linux_dsm_epyc7002/drivers/hid/hid-alps.c
Linus Torvalds 60541fb624 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid into master
Pull HID fixes from Jiri Kosina:

 - linked list race condition fix in hid-steam driver from Rodrigo Rivas
   Costa

 - assorted deviceID-specific quirks and other small cosmetic cleanups

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid:
  HID: logitech-hidpp: avoid repeated "multiplier = " log messages
  HID: logitech: Use HIDPP_RECEIVER_INDEX instead of 0xff
  HID: quirks: Ignore Simply Automated UPB PIM
  HID: apple: Disable Fn-key key-re-mapping on clone keyboards
  MAINTAINERS: update uhid and hid-wiimote entry
  HID: steam: fixes race in handling device list.
  HID: magicmouse: do not set up autorepeat
  HID: alps: support devices with report id 2
  HID: quirks: Always poll Obins Anne Pro 2 keyboard
  HID: i2c-hid: add Mediacom FlexBook edge13 to descriptor override
2020-07-17 09:43:13 -07:00

857 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2016 Masaki Ota <masaki.ota@jp.alps.com>
*/
#include <linux/kernel.h>
#include <linux/hid.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/module.h>
#include <asm/unaligned.h>
#include "hid-ids.h"
/* ALPS Device Product ID */
#define HID_PRODUCT_ID_T3_BTNLESS 0xD0C0
#define HID_PRODUCT_ID_COSMO 0x1202
#define HID_PRODUCT_ID_U1_PTP_1 0x1207
#define HID_PRODUCT_ID_U1 0x1209
#define HID_PRODUCT_ID_U1_PTP_2 0x120A
#define HID_PRODUCT_ID_U1_DUAL 0x120B
#define HID_PRODUCT_ID_T4_BTNLESS 0x120C
#define DEV_SINGLEPOINT 0x01
#define DEV_DUALPOINT 0x02
#define U1_MOUSE_REPORT_ID 0x01 /* Mouse data ReportID */
#define U1_ABSOLUTE_REPORT_ID 0x03 /* Absolute data ReportID */
#define U1_ABSOLUTE_REPORT_ID_SECD 0x02 /* FW-PTP Absolute data ReportID */
#define U1_FEATURE_REPORT_ID 0x05 /* Feature ReportID */
#define U1_SP_ABSOLUTE_REPORT_ID 0x06 /* Feature ReportID */
#define U1_FEATURE_REPORT_LEN 0x08 /* Feature Report Length */
#define U1_FEATURE_REPORT_LEN_ALL 0x0A
#define U1_CMD_REGISTER_READ 0xD1
#define U1_CMD_REGISTER_WRITE 0xD2
#define U1_DEVTYPE_SP_SUPPORT 0x10 /* SP Support */
#define U1_DISABLE_DEV 0x01
#define U1_TP_ABS_MODE 0x02
#define U1_SP_ABS_MODE 0x80
#define ADDRESS_U1_DEV_CTRL_1 0x00800040
#define ADDRESS_U1_DEVICE_TYP 0x00800043
#define ADDRESS_U1_NUM_SENS_X 0x00800047
#define ADDRESS_U1_NUM_SENS_Y 0x00800048
#define ADDRESS_U1_PITCH_SENS_X 0x00800049
#define ADDRESS_U1_PITCH_SENS_Y 0x0080004A
#define ADDRESS_U1_RESO_DWN_ABS 0x0080004E
#define ADDRESS_U1_PAD_BTN 0x00800052
#define ADDRESS_U1_SP_BTN 0x0080009F
#define T4_INPUT_REPORT_LEN sizeof(struct t4_input_report)
#define T4_FEATURE_REPORT_LEN T4_INPUT_REPORT_LEN
#define T4_FEATURE_REPORT_ID 7
#define T4_CMD_REGISTER_READ 0x08
#define T4_CMD_REGISTER_WRITE 0x07
#define T4_ADDRESS_BASE 0xC2C0
#define PRM_SYS_CONFIG_1 (T4_ADDRESS_BASE + 0x0002)
