linux_dsm_epyc7002/drivers/char/agp/intel-gtt.c
Daniel Vetter ae83dd5c7d intel-gtt add a cleanup function for chipset specific stuff
The old code didn't clean up the i830 chipset flush page. And it
looks nicer.

Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
2010-09-21 11:40:41 +01:00

1582 lines
41 KiB
C

/*
* Intel GTT (Graphics Translation Table) routines
*
* Caveat: This driver implements the linux agp interface, but this is far from
* a agp driver! GTT support ended up here for purely historical reasons: The
* old userspace intel graphics drivers needed an interface to map memory into
* the GTT. And the drm provides a default interface for graphic devices sitting
* on an agp port. So it made sense to fake the GTT support as an agp port to
* avoid having to create a new api.
*
* With gem this does not make much sense anymore, just needlessly complicates
* the code. But as long as the old graphics stack is still support, it's stuck
* here.
*
* /fairy-tale-mode off
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/pagemap.h>
#include <linux/agp_backend.h>
#include <asm/smp.h>
#include "agp.h"
#include "intel-agp.h"
#include <linux/intel-gtt.h>
#include <drm/intel-gtt.h>
/*
* If we have Intel graphics, we're not going to have anything other than
* an Intel IOMMU. So make the correct use of the PCI DMA API contingent
* on the Intel IOMMU support (CONFIG_DMAR).
* Only newer chipsets need to bother with this, of course.
*/
#ifdef CONFIG_DMAR
#define USE_PCI_DMA_API 1
#else
#define USE_PCI_DMA_API 0
#endif
/* Max amount of stolen space, anything above will be returned to Linux */
int intel_max_stolen = 32 * 1024 * 1024;
static const struct aper_size_info_fixed intel_i810_sizes[] =
{
{64, 16384, 4},
/* The 32M mode still requires a 64k gatt */
{32, 8192, 4}
};
#define AGP_DCACHE_MEMORY 1
#define AGP_PHYS_MEMORY 2
#define INTEL_AGP_CACHED_MEMORY 3
static struct gatt_mask intel_i810_masks[] =
{
{.mask = I810_PTE_VALID, .type = 0},
{.mask = (I810_PTE_VALID | I810_PTE_LOCAL), .type = AGP_DCACHE_MEMORY},
{.mask = I810_PTE_VALID, .type = 0},
{.mask = I810_PTE_VALID | I830_PTE_SYSTEM_CACHED,
.type = INTEL_AGP_CACHED_MEMORY}
};
#define INTEL_AGP_UNCACHED_MEMORY 0
#define INTEL_AGP_CACHED_MEMORY_LLC 1
#define INTEL_AGP_CACHED_MEMORY_LLC_GFDT 2
#define INTEL_AGP_CACHED_MEMORY_LLC_MLC 3
#define INTEL_AGP_CACHED_MEMORY_LLC_MLC_GFDT 4
struct intel_gtt_driver {
unsigned int gen : 8;
unsigned int is_g33 : 1;
unsigned int is_pineview : 1;
unsigned int is_ironlake : 1;
unsigned int dma_mask_size : 8;
/* Chipset specific GTT setup */
int (*setup)(void);
/* This should undo anything done in ->setup() save the unmapping
* of the mmio register file, that's done in the generic code. */
void (*cleanup)(void);
void (*write_entry)(dma_addr_t addr, unsigned int entry, unsigned int flags);
/* Flags is a more or less chipset specific opaque value.
