->addr);
ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
if (ret)
ath10k_warn("Failed to delete peer: %pM for VDEV: %d\n",
sta->addr, arvif->vdev_id);
if (vif->type == NL80211_IFTYPE_STATION)
ath10k_bss_disassoc(hw, vif);
} else if (old_state == IEEE80211_STA_AUTH &&
new_state == IEEE80211_STA_ASSOC &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* New association.
*/
ath10k_dbg(ATH10K_DBG_MAC, "mac sta %pM associated\n",
sta->addr);
ret = ath10k_station_assoc(ar, arvif, sta);
if (ret)
ath10k_warn("Failed to associate station: %pM\n",
sta->addr);
} else if (old_state == IEEE80211_STA_ASSOC &&
new_state == IEEE80211_STA_AUTH &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* Disassociation.
*/
ath10k_dbg(ATH10K_DBG_MAC, "mac sta %pM disassociated\n",
sta->addr);
ret = ath10k_station_disassoc(ar, arvif, sta);
if (ret)
ath10k_warn("Failed to disassociate station: %pM\n",
sta->addr);
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif,
u16 ac, bool enable)
{
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
u32 value = 0;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
return 0;
switch (ac) {
case IEEE80211_AC_VO:
value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
break;
case IEEE80211_AC_VI:
value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
break;
case IEEE80211_AC_BE:
value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
break;
case IEEE80211_AC_BK:
value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
break;
}
if (enable)
arvif->u.sta.uapsd |= value;
else
arvif->u.sta.uapsd &= ~value;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_UAPSD,
arvif->u.sta.uapsd);
if (ret) {
ath10k_warn("could not set uapsd params %d\n", ret);
goto exit;
}
if (arvif->u.sta.uapsd)
value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
else
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_RX_WAKE_POLICY,
value);
if (ret)
ath10k_warn("could not set rx wake param %d\n", ret);
exit:
return ret;
}
static int ath10k_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 ac,
const struct ieee80211_tx_queue_params *params)
{
struct ath10k *ar = hw->priv;
struct wmi_wmm_params_arg *p = NULL;
int ret;
mutex_lock(&ar->conf_mutex);
switch (ac) {
case IEEE80211_AC_VO:
p = &ar->wmm_params.ac_vo;
break;
case IEEE80211_AC_VI:
p = &ar->wmm_params.ac_vi;
break;
case IEEE80211_AC_BE:
p = &ar->wmm_params.ac_be;
break;
case IEEE80211_AC_BK:
p = &ar->wmm_params.ac_bk;
break;
}
if (WARN_ON(!p)) {
ret = -EINVAL;
goto exit;
}
p->cwmin = params->cw_min;
p->cwmax = params->cw_max;
p->aifs = params->aifs;
/*
* The channel time duration programmed in the HW is in absolute
* microseconds, while mac80211 gives the txop in units of
* 32 microseconds.