#define T4_PRM_FEED_CONFIG_1 (T4_ADDRESS_BASE + 0x0004)
#define T4_PRM_FEED_CONFIG_4 (T4_ADDRESS_BASE + 0x001A)
#define T4_PRM_ID_CONFIG_3 (T4_ADDRESS_BASE + 0x00B0)
#define T4_FEEDCFG4_ADVANCED_ABS_ENABLE 0x01
#define T4_I2C_ABS 0x78
#define T4_COUNT_PER_ELECTRODE 256
#define MAX_TOUCHES 5
enum dev_num {
U1,
T4,
UNKNOWN,
};
/**
* struct u1_data
*
* @input: pointer to the kernel input device
* @input2: pointer to the kernel input2 device
* @hdev: pointer to the struct hid_device
*
* @dev_type: device type
* @max_fingers: total number of fingers
* @has_sp: boolean of sp existense
* @sp_btn_info: button information
* @x_active_len_mm: active area length of X (mm)
* @y_active_len_mm: active area length of Y (mm)
* @x_max: maximum x coordinate value
* @y_max: maximum y coordinate value
* @x_min: minimum x coordinate value
* @y_min: minimum y coordinate value
* @btn_cnt: number of buttons
* @sp_btn_cnt: number of stick buttons
*/
struct alps_dev {
struct input_dev *input;
struct input_dev *input2;
struct hid_device *hdev;
enum dev_num dev_type;
u8 max_fingers;
u8 has_sp;
u8 sp_btn_info;
u32 x_active_len_mm;
u32 y_active_len_mm;
u32 x_max;
u32 y_max;
u32 x_min;
u32 y_min;
u32 btn_cnt;
u32 sp_btn_cnt;
};
struct t4_contact_data {
u8 palm;
u8 x_lo;
u8 x_hi;
u8 y_lo;
u8 y_hi;
};
struct t4_input_report {
u8 reportID;
u8 numContacts;
struct t4_contact_data contact[5];
u8 button;
u8 track[5];
u8 zx[5], zy[5];
u8 palmTime[5];
u8 kilroy;
u16 timeStamp;
};
static u16 t4_calc_check_sum(u8 *buffer,
unsigned long offset, unsigned long length)
{
u16 sum1 = 0xFF, sum2 = 0xFF;
unsigned long i = 0;
if (offset + length >= 50)
return 0;
while (length > 0) {
u32 tlen = length > 20 ? 20 : length;
length -= tlen;
do {
sum1 += buffer[offset + i];
sum2 += sum1;
i++;
} while (--tlen > 0);
sum1 = (sum1 & 0xFF) + (sum1 >> 8);
sum2 = (sum2 & 0xFF) + (sum2 >> 8);
}
sum1 = (sum1 & 0xFF) + (sum1 >> 8);
sum2 = (sum2 & 0xFF) + (sum2 >> 8);
return(sum2 << 8 | sum1);
}
static int t4_read_write_register(struct hid_device *hdev, u32 address,
u8 *read_val, u8 write_val, bool read_flag)
{
int ret;
u16 check_sum;
u8 *input;
u8 *readbuf = NULL;
input = kzalloc(T4_FEATURE_REPORT_LEN, GFP_KERNEL);
if (!input)
return -ENOMEM;
input[0] = T4_FEATURE_REPORT_ID;
if (read_flag) {
input[1] = T4_CMD_REGISTER_READ;
input[8] = 0x00;
} else {
input[1] = T4_CMD_REGISTER_WRITE;
input[8] = write_val;
}
put_unaligned_le32(address, input + 2);
input[6] = 1;
input[7] = 0;
/* Calculate the checksum */
check_sum = t4_calc_check_sum(input, 1, 8);
input[9] = (u8)check_sum;
input[10] = (u8)(check_sum >> 8);
input[11] = 0;
ret = hid_hw_raw_request(hdev, T4_FEATURE_REPORT_ID, input,
T4_FEATURE_REPORT_LEN,
HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
if (ret < 0) {
dev_err(&hdev->dev, "failed to read command (%d)\n", ret);
goto exit;
}
if (read_flag) {
readbuf = kzalloc(T4_FEATURE_REPORT_LEN, GFP_KERNEL);