* For chipsets that need to support old ums (non-gem) code, this
* needs to be identical to the various supported agp memory types! */
bool (*check_flags)(unsigned int flags);
void (*chipset_flush)(void);
};
static struct _intel_private {
struct intel_gtt base;
const struct intel_gtt_driver *driver;
struct pci_dev *pcidev; /* device one */
struct pci_dev *bridge_dev;
u8 __iomem *registers;
phys_addr_t gtt_bus_addr;
phys_addr_t gma_bus_addr;
phys_addr_t pte_bus_addr;
u32 __iomem *gtt; /* I915G */
int num_dcache_entries;
union {
void __iomem *i9xx_flush_page;
void *i8xx_flush_page;
};
struct page *i8xx_page;
struct resource ifp_resource;
int resource_valid;
struct page *scratch_page;
dma_addr_t scratch_page_dma;
} intel_private;
#define INTEL_GTT_GEN intel_private.driver->gen
#define IS_G33 intel_private.driver->is_g33
#define IS_PINEVIEW intel_private.driver->is_pineview
#define IS_IRONLAKE intel_private.driver->is_ironlake
static void intel_agp_free_sglist(struct agp_memory *mem)
{
struct sg_table st;
st.sgl = mem->sg_list;
st.orig_nents = st.nents = mem->page_count;
sg_free_table(&st);
mem->sg_list = NULL;
mem->num_sg = 0;
}
static int intel_agp_map_memory(struct agp_memory *mem)
{
struct sg_table st;
struct scatterlist *sg;
int i;
if (mem->sg_list)
return 0; /* already mapped (for e.g. resume */
DBG("try mapping %lu pages\n", (unsigned long)mem->page_count);
if (sg_alloc_table(&st, mem->page_count, GFP_KERNEL))
goto err;
mem->sg_list = sg = st.sgl;
for (i = 0 ; i < mem->page_count; i++, sg = sg_next(sg))
sg_set_page(sg, mem->pages[i], PAGE_SIZE, 0);
mem->num_sg = pci_map_sg(intel_private.pcidev, mem->sg_list,
mem->page_count, PCI_DMA_BIDIRECTIONAL);
if (unlikely(!mem->num_sg))
goto err;
return 0;
err:
sg_free_table(&st);
return -ENOMEM;
}
static void intel_agp_unmap_memory(struct agp_memory *mem)
{
DBG("try unmapping %lu pages\n", (unsigned long)mem->page_count);
pci_unmap_sg(intel_private.pcidev, mem->sg_list,
mem->page_count, PCI_DMA_BIDIRECTIONAL);
intel_agp_free_sglist(mem);
}
static int intel_i810_fetch_size(void)
{
u32 smram_miscc;
struct aper_size_info_fixed *values;
pci_read_config_dword(intel_private.bridge_dev,
I810_SMRAM_MISCC, &smram_miscc);
values = A_SIZE_FIX(agp_bridge->driver->aperture_sizes);
if ((smram_miscc & I810_GMS) == I810_GMS_DISABLE) {
dev_warn(&intel_private.bridge_dev->dev, "i810 is disabled\n");
return 0;
}
if ((smram_miscc & I810_GFX_MEM_WIN_SIZE) == I810_GFX_MEM_WIN_32M) {
agp_bridge->current_size = (void *) (values + 1);
agp_bridge->aperture_size_idx = 1;
return values[1].size;
} else {
agp_bridge->current_size = (void *) (values);
agp_bridge->aperture_size_idx = 0;
return values[0].size;
}
return 0;
}
static int intel_i810_configure(void)
{
struct aper_size_info_fixed *current_size;
u32 temp;
int i;
current_size = A_SIZE_FIX(agp_bridge->current_size);
if (!intel_private.registers) {
pci_read_config_dword(intel_private.pcidev, I810_MMADDR, &temp);
temp &= 0xfff80000;
intel_private.registers = ioremap(temp, 128 * 4096);
if (!intel_private.registers) {
dev_err(&intel_private.pcidev->dev,
"can't remap memory\n");
return -ENOMEM;
}
}
if ((readl(intel_private.registers+I810_DRAM_CTL)
& I810_DRAM_ROW_0) == I810_DRAM_ROW_0_SDRAM) {
/* This will need to be dynamically assigned */
dev_info(&intel_private.pcidev->dev,