*/
p->txop = params->txop * 32;
/* FIXME: FW accepts wmm params per hw, not per vif */
ret = ath10k_wmi_pdev_set_wmm_params(ar, &ar->wmm_params);
if (ret) {
ath10k_warn("could not set wmm params %d\n", ret);
goto exit;
}
ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd);
if (ret)
ath10k_warn("could not set sta uapsd %d\n", ret);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
#define ATH10K_ROC_TIMEOUT_HZ (2*HZ)
static int ath10k_remain_on_channel(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration,
enum ieee80211_roc_type type)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct wmi_start_scan_arg arg;
int ret;
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
if (ar->scan.in_progress) {
spin_unlock_bh(&ar->data_lock);
ret = -EBUSY;
goto exit;
}
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
reinit_completion(&ar->scan.on_channel);
ar->scan.in_progress = true;
ar->scan.aborting = false;
ar->scan.is_roc = true;
ar->scan.vdev_id = arvif->vdev_id;
ar->scan.roc_freq = chan->center_freq;
spin_unlock_bh(&ar->data_lock);
memset(&arg, 0, sizeof(arg));
ath10k_wmi_start_scan_init(ar, &arg);
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH10K_SCAN_ID;
arg.n_channels = 1;
arg.channels[0] = chan->center_freq;
arg.dwell_time_active = duration;
arg.dwell_time_passive = duration;
arg.max_scan_time = 2 * duration;
arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ;
ret = ath10k_start_scan(ar, &arg);
if (ret) {
ath10k_warn("could not start roc scan (%d)\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.in_progress = false;
spin_unlock_bh(&ar->data_lock);
goto exit;
}
ret = wait_for_completion_timeout(&ar->scan.on_channel, 3*HZ);
if (ret == 0) {
ath10k_warn("could not switch to channel for roc scan\n");
ath10k_abort_scan(ar);
ret = -ETIMEDOUT;
goto exit;
}
ret = 0;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
ath10k_abort_scan(ar);
mutex_unlock(&ar->conf_mutex);
return 0;
}
/*
* Both RTS and Fragmentation threshold are interface-specific
* in ath10k, but device-specific in mac80211.
*/
static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif;
int ret = 0;
mutex_lock(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n",
arvif->vdev_id, value);
ret = ath10k_mac_set_rts(arvif, value);
if (ret) {
ath10k_warn("could not set rts threshold for vdev %d (%d)\n",
arvif->vdev_id, ret);
break;
}
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_set_frag_threshold(struct ieee80211_hw *hw, u32 value)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif;
int ret = 0;
mutex_lock(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d fragmentation threshold %d\n",
arvif->vdev_id, value);
ret = ath10k_mac_set_rts(arvif, value);
if (ret) {
ath10k_warn("could not set fragmentation threshold for vdev %d (%d)\n",
arvif->vdev_id, ret);
break;
}
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_flush(struct ieee80211_hw *hw, u32 queues, bool drop)
{
struct ath10k *ar = hw->priv;
bool skip;
int ret;
/* mac80211 doesn't care if we really xmit queued frames or not
* we'll collect those frames either way if we stop/delete vdevs */
if (drop)
return;
mutex_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_WEDGED)
goto skip;
ret = wait_event_timeout(ar->htt.empty_tx_wq, ({
bool empty;
spin_lock_bh(&ar->htt.tx_lock);
empty = (ar->htt.num_pending_tx == 0);
spin_unlock_bh(&ar->htt.tx_lock);
skip = (ar->state == ATH10K_STATE_WEDGED);
(empty || skip);
}), ATH10K_FLUSH_TIMEOUT_HZ);
if (ret <= 0 || skip)
ath10k_warn("tx not flushed\n");
skip:
mutex_unlock(&ar->conf_mutex);
}
/* TODO: Implement this function properly
* For now it is needed to reply to Probe Requests in IBSS mode.
* Propably we need this information from FW.
*/
static int ath10k_tx_last_beacon(struct ieee80211_hw *hw)
{
return 1;
}
#ifdef CONFIG_PM
static int ath10k_suspend(struct ieee80211_hw *hw,
struct cfg80211_wowlan *wowlan)
{
struct ath10k *ar = hw->priv;
int ret;
ar->is_target_paused = false;
ret = ath10k_wmi_pdev_suspend_target(ar);
if (ret) {
ath10k_warn("could not suspend target (%d)\n", ret);
return 1;
}
ret = wait_event_interruptible_timeout(ar->event_queue,
ar->is_target_paused == true,
1 * HZ);
if (ret < 0) {
ath10k_warn("suspend interrupted (%d)\n", ret);
goto resume;
} else if (ret == 0) {
ath10k_warn("suspend timed out - target pause event never came\n");
goto resume;
}
ret = ath10k_hif_suspend(ar);
if (ret) {
ath10k_warn("could not suspend hif (%d)\n", ret);
goto resume;
}
return 0;
resume:
ret = ath10k_wmi_pdev_resume_target(ar);
if (ret)
ath10k_warn("could not resume target (%d)\n", ret);
return 1;
}
static int ath10k_resume(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
int ret;
ret = ath10k_hif_resume(ar);
if (ret) {
ath10k_warn("could not resume hif (%d)\n", ret);
return 1;
}
ret = ath10k_wmi_pdev_resume_target(ar);
if (ret) {
ath10k_warn("could not resume target (%d)\n", ret);
return 1;
}
return 0;
}
#endif
static void ath10k_restart_complete(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
/* If device failed to restart it will be in a different state, e.g.