if (!readbuf) {
ret = -ENOMEM;
goto exit;
}
ret = hid_hw_raw_request(hdev, T4_FEATURE_REPORT_ID, readbuf,
T4_FEATURE_REPORT_LEN,
HID_FEATURE_REPORT, HID_REQ_GET_REPORT);
if (ret < 0) {
dev_err(&hdev->dev, "failed read register (%d)\n", ret);
goto exit_readbuf;
}
ret = -EINVAL;
if (*(u32 *)&readbuf[6] != address) {
dev_err(&hdev->dev, "read register address error (%x,%x)\n",
*(u32 *)&readbuf[6], address);
goto exit_readbuf;
}
if (*(u16 *)&readbuf[10] != 1) {
dev_err(&hdev->dev, "read register size error (%x)\n",
*(u16 *)&readbuf[10]);
goto exit_readbuf;
}
check_sum = t4_calc_check_sum(readbuf, 6, 7);
if (*(u16 *)&readbuf[13] != check_sum) {
dev_err(&hdev->dev, "read register checksum error (%x,%x)\n",
*(u16 *)&readbuf[13], check_sum);
goto exit_readbuf;
}
*read_val = readbuf[12];
}
ret = 0;
exit_readbuf:
kfree(readbuf);
exit:
kfree(input);
return ret;
}
static int u1_read_write_register(struct hid_device *hdev, u32 address,
u8 *read_val, u8 write_val, bool read_flag)
{
int ret, i;
u8 check_sum;
u8 *input;
u8 *readbuf;
input = kzalloc(U1_FEATURE_REPORT_LEN, GFP_KERNEL);
if (!input)
return -ENOMEM;
input[0] = U1_FEATURE_REPORT_ID;
if (read_flag) {
input[1] = U1_CMD_REGISTER_READ;
input[6] = 0x00;
} else {
input[1] = U1_CMD_REGISTER_WRITE;
input[6] = write_val;
}
put_unaligned_le32(address, input + 2);
/* Calculate the checksum */
check_sum = U1_FEATURE_REPORT_LEN_ALL;
for (i = 0; i < U1_FEATURE_REPORT_LEN - 1; i++)
check_sum += input[i];
input[7] = check_sum;
ret = hid_hw_raw_request(hdev, U1_FEATURE_REPORT_ID, input,
U1_FEATURE_REPORT_LEN,
HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
if (ret < 0) {
dev_err(&hdev->dev, "failed to read command (%d)\n", ret);
goto exit;
}
if (read_flag) {
readbuf = kzalloc(U1_FEATURE_REPORT_LEN, GFP_KERNEL);
if (!readbuf) {
ret = -ENOMEM;
goto exit;
}
ret = hid_hw_raw_request(hdev, U1_FEATURE_REPORT_ID, readbuf,
U1_FEATURE_REPORT_LEN,
HID_FEATURE_REPORT, HID_REQ_GET_REPORT);
if (ret < 0) {
dev_err(&hdev->dev, "failed read register (%d)\n", ret);
kfree(readbuf);
goto exit;
}
*read_val = readbuf[6];
kfree(readbuf);
}
ret = 0;
exit:
kfree(input);
return ret;
}
static int t4_raw_event(struct alps_dev *hdata, u8 *data, int size)
{
unsigned int x, y, z;
int i;
struct t4_input_report *p_report = (struct t4_input_report *)data;
if (!data)
return 0;
for (i = 0; i < hdata->max_fingers; i++) {
x = p_report->contact[i].x_hi << 8 | p_report->contact[i].x_lo;
y = p_report->contact[i].y_hi << 8 | p_report->contact[i].y_lo;
y = hdata->y_max - y + hdata->y_min;
z = (p_report->contact[i].palm < 0x80 &&
p_report->contact[i].palm > 0) * 62;
if (x == 0xffff) {
x = 0;
y = 0;
z = 0;
}
input_mt_slot(hdata->input, i);
input_mt_report_slot_state(hdata->input,
MT_TOOL_FINGER, z != 0);
if (!z)
continue;
input_report_abs(hdata->input, ABS_MT_POSITION_X, x);
input_report_abs(hdata->input, ABS_MT_POSITION_Y, y);