"detected 4MB dedicated video ram\n");
intel_private.num_dcache_entries = 1024;
}
pci_read_config_dword(intel_private.pcidev, I810_GMADDR, &temp);
agp_bridge->gart_bus_addr = (temp & PCI_BASE_ADDRESS_MEM_MASK);
writel(agp_bridge->gatt_bus_addr | I810_PGETBL_ENABLED, intel_private.registers+I810_PGETBL_CTL);
readl(intel_private.registers+I810_PGETBL_CTL); /* PCI Posting. */
if (agp_bridge->driver->needs_scratch_page) {
for (i = 0; i < current_size->num_entries; i++) {
writel(agp_bridge->scratch_page, intel_private.registers+I810_PTE_BASE+(i*4));
}
readl(intel_private.registers+I810_PTE_BASE+((i-1)*4)); /* PCI posting. */
}
global_cache_flush();
return 0;
}
static void intel_i810_cleanup(void)
{
writel(0, intel_private.registers+I810_PGETBL_CTL);
readl(intel_private.registers); /* PCI Posting. */
iounmap(intel_private.registers);
}
static void intel_fake_agp_enable(struct agp_bridge_data *bridge, u32 mode)
{
return;
}
/* Exists to support ARGB cursors */
static struct page *i8xx_alloc_pages(void)
{
struct page *page;
page = alloc_pages(GFP_KERNEL | GFP_DMA32, 2);
if (page == NULL)
return NULL;
if (set_pages_uc(page, 4) < 0) {
set_pages_wb(page, 4);
__free_pages(page, 2);
return NULL;
}
get_page(page);
atomic_inc(&agp_bridge->current_memory_agp);
return page;
}
static void i8xx_destroy_pages(struct page *page)
{
if (page == NULL)
return;
set_pages_wb(page, 4);
put_page(page);
__free_pages(page, 2);
atomic_dec(&agp_bridge->current_memory_agp);
}
static int intel_i810_insert_entries(struct agp_memory *mem, off_t pg_start,
int type)
{
int i, j, num_entries;
void *temp;
int ret = -EINVAL;
int mask_type;
if (mem->page_count == 0)
goto out;
temp = agp_bridge->current_size;
num_entries = A_SIZE_FIX(temp)->num_entries;
if ((pg_start + mem->page_count) > num_entries)
goto out_err;
for (j = pg_start; j < (pg_start + mem->page_count); j++) {
if (!PGE_EMPTY(agp_bridge, readl(agp_bridge->gatt_table+j))) {
ret = -EBUSY;
goto out_err;
}
}
if (type != mem->type)
goto out_err;
mask_type = agp_bridge->driver->agp_type_to_mask_type(agp_bridge, type);
switch (mask_type) {
case AGP_DCACHE_MEMORY:
if (!mem->is_flushed)
global_cache_flush();
for (i = pg_start; i < (pg_start + mem->page_count); i++) {
writel((i*4096)|I810_PTE_LOCAL|I810_PTE_VALID,
intel_private.registers+I810_PTE_BASE+(i*4));
}
readl(intel_private.registers+I810_PTE_BASE+((i-1)*4));
break;
case AGP_PHYS_MEMORY:
case AGP_NORMAL_MEMORY:
if (!mem->is_flushed)
global_cache_flush();
for (i = 0, j = pg_start; i < mem->page_count; i++, j++) {
writel(agp_bridge->driver->mask_memory(agp_bridge,
page_to_phys(mem->pages[i]), mask_type),
intel_private.registers+I810_PTE_BASE+(j*4));
}
readl(intel_private.registers+I810_PTE_BASE+((j-1)*4));
break;
default:
goto out_err;
}
out:
ret = 0;
out_err:
mem->is_flushed = true;
return ret;
}
static int intel_i810_remove_entries(struct agp_memory *mem, off_t pg_start,
int type)
{
int i;
if (mem->page_count == 0)
return 0;
for (i = pg_start; i < (mem->page_count + pg_start); i++) {
writel(agp_bridge->scratch_page, intel_private.registers+I810_PTE_BASE+(i*4));
}
readl(intel_private.registers+I810_PTE_BASE+((i-1)*4));
return 0;
}
/*
* The i810/i830 requires a physical address to program its mouse
* pointer into hardware.
* However the Xserver still writes to it through the agp aperture.