* ATH10K_STATE_WEDGED */
if (ar->state == ATH10K_STATE_RESTARTED) {
ath10k_info("device successfully recovered\n");
ar->state = ATH10K_STATE_ON;
}
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct ath10k *ar = hw->priv;
struct ieee80211_supported_band *sband;
struct survey_info *ar_survey = &ar->survey[idx];
int ret = 0;
mutex_lock(&ar->conf_mutex);
sband = hw->wiphy->bands[IEEE80211_BAND_2GHZ];
if (sband && idx >= sband->n_channels) {
idx -= sband->n_channels;
sband = NULL;
}
if (!sband)
sband = hw->wiphy->bands[IEEE80211_BAND_5GHZ];
if (!sband || idx >= sband->n_channels) {
ret = -ENOENT;
goto exit;
}
spin_lock_bh(&ar->data_lock);
memcpy(survey, ar_survey, sizeof(*survey));
spin_unlock_bh(&ar->data_lock);
survey->channel = &sband->channels[idx];
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static const struct ieee80211_ops ath10k_ops = {
.tx = ath10k_tx,
.start = ath10k_start,
.stop = ath10k_stop,
.config = ath10k_config,
.add_interface = ath10k_add_interface,
.remove_interface = ath10k_remove_interface,
.configure_filter = ath10k_configure_filter,
.bss_info_changed = ath10k_bss_info_changed,
.hw_scan = ath10k_hw_scan,
.cancel_hw_scan = ath10k_cancel_hw_scan,
.set_key = ath10k_set_key,
.sta_state = ath10k_sta_state,
.conf_tx = ath10k_conf_tx,
.remain_on_channel = ath10k_remain_on_channel,
.cancel_remain_on_channel = ath10k_cancel_remain_on_channel,
.set_rts_threshold = ath10k_set_rts_threshold,
.set_frag_threshold = ath10k_set_frag_threshold,
.flush = ath10k_flush,
.tx_last_beacon = ath10k_tx_last_beacon,
.restart_complete = ath10k_restart_complete,
.get_survey = ath10k_get_survey,
#ifdef CONFIG_PM
.suspend = ath10k_suspend,
.resume = ath10k_resume,
#endif
};
#define RATETAB_ENT(_rate, _rateid, _flags) { \
.bitrate = (_rate), \
.flags = (_flags), \
.hw_value = (_rateid), \
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static const struct ieee80211_channel ath10k_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static const struct ieee80211_channel ath10k_5ghz_channels[] = {
CHAN5G(36, 5180, 0),
CHAN5G(40, 5200, 0),
CHAN5G(44, 5220, 0),
CHAN5G(48, 5240, 0),
CHAN5G(52, 5260, 0),
CHAN5G(56, 5280, 0),
CHAN5G(60, 5300, 0),
CHAN5G(64, 5320, 0),
CHAN5G(100, 5500, 0),
CHAN5G(104, 5520, 0),
CHAN5G(108, 5540, 0),
CHAN5G(112, 5560, 0),
CHAN5G(116, 5580, 0),
CHAN5G(120, 5600, 0),
CHAN5G(124, 5620, 0),
CHAN5G(128, 5640, 0),
CHAN5G(132, 5660, 0),
CHAN5G(136, 5680, 0),
CHAN5G(140, 5700, 0),
CHAN5G(149, 5745, 0),
CHAN5G(153, 5765, 0),
CHAN5G(157, 5785, 0),
CHAN5G(161, 5805, 0),
CHAN5G(165, 5825, 0),
};
static struct ieee80211_rate ath10k_rates[] = {
/* CCK */
RATETAB_ENT(10, 0x82, 0),
RATETAB_ENT(20, 0x84, 0),
RATETAB_ENT(55, 0x8b, 0),
RATETAB_ENT(110, 0x96, 0),
/* OFDM */
RATETAB_ENT(60, 0x0c, 0),
RATETAB_ENT(90, 0x12, 0),
RATETAB_ENT(120, 0x18, 0),
RATETAB_ENT(180, 0x24, 0),
RATETAB_ENT(240, 0x30, 0),
RATETAB_ENT(360, 0x48, 0),
RATETAB_ENT(480, 0x60, 0),
RATETAB_ENT(540, 0x6c, 0),
};
#define ath10k_a_rates (ath10k_rates + 4)
#define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - 4)
#define ath10k_g_rates (ath10k_rates + 0)
#define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates))
struct ath10k *ath10k_mac_create(void)
{
struct ieee80211_hw *hw;
struct ath10k *ar;