input_report_abs(hdata->input, ABS_MT_PRESSURE, z);
}
input_mt_sync_frame(hdata->input);
input_report_key(hdata->input, BTN_LEFT, p_report->button);
input_sync(hdata->input);
return 1;
}
static int u1_raw_event(struct alps_dev *hdata, u8 *data, int size)
{
unsigned int x, y, z;
int i;
short sp_x, sp_y;
if (!data)
return 0;
switch (data[0]) {
case U1_MOUSE_REPORT_ID:
break;
case U1_FEATURE_REPORT_ID:
break;
case U1_ABSOLUTE_REPORT_ID:
case U1_ABSOLUTE_REPORT_ID_SECD:
for (i = 0; i < hdata->max_fingers; i++) {
u8 *contact = &data[i * 5];
x = get_unaligned_le16(contact + 3);
y = get_unaligned_le16(contact + 5);
z = contact[7] & 0x7F;
input_mt_slot(hdata->input, i);
if (z != 0) {
input_mt_report_slot_state(hdata->input,
MT_TOOL_FINGER, 1);
input_report_abs(hdata->input,
ABS_MT_POSITION_X, x);
input_report_abs(hdata->input,
ABS_MT_POSITION_Y, y);
input_report_abs(hdata->input,
ABS_MT_PRESSURE, z);
} else {
input_mt_report_slot_inactive(hdata->input);
}
}
input_mt_sync_frame(hdata->input);
input_report_key(hdata->input, BTN_LEFT,
data[1] & 0x1);
input_report_key(hdata->input, BTN_RIGHT,
(data[1] & 0x2));
input_report_key(hdata->input, BTN_MIDDLE,
(data[1] & 0x4));
input_sync(hdata->input);
return 1;
case U1_SP_ABSOLUTE_REPORT_ID:
sp_x = get_unaligned_le16(data+2);
sp_y = get_unaligned_le16(data+4);
sp_x = sp_x / 8;
sp_y = sp_y / 8;
input_report_rel(hdata->input2, REL_X, sp_x);
input_report_rel(hdata->input2, REL_Y, sp_y);
input_report_key(hdata->input2, BTN_LEFT,
data[1] & 0x1);
input_report_key(hdata->input2, BTN_RIGHT,
(data[1] & 0x2));
input_report_key(hdata->input2, BTN_MIDDLE,
(data[1] & 0x4));
input_sync(hdata->input2);
return 1;
}
return 0;
}
static int alps_raw_event(struct hid_device *hdev,
struct hid_report *report, u8 *data, int size)
{
int ret = 0;
struct alps_dev *hdata = hid_get_drvdata(hdev);
switch (hdev->product) {
case HID_PRODUCT_ID_T4_BTNLESS:
ret = t4_raw_event(hdata, data, size);
break;
default:
ret = u1_raw_event(hdata, data, size);
break;
}
return ret;
}
static int __maybe_unused alps_post_reset(struct hid_device *hdev)
{
int ret = -1;
struct alps_dev *data = hid_get_drvdata(hdev);
switch (data->dev_type) {
case T4:
ret = t4_read_write_register(hdev, T4_PRM_FEED_CONFIG_1,
NULL, T4_I2C_ABS, false);
if (ret < 0) {
dev_err(&hdev->dev, "failed T4_PRM_FEED_CONFIG_1 (%d)\n",
ret);
goto exit;
}
ret = t4_read_write_register(hdev, T4_PRM_FEED_CONFIG_4,
NULL, T4_FEEDCFG4_ADVANCED_ABS_ENABLE, false);
if (ret < 0) {
dev_err(&hdev->dev, "failed T4_PRM_FEED_CONFIG_4 (%d)\n",
ret);
goto exit;
}
break;
case U1:
ret = u1_read_write_register(hdev,
ADDRESS_U1_DEV_CTRL_1, NULL,
U1_TP_ABS_MODE | U1_SP_ABS_MODE, false);
if (ret < 0) {
dev_err(&hdev->dev, "failed to change TP mode (%d)\n",
ret);
goto exit;
}
break;
default:
break;
}
exit:
return ret;
}
static int __maybe_unused alps_post_resume(struct hid_device *hdev)
{