*/
static struct agp_memory *alloc_agpphysmem_i8xx(size_t pg_count, int type)
{
struct agp_memory *new;
struct page *page;
switch (pg_count) {
case 1: page = agp_bridge->driver->agp_alloc_page(agp_bridge);
break;
case 4:
/* kludge to get 4 physical pages for ARGB cursor */
page = i8xx_alloc_pages();
break;
default:
return NULL;
}
if (page == NULL)
return NULL;
new = agp_create_memory(pg_count);
if (new == NULL)
return NULL;
new->pages[0] = page;
if (pg_count == 4) {
/* kludge to get 4 physical pages for ARGB cursor */
new->pages[1] = new->pages[0] + 1;
new->pages[2] = new->pages[1] + 1;
new->pages[3] = new->pages[2] + 1;
}
new->page_count = pg_count;
new->num_scratch_pages = pg_count;
new->type = AGP_PHYS_MEMORY;
new->physical = page_to_phys(new->pages[0]);
return new;
}
static struct agp_memory *intel_i810_alloc_by_type(size_t pg_count, int type)
{
struct agp_memory *new;
if (type == AGP_DCACHE_MEMORY) {
if (pg_count != intel_private.num_dcache_entries)
return NULL;
new = agp_create_memory(1);
if (new == NULL)
return NULL;
new->type = AGP_DCACHE_MEMORY;
new->page_count = pg_count;
new->num_scratch_pages = 0;
agp_free_page_array(new);
return new;
}
if (type == AGP_PHYS_MEMORY)
return alloc_agpphysmem_i8xx(pg_count, type);
return NULL;
}
static void intel_i810_free_by_type(struct agp_memory *curr)
{
agp_free_key(curr->key);
if (curr->type == AGP_PHYS_MEMORY) {
if (curr->page_count == 4)
i8xx_destroy_pages(curr->pages[0]);
else {
agp_bridge->driver->agp_destroy_page(curr->pages[0],
AGP_PAGE_DESTROY_UNMAP);
agp_bridge->driver->agp_destroy_page(curr->pages[0],
AGP_PAGE_DESTROY_FREE);
}
agp_free_page_array(curr);
}
kfree(curr);
}
static unsigned long intel_i810_mask_memory(struct agp_bridge_data *bridge,
dma_addr_t addr, int type)
{
/* Type checking must be done elsewhere */
return addr | bridge->driver->masks[type].mask;
}
static int intel_gtt_setup_scratch_page(void)
{
struct page *page;
dma_addr_t dma_addr;
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
if (page == NULL)
return -ENOMEM;
get_page(page);
set_pages_uc(page, 1);
if (USE_PCI_DMA_API && INTEL_GTT_GEN > 2) {
dma_addr = pci_map_page(intel_private.pcidev, page, 0,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(intel_private.pcidev, dma_addr))
return -EINVAL;
intel_private.scratch_page_dma = dma_addr;
} else
intel_private.scratch_page_dma = page_to_phys(page);
intel_private.scratch_page = page;
return 0;
}
static const struct aper_size_info_fixed const intel_fake_agp_sizes[] = {
{128, 32768, 5},
/* The 64M mode still requires a 128k gatt */
{64, 16384, 5},
{256, 65536, 6},
{512, 131072, 7},
};
static unsigned int intel_gtt_stolen_entries(void)
{
u16 gmch_ctrl;
u8 rdct;
int local = 0;
static const int ddt[4] = { 0, 16, 32, 64 };
unsigned int overhead_entries, stolen_entries;
unsigned int stolen_size = 0;
pci_read_config_word(intel_private.bridge_dev,
I830_GMCH_CTRL, &gmch_ctrl);
if (INTEL_GTT_GEN > 4 || IS_PINEVIEW)
overhead_entries = 0;
else
overhead_entries = intel_private.base.gtt_mappable_entries
/ 1024;
overhead_entries += 1; /* BIOS popup */
if (intel_private.bridge_dev->device == PCI_DEVICE_ID_INTEL_82830_HB ||
intel_private.bridge_dev->device == PCI_DEVICE_ID_INTEL_82845G_HB) {
switch (gmch_ctrl & I830_GMCH_GMS_MASK) {
case I830_GMCH_GMS_STOLEN_512:
stolen_size = KB(512);
break;
case I830_GMCH_GMS_STOLEN_1024:
stolen_size = MB(1);
break;
case I830_GMCH_GMS_STOLEN_8192:
stolen_size = MB(8);
break;
case I830_GMCH_GMS_LOCAL:
rdct = readb(intel_private.registers+I830_RDRAM_CHANNEL_TYPE);
stolen_size = (I830_RDRAM_ND(rdct) + 1) *
MB(ddt[I830_RDRAM_DDT(rdct)]);
local = 1;
break;
default:
stolen_size = 0;
break;
}
} else if (INTEL_GTT_GEN == 6) {
/*
* SandyBridge has new memory control reg at 0x50.w