hw = ieee80211_alloc_hw(sizeof(struct ath10k), &ath10k_ops);
if (!hw)
return NULL;
ar = hw->priv;
ar->hw = hw;
return ar;
}
void ath10k_mac_destroy(struct ath10k *ar)
{
ieee80211_free_hw(ar->hw);
}
static const struct ieee80211_iface_limit ath10k_if_limits[] = {
{
.max = 8,
.types = BIT(NL80211_IFTYPE_STATION)
| BIT(NL80211_IFTYPE_P2P_CLIENT)
},
{
.max = 3,
.types = BIT(NL80211_IFTYPE_P2P_GO)
},
{
.max = 7,
.types = BIT(NL80211_IFTYPE_AP)
},
};
static const struct ieee80211_iface_combination ath10k_if_comb = {
.limits = ath10k_if_limits,
.n_limits = ARRAY_SIZE(ath10k_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
};
static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar)
{
struct ieee80211_sta_vht_cap vht_cap = {0};
u16 mcs_map;
int i;
vht_cap.vht_supported = 1;
vht_cap.cap = ar->vht_cap_info;
mcs_map = 0;
for (i = 0; i < 8; i++) {
if (i < ar->num_rf_chains)
mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i*2);
else
mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i*2);
}
vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
return vht_cap;
}
static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar)
{
int i;
struct ieee80211_sta_ht_cap ht_cap = {0};
if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED))
return ht_cap;
ht_cap.ht_supported = 1;
ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT;
if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) {
u32 smps;
smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
ht_cap.cap |= smps;
}
if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC)
ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) {
u32 stbc;
stbc = ar->ht_cap_info;
stbc &= WMI_HT_CAP_RX_STBC;
stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT;
stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc &= IEEE80211_HT_CAP_RX_STBC;
ht_cap.cap |= stbc;
}
if (ar->ht_cap_info & WMI_HT_CAP_LDPC)
ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT)
ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT;
/* max AMSDU is implicitly taken from vht_cap_info */
if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK)
ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
for (i = 0; i < ar->num_rf_chains; i++)
ht_cap.mcs.rx_mask[i] = 0xFF;
ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
return ht_cap;
}
static void ath10k_get_arvif_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath10k_vif_iter *arvif_iter = data;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
if (arvif->vdev_id == arvif_iter->vdev_id)
arvif_iter->arvif = arvif;
}
struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_vif_iter arvif_iter;
u32 flags;
memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter));
arvif_iter.vdev_id = vdev_id;
flags = IEEE80211_IFACE_ITER_RESUME_ALL;
ieee80211_iterate_active_interfaces_atomic(ar->hw,
flags,
ath10k_get_arvif_iter,
&arvif_iter);
if (!arvif_iter.arvif) {
ath10k_warn("No VIF found for VDEV: %d\n", vdev_id);
return NULL;
}
return arvif_iter.arvif;
}
int ath10k_mac_register(struct ath10k *ar)
{
struct ieee80211_supported_band *band;
struct ieee80211_sta_vht_cap vht_cap;
struct ieee80211_sta_ht_cap ht_cap;
void *channels;
int ret;
SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr);
SET_IEEE80211_DEV(ar->hw, ar->dev);