return alps_post_reset(hdev);
}
static int u1_init(struct hid_device *hdev, struct alps_dev *pri_data)
{
int ret;
u8 tmp, dev_ctrl, sen_line_num_x, sen_line_num_y;
u8 pitch_x, pitch_y, resolution;
/* Device initialization */
ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1,
&dev_ctrl, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed U1_DEV_CTRL_1 (%d)\n", ret);
goto exit;
}
dev_ctrl &= ~U1_DISABLE_DEV;
dev_ctrl |= U1_TP_ABS_MODE;
ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1,
NULL, dev_ctrl, false);
if (ret < 0) {
dev_err(&hdev->dev, "failed to change TP mode (%d)\n", ret);
goto exit;
}
ret = u1_read_write_register(hdev, ADDRESS_U1_NUM_SENS_X,
&sen_line_num_x, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed U1_NUM_SENS_X (%d)\n", ret);
goto exit;
}
ret = u1_read_write_register(hdev, ADDRESS_U1_NUM_SENS_Y,
&sen_line_num_y, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed U1_NUM_SENS_Y (%d)\n", ret);
goto exit;
}
ret = u1_read_write_register(hdev, ADDRESS_U1_PITCH_SENS_X,
&pitch_x, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed U1_PITCH_SENS_X (%d)\n", ret);
goto exit;
}
ret = u1_read_write_register(hdev, ADDRESS_U1_PITCH_SENS_Y,
&pitch_y, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed U1_PITCH_SENS_Y (%d)\n", ret);
goto exit;
}
ret = u1_read_write_register(hdev, ADDRESS_U1_RESO_DWN_ABS,
&resolution, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed U1_RESO_DWN_ABS (%d)\n", ret);
goto exit;
}
pri_data->x_active_len_mm =
(pitch_x * (sen_line_num_x - 1)) / 10;
pri_data->y_active_len_mm =
(pitch_y * (sen_line_num_y - 1)) / 10;
pri_data->x_max =
(resolution << 2) * (sen_line_num_x - 1);
pri_data->x_min = 1;
pri_data->y_max =
(resolution << 2) * (sen_line_num_y - 1);
pri_data->y_min = 1;
ret = u1_read_write_register(hdev, ADDRESS_U1_PAD_BTN,
&tmp, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed U1_PAD_BTN (%d)\n", ret);
goto exit;
}
if ((tmp & 0x0F) == (tmp & 0xF0) >> 4) {
pri_data->btn_cnt = (tmp & 0x0F);
} else {
/* Button pad */
pri_data->btn_cnt = 1;
}
pri_data->has_sp = 0;
/* Check StickPointer device */
ret = u1_read_write_register(hdev, ADDRESS_U1_DEVICE_TYP,
&tmp, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed U1_DEVICE_TYP (%d)\n", ret);
goto exit;
}
if (tmp & U1_DEVTYPE_SP_SUPPORT) {
dev_ctrl |= U1_SP_ABS_MODE;
ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1,
NULL, dev_ctrl, false);
if (ret < 0) {
dev_err(&hdev->dev, "failed SP mode (%d)\n", ret);
goto exit;
}
ret = u1_read_write_register(hdev, ADDRESS_U1_SP_BTN,
&pri_data->sp_btn_info, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed U1_SP_BTN (%d)\n", ret);
goto exit;
}
pri_data->has_sp = 1;
}
pri_data->max_fingers = 5;
exit:
return ret;
}
static int T4_init(struct hid_device *hdev, struct alps_dev *pri_data)
{
int ret;
u8 tmp, sen_line_num_x, sen_line_num_y;