*/
u16 snb_gmch_ctl;
pci_read_config_word(intel_private.pcidev, SNB_GMCH_CTRL, &snb_gmch_ctl);
switch (snb_gmch_ctl & SNB_GMCH_GMS_STOLEN_MASK) {
case SNB_GMCH_GMS_STOLEN_32M:
stolen_size = MB(32);
break;
case SNB_GMCH_GMS_STOLEN_64M:
stolen_size = MB(64);
break;
case SNB_GMCH_GMS_STOLEN_96M:
stolen_size = MB(96);
break;
case SNB_GMCH_GMS_STOLEN_128M:
stolen_size = MB(128);
break;
case SNB_GMCH_GMS_STOLEN_160M:
stolen_size = MB(160);
break;
case SNB_GMCH_GMS_STOLEN_192M:
stolen_size = MB(192);
break;
case SNB_GMCH_GMS_STOLEN_224M:
stolen_size = MB(224);
break;
case SNB_GMCH_GMS_STOLEN_256M:
stolen_size = MB(256);
break;
case SNB_GMCH_GMS_STOLEN_288M:
stolen_size = MB(288);
break;
case SNB_GMCH_GMS_STOLEN_320M:
stolen_size = MB(320);
break;
case SNB_GMCH_GMS_STOLEN_352M:
stolen_size = MB(352);
break;
case SNB_GMCH_GMS_STOLEN_384M:
stolen_size = MB(384);
break;
case SNB_GMCH_GMS_STOLEN_416M:
stolen_size = MB(416);
break;
case SNB_GMCH_GMS_STOLEN_448M:
stolen_size = MB(448);
break;
case SNB_GMCH_GMS_STOLEN_480M:
stolen_size = MB(480);
break;
case SNB_GMCH_GMS_STOLEN_512M:
stolen_size = MB(512);
break;
}
} else {
switch (gmch_ctrl & I855_GMCH_GMS_MASK) {
case I855_GMCH_GMS_STOLEN_1M:
stolen_size = MB(1);
break;
case I855_GMCH_GMS_STOLEN_4M:
stolen_size = MB(4);
break;
case I855_GMCH_GMS_STOLEN_8M:
stolen_size = MB(8);
break;
case I855_GMCH_GMS_STOLEN_16M:
stolen_size = MB(16);
break;
case I855_GMCH_GMS_STOLEN_32M:
stolen_size = MB(32);
break;
case I915_GMCH_GMS_STOLEN_48M:
stolen_size = MB(48);
break;
case I915_GMCH_GMS_STOLEN_64M:
stolen_size = MB(64);
break;
case G33_GMCH_GMS_STOLEN_128M:
stolen_size = MB(128);
break;
case G33_GMCH_GMS_STOLEN_256M:
stolen_size = MB(256);
break;
case INTEL_GMCH_GMS_STOLEN_96M:
stolen_size = MB(96);
break;
case INTEL_GMCH_GMS_STOLEN_160M:
stolen_size = MB(160);
break;
case INTEL_GMCH_GMS_STOLEN_224M:
stolen_size = MB(224);
break;
case INTEL_GMCH_GMS_STOLEN_352M:
stolen_size = MB(352);
break;
default:
stolen_size = 0;
break;
}
}
if (!local && stolen_size > intel_max_stolen) {
dev_info(&intel_private.bridge_dev->dev,
"detected %dK stolen memory, trimming to %dK\n",
stolen_size / KB(1), intel_max_stolen / KB(1));
stolen_size = intel_max_stolen;
} else if (stolen_size > 0) {
dev_info(&intel_private.bridge_dev->dev, "detected %dK %s memory\n",
stolen_size / KB(1), local ? "local" : "stolen");
} else {
dev_info(&intel_private.bridge_dev->dev,
"no pre-allocated video memory detected\n");
stolen_size = 0;
}
stolen_entries = stolen_size/KB(4) - overhead_entries;
return stolen_entries;
}
static unsigned int intel_gtt_total_entries(void)
{
int size;
if (IS_G33 || INTEL_GTT_GEN == 4 || INTEL_GTT_GEN == 5) {
u32 pgetbl_ctl;
pgetbl_ctl = readl(intel_private.registers+I810_PGETBL_CTL);
switch (pgetbl_ctl & I965_PGETBL_SIZE_MASK) {
case I965_PGETBL_SIZE_128KB:
size = KB(128);
break;
case I965_PGETBL_SIZE_256KB:
size = KB(256);
break;
case I965_PGETBL_SIZE_512KB:
size = KB(512);
break;
case I965_PGETBL_SIZE_1MB:
size = KB(1024);
break;
case I965_PGETBL_SIZE_2MB:
size = KB(2048);
break;
case I965_PGETBL_SIZE_1_5MB:
size = KB(1024 + 512);
break;
default:
dev_info(&intel_private.pcidev->dev,
"unknown page table size, assuming 512KB\n");
size = KB(512);
}
return size/4;
} else if (INTEL_GTT_GEN == 6) {
u16 snb_gmch_ctl;
pci_read_config_word(intel_private.pcidev, SNB_GMCH_CTRL, &snb_gmch_ctl);
switch (snb_gmch_ctl & SNB_GTT_SIZE_MASK) {
default:
case SNB_GTT_SIZE_0M:
printk(KERN_ERR "Bad GTT size mask: 0x%04x.\n", snb_gmch_ctl);
size = MB(0);
break;
case SNB_GTT_SIZE_1M:
size = MB(1);
break;
case SNB_GTT_SIZE_2M:
size = MB(2);
break;
}
return size/4;
} else {
/* On previous hardware, the GTT size was just what was
* required to map the aperture.