ht_cap = ath10k_get_ht_cap(ar);
vht_cap = ath10k_create_vht_cap(ar);
if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
channels = kmemdup(ath10k_2ghz_channels,
sizeof(ath10k_2ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[IEEE80211_BAND_2GHZ];
band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels);
band->channels = channels;
band->n_bitrates = ath10k_g_rates_size;
band->bitrates = ath10k_g_rates;
band->ht_cap = ht_cap;
/* vht is not supported in 2.4 GHz */
ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = band;
}
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
channels = kmemdup(ath10k_5ghz_channels,
sizeof(ath10k_5ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[IEEE80211_BAND_5GHZ];
band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels);
band->channels = channels;
band->n_bitrates = ath10k_a_rates_size;
band->bitrates = ath10k_a_rates;
band->ht_cap = ht_cap;
band->vht_cap = vht_cap;
ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = band;
}
ar->hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO);
ar->hw->flags = IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_SUPPORTS_DYNAMIC_PS |
IEEE80211_HW_SUPPORTS_UAPSD |
IEEE80211_HW_MFP_CAPABLE |
IEEE80211_HW_REPORTS_TX_ACK_STATUS |
IEEE80211_HW_HAS_RATE_CONTROL |
IEEE80211_HW_SUPPORTS_STATIC_SMPS |
IEEE80211_HW_WANT_MONITOR_VIF |
IEEE80211_HW_AP_LINK_PS;
/* MSDU can have HTT TX fragment pushed in front. The additional 4
* bytes is used for padding/alignment if necessary. */
ar->hw->extra_tx_headroom += sizeof(struct htt_data_tx_desc_frag)*2 + 4;
if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS)
ar->hw->flags |= IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS;
if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) {
ar->hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
ar->hw->flags |= IEEE80211_HW_TX_AMPDU_SETUP_IN_HW;
}
ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;
ar->hw->vif_data_size = sizeof(struct ath10k_vif);
ar->hw->channel_change_time = 5000;
ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL;
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
ar->hw->wiphy->max_remain_on_channel_duration = 5000;
ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
/*
* on LL hardware queues are managed entirely by the FW
* so we only advertise to mac we can do the queues thing
*/
ar->hw->queues = 4;
ar->hw->wiphy->iface_combinations = &ath10k_if_comb;
ar->hw->wiphy->n_iface_combinations = 1;
ar->hw->netdev_features = NETIF_F_HW_CSUM;
ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy,
ath10k_reg_notifier);
if (ret) {
ath10k_err("Regulatory initialization failed\n");
goto err_free;
}
ret = ieee80211_register_hw(ar->hw);
if (ret) {
ath10k_err("ieee80211 registration failed: %d\n", ret);
goto err_free;
}
if (!ath_is_world_regd(&ar->ath_common.regulatory)) {
ret = regulatory_hint(ar->hw->wiphy,
ar->ath_common.regulatory.alpha2);
if (ret)
goto err_unregister;
}
return 0;
err_unregister:
ieee80211_unregister_hw(ar->hw);
err_free:
kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
return ret;
}
void ath10k_mac_unregister(struct ath10k *ar)
{
ieee80211_unregister_hw(ar->hw);
kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
SET_IEEE80211_DEV(ar->hw, NULL);
}