ret = t4_read_write_register(hdev, T4_PRM_ID_CONFIG_3, &tmp, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed T4_PRM_ID_CONFIG_3 (%d)\n", ret);
goto exit;
}
sen_line_num_x = 16 + ((tmp & 0x0F) | (tmp & 0x08 ? 0xF0 : 0));
sen_line_num_y = 12 + (((tmp & 0xF0) >> 4) | (tmp & 0x80 ? 0xF0 : 0));
pri_data->x_max = sen_line_num_x * T4_COUNT_PER_ELECTRODE;
pri_data->x_min = T4_COUNT_PER_ELECTRODE;
pri_data->y_max = sen_line_num_y * T4_COUNT_PER_ELECTRODE;
pri_data->y_min = T4_COUNT_PER_ELECTRODE;
pri_data->x_active_len_mm = pri_data->y_active_len_mm = 0;
pri_data->btn_cnt = 1;
ret = t4_read_write_register(hdev, PRM_SYS_CONFIG_1, &tmp, 0, true);
if (ret < 0) {
dev_err(&hdev->dev, "failed PRM_SYS_CONFIG_1 (%d)\n", ret);
goto exit;
}
tmp |= 0x02;
ret = t4_read_write_register(hdev, PRM_SYS_CONFIG_1, NULL, tmp, false);
if (ret < 0) {
dev_err(&hdev->dev, "failed PRM_SYS_CONFIG_1 (%d)\n", ret);
goto exit;
}
ret = t4_read_write_register(hdev, T4_PRM_FEED_CONFIG_1,
NULL, T4_I2C_ABS, false);
if (ret < 0) {
dev_err(&hdev->dev, "failed T4_PRM_FEED_CONFIG_1 (%d)\n", ret);
goto exit;
}
ret = t4_read_write_register(hdev, T4_PRM_FEED_CONFIG_4, NULL,
T4_FEEDCFG4_ADVANCED_ABS_ENABLE, false);
if (ret < 0) {
dev_err(&hdev->dev, "failed T4_PRM_FEED_CONFIG_4 (%d)\n", ret);
goto exit;
}
pri_data->max_fingers = 5;
pri_data->has_sp = 0;
exit:
return ret;
}
static int alps_sp_open(struct input_dev *dev)
{
struct hid_device *hid = input_get_drvdata(dev);
return hid_hw_open(hid);
}
static void alps_sp_close(struct input_dev *dev)
{
struct hid_device *hid = input_get_drvdata(dev);
hid_hw_close(hid);
}
static int alps_input_configured(struct hid_device *hdev, struct hid_input *hi)
{
struct alps_dev *data = hid_get_drvdata(hdev);
struct input_dev *input = hi->input, *input2;
int ret;
int res_x, res_y, i;
data->input = input;
hid_dbg(hdev, "Opening low level driver\n");
ret = hid_hw_open(hdev);
if (ret)
return ret;
/* Allow incoming hid reports */
hid_device_io_start(hdev);
switch (data->dev_type) {
case T4:
ret = T4_init(hdev, data);
break;
case U1:
ret = u1_init(hdev, data);
break;
default:
break;
}
if (ret)
goto exit;
__set_bit(EV_ABS, input->evbit);
input_set_abs_params(input, ABS_MT_POSITION_X,
data->x_min, data->x_max, 0, 0);
input_set_abs_params(input, ABS_MT_POSITION_Y,
data->y_min, data->y_max, 0, 0);
if (data->x_active_len_mm && data->y_active_len_mm) {
res_x = (data->x_max - 1) / data->x_active_len_mm;
res_y = (data->y_max - 1) / data->y_active_len_mm;
input_abs_set_res(input, ABS_MT_POSITION_X, res_x);
input_abs_set_res(input, ABS_MT_POSITION_Y, res_y);
}
input_set_abs_params(input, ABS_MT_PRESSURE, 0, 64, 0, 0);
input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER);
__set_bit(EV_KEY, input->evbit);
if (data->btn_cnt == 1)
__set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
for (i = 0; i < data->btn_cnt; i++)
__set_bit(BTN_LEFT + i, input->keybit);
/* Stick device initialization */