*/
return intel_private.base.gtt_mappable_entries;
}
}
static unsigned int intel_gtt_mappable_entries(void)
{
unsigned int aperture_size;
if (INTEL_GTT_GEN == 2) {
u16 gmch_ctrl;
pci_read_config_word(intel_private.bridge_dev,
I830_GMCH_CTRL, &gmch_ctrl);
if ((gmch_ctrl & I830_GMCH_MEM_MASK) == I830_GMCH_MEM_64M)
aperture_size = MB(64);
else
aperture_size = MB(128);
} else {
/* 9xx supports large sizes, just look at the length */
aperture_size = pci_resource_len(intel_private.pcidev, 2);
}
return aperture_size >> PAGE_SHIFT;
}
static void intel_gtt_teardown_scratch_page(void)
{
set_pages_wb(intel_private.scratch_page, 1);
pci_unmap_page(intel_private.pcidev, intel_private.scratch_page_dma,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
put_page(intel_private.scratch_page);
__free_page(intel_private.scratch_page);
}
static void intel_gtt_cleanup(void)
{
intel_private.driver->cleanup();
iounmap(intel_private.gtt);
iounmap(intel_private.registers);
intel_gtt_teardown_scratch_page();
}
static int intel_gtt_init(void)
{
u32 gtt_map_size;
int ret;
ret = intel_private.driver->setup();
if (ret != 0)
return ret;
intel_private.base.gtt_mappable_entries = intel_gtt_mappable_entries();
intel_private.base.gtt_total_entries = intel_gtt_total_entries();
dev_info(&intel_private.bridge_dev->dev,
"detected gtt size: %dK total, %dK mappable\n",
intel_private.base.gtt_total_entries * 4,
intel_private.base.gtt_mappable_entries * 4);
gtt_map_size = intel_private.base.gtt_total_entries * 4;
intel_private.gtt = ioremap(intel_private.gtt_bus_addr,
gtt_map_size);
if (!intel_private.gtt) {
intel_private.driver->cleanup();
iounmap(intel_private.registers);
return -ENOMEM;
}
global_cache_flush(); /* FIXME: ? */
/* we have to call this as early as possible after the MMIO base address is known */
intel_private.base.gtt_stolen_entries = intel_gtt_stolen_entries();
if (intel_private.base.gtt_stolen_entries == 0) {
intel_private.driver->cleanup();
iounmap(intel_private.registers);
iounmap(intel_private.gtt);
return -ENOMEM;
}
ret = intel_gtt_setup_scratch_page();
if (ret != 0) {
intel_gtt_cleanup();
return ret;
}
return 0;
}
static int intel_fake_agp_fetch_size(void)
{
int num_sizes = ARRAY_SIZE(intel_fake_agp_sizes);
unsigned int aper_size;
int i;
aper_size = (intel_private.base.gtt_mappable_entries << PAGE_SHIFT)
/ MB(1);
for (i = 0; i < num_sizes; i++) {
if (aper_size == intel_fake_agp_sizes[i].size) {
agp_bridge->current_size =
(void *) (intel_fake_agp_sizes + i);
return aper_size;
}
}
return 0;
}
static void i830_cleanup(void)
{
kunmap(intel_private.i8xx_page);
intel_private.i8xx_flush_page = NULL;
unmap_page_from_agp(intel_private.i8xx_page);
__free_page(intel_private.i8xx_page);
intel_private.i8xx_page = NULL;
}
static void intel_i830_setup_flush(void)
{
/* return if we've already set the flush mechanism up */
if (intel_private.i8xx_page)
return;
intel_private.i8xx_page = alloc_page(GFP_KERNEL | __GFP_ZERO | GFP_DMA32);
if (!intel_private.i8xx_page)
return;
intel_private.i8xx_flush_page = kmap(intel_private.i8xx_page);
if (!intel_private.i8xx_flush_page)
i830_cleanup();
}
/* The chipset_flush interface needs to get data that has already been
* flushed out of the CPU all the way out to main memory, because the GPU
* doesn't snoop those buffers.
*
* The 8xx series doesn't have the same lovely interface for flushing the
* chipset write buffers that the later chips do. According to the 865
* specs, it's 64 octwords, or 1KB. So, to get those previous things in
* that buffer out, we just fill 1KB and clflush it out, on the assumption
* that it'll push whatever was in there out. It appears to work.
*/
static void i830_chipset_flush(void)
{
unsigned int *pg = intel_private.i8xx_flush_page;
memset(pg, 0, 1024);
if (cpu_has_clflush)
clflush_cache_range(pg, 1024);
else if (wbinvd_on_all_cpus() != 0)
printk(KERN_ERR "Timed out waiting for cache flush.\n");
}
static void i830_write_entry(dma_addr_t addr, unsigned int entry,
unsigned int flags)
{
u32 pte_flags = I810_PTE_VALID;
switch (flags) {
case AGP_DCACHE_MEMORY:
pte_flags |= I810_PTE_LOCAL;
break;
case AGP_USER_CACHED_MEMORY:
pte_flags |= I830_PTE_SYSTEM_CACHED;
break;
}
writel(addr | pte_flags, intel_private.gtt + entry);
}
static void intel_enable_gtt(void)
{
u32 gma_addr;
u16 gmch_ctrl;
if (INTEL_GTT_GEN == 2)
pci_read_config_dword(intel_private.pcidev, I810_GMADDR,
&gma_addr);
else
pci_read_config_dword(intel_private.pcidev, I915_GMADDR,
&gma_addr);
intel_private.gma_bus_addr = (gma_addr & PCI_BASE_ADDRESS_MEM_MASK);
pci_read_config_word(intel_private.bridge_dev, I830_GMCH_CTRL, &gmch_ctrl);
gmch_ctrl |= I830_GMCH_ENABLED;
pci_write_config_word(intel_private.bridge_dev, I830_GMCH_CTRL, gmch_ctrl);
writel(intel_private.pte_bus_addr|I810_PGETBL_ENABLED,
intel_private.registers+I810_PGETBL_CTL);
readl(intel_private.registers+I810_PGETBL_CTL); /* PCI Posting. */
}
static int i830_setup(void)
{
u32 reg_addr;
pci_read_config_dword(intel_private.pcidev, I810_MMADDR, &reg_addr);
reg_addr &= 0xfff80000;
intel_private.registers = ioremap(reg_addr, KB(64));
if (!intel_private.registers)
return -ENOMEM;
intel_private.gtt_bus_addr = reg_addr + I810_PTE_BASE;
intel_private.pte_bus_addr =
readl(intel_private.registers+I810_PGETBL_CTL) & 0xfffff000;
intel_i830_setup_flush();
return 0;
}
static int intel_fake_agp_create_gatt_table(struct agp_bridge_data *bridge)
{
agp_bridge->gatt_table_real = NULL;
agp_bridge->gatt_table = NULL;
agp_bridge->gatt_bus_addr = 0;
return 0;
}
static int intel_fake_agp_free_gatt_table(struct agp_bridge_data *bridge)
{
return 0;
}
static int intel_fake_agp_configure(void)
{
int i;
intel_enable_gtt();
agp_bridge->gart_bus_addr = intel_private.gma_bus_addr;
for (i = intel_private.base.gtt_stolen_entries;
i < intel_private.base.gtt_total_entries; i++) {
intel_private.driver->write_entry(intel_private.scratch_page_dma,
i, 0);
}
readl(intel_private.gtt+i-1); /* PCI Posting. */
global_cache_flush();
return 0;
}
static bool i830_check_flags(unsigned int flags)
{
switch (flags) {
case 0:
case AGP_PHYS_MEMORY:
case AGP_USER_CACHED_MEMORY:
case AGP_USER_MEMORY:
return true;
}
return false;
}
static void intel_gtt_insert_sg_entries(struct scatterlist *sg_list,
unsigned int sg_len,
unsigned int pg_start,
unsigned int flags)
{
struct scatterlist *sg;
unsigned int len, m;
int i, j;
j = pg_start;
/* sg may merge pages, but we have to separate