if (data->has_sp) {
input2 = input_allocate_device();
if (!input2) {
ret = -ENOMEM;
goto exit;
}
data->input2 = input2;
input2->phys = input->phys;
input2->name = "DualPoint Stick";
input2->id.bustype = BUS_I2C;
input2->id.vendor = input->id.vendor;
input2->id.product = input->id.product;
input2->id.version = input->id.version;
input2->dev.parent = input->dev.parent;
input_set_drvdata(input2, hdev);
input2->open = alps_sp_open;
input2->close = alps_sp_close;
__set_bit(EV_KEY, input2->evbit);
data->sp_btn_cnt = (data->sp_btn_info & 0x0F);
for (i = 0; i < data->sp_btn_cnt; i++)
__set_bit(BTN_LEFT + i, input2->keybit);
__set_bit(EV_REL, input2->evbit);
__set_bit(REL_X, input2->relbit);
__set_bit(REL_Y, input2->relbit);
__set_bit(INPUT_PROP_POINTER, input2->propbit);
__set_bit(INPUT_PROP_POINTING_STICK, input2->propbit);
if (input_register_device(data->input2)) {
input_free_device(input2);
goto exit;
}
}
exit:
hid_device_io_stop(hdev);
hid_hw_close(hdev);
return ret;
}
static int alps_input_mapping(struct hid_device *hdev,
struct hid_input *hi, struct hid_field *field,
struct hid_usage *usage, unsigned long **bit, int *max)
{
return -1;
}
static int alps_probe(struct hid_device *hdev, const struct hid_device_id *id)
{
struct alps_dev *data = NULL;
int ret;
data = devm_kzalloc(&hdev->dev, sizeof(struct alps_dev), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->hdev = hdev;
hid_set_drvdata(hdev, data);
hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS;
ret = hid_parse(hdev);
if (ret) {
hid_err(hdev, "parse failed\n");
return ret;
}
switch (hdev->product) {
case HID_DEVICE_ID_ALPS_T4_BTNLESS:
data->dev_type = T4;
break;
case HID_DEVICE_ID_ALPS_U1_DUAL:
case HID_DEVICE_ID_ALPS_U1:
case HID_DEVICE_ID_ALPS_U1_UNICORN_LEGACY:
data->dev_type = U1;
break;
default:
data->dev_type = UNKNOWN;
}
ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
if (ret) {
hid_err(hdev, "hw start failed\n");
return ret;
}
return 0;
}
static void alps_remove(struct hid_device *hdev)
{
hid_hw_stop(hdev);
}
static const struct hid_device_id alps_id[] = {
{ HID_DEVICE(HID_BUS_ANY, HID_GROUP_ANY,
USB_VENDOR_ID_ALPS_JP, HID_DEVICE_ID_ALPS_U1_DUAL) },
{ HID_DEVICE(HID_BUS_ANY, HID_GROUP_ANY,
USB_VENDOR_ID_ALPS_JP, HID_DEVICE_ID_ALPS_U1) },
{ HID_DEVICE(HID_BUS_ANY, HID_GROUP_ANY,
USB_VENDOR_ID_ALPS_JP, HID_DEVICE_ID_ALPS_T4_BTNLESS) },
{ }
};
MODULE_DEVICE_TABLE(hid, alps_id);
static struct hid_driver alps_driver = {
.name = "hid-alps",
.id_table = alps_id,
.probe = alps_probe,
.remove = alps_remove,
.raw_event = alps_raw_event,
.input_mapping = alps_input_mapping,
.input_configured = alps_input_configured,
#ifdef CONFIG_PM
.resume = alps_post_resume,
.reset_resume = alps_post_reset,
#endif
};
module_hid_driver(alps_driver);
MODULE_AUTHOR("Masaki Ota <masaki.ota@jp.alps.com>");
MODULE_DESCRIPTION("ALPS HID driver");
MODULE_LICENSE("GPL");