* per-page addr for GTT */
for_each_sg(sg_list, sg, sg_len, i) {
len = sg_dma_len(sg) >> PAGE_SHIFT;
for (m = 0; m < len; m++) {
dma_addr_t addr = sg_dma_address(sg) + (m << PAGE_SHIFT);
intel_private.driver->write_entry(addr,
j, flags);
j++;
}
}
readl(intel_private.gtt+j-1);
}
static int intel_fake_agp_insert_entries(struct agp_memory *mem,
off_t pg_start, int type)
{
int i, j;
int ret = -EINVAL;
if (mem->page_count == 0)
goto out;
if (pg_start < intel_private.base.gtt_stolen_entries) {
dev_printk(KERN_DEBUG, &intel_private.pcidev->dev,
"pg_start == 0x%.8lx, gtt_stolen_entries == 0x%.8x\n",
pg_start, intel_private.base.gtt_stolen_entries);
dev_info(&intel_private.pcidev->dev,
"trying to insert into local/stolen memory\n");
goto out_err;
}
if ((pg_start + mem->page_count) > intel_private.base.gtt_total_entries)
goto out_err;
if (type != mem->type)
goto out_err;
if (!intel_private.driver->check_flags(type))
goto out_err;
if (!mem->is_flushed)
global_cache_flush();
if (USE_PCI_DMA_API && INTEL_GTT_GEN > 2) {
ret = intel_agp_map_memory(mem);
if (ret != 0)
return ret;
intel_gtt_insert_sg_entries(mem->sg_list, mem->num_sg,
pg_start, type);
} else {
for (i = 0, j = pg_start; i < mem->page_count; i++, j++) {
dma_addr_t addr = page_to_phys(mem->pages[i]);
intel_private.driver->write_entry(addr,
j, type);
}
readl(intel_private.gtt+j-1);
}
out:
ret = 0;
out_err:
mem->is_flushed = true;
return ret;
}
static int intel_fake_agp_remove_entries(struct agp_memory *mem,
off_t pg_start, int type)
{
int i;
if (mem->page_count == 0)
return 0;
if (pg_start < intel_private.base.gtt_stolen_entries) {
dev_info(&intel_private.pcidev->dev,
"trying to disable local/stolen memory\n");
return -EINVAL;
}
if (USE_PCI_DMA_API && INTEL_GTT_GEN > 2)
intel_agp_unmap_memory(mem);
for (i = pg_start; i < (mem->page_count + pg_start); i++) {
intel_private.driver->write_entry(intel_private.scratch_page_dma,
i, 0);
}
readl(intel_private.gtt+i-1);
return 0;
}
static void intel_fake_agp_chipset_flush(struct agp_bridge_data *bridge)
{
intel_private.driver->chipset_flush();
}
static struct agp_memory *intel_fake_agp_alloc_by_type(size_t pg_count,
int type)
{
if (type == AGP_PHYS_MEMORY)
return alloc_agpphysmem_i8xx(pg_count, type);
/* always return NULL for other allocation types for now */
return NULL;
}
static int intel_alloc_chipset_flush_resource(void)
{
int ret;
ret = pci_bus_alloc_resource(intel_private.bridge_dev->bus, &intel_private.ifp_resource, PAGE_SIZE,
PAGE_SIZE, PCIBIOS_MIN_MEM, 0,
pcibios_align_resource, intel_private.bridge_dev);
return ret;
}
static void intel_i915_setup_chipset_flush(void)
{
int ret;
u32 temp;
pci_read_config_dword(intel_private.bridge_dev, I915_IFPADDR, &temp);
if (!(temp & 0x1)) {
intel_alloc_chipset_flush_resource();
intel_private.resource_valid = 1;
pci_write_config_dword(intel_private.bridge_dev, I915_IFPADDR, (intel_private.ifp_resource.start & 0xffffffff) | 0x1);
} else {
temp &= ~1;
intel_private.resource_valid = 1;
intel_private.ifp_resource.start = temp;
intel_private.ifp_resource.end = temp + PAGE_SIZE;
ret = request_resource(&iomem_resource, &intel_private.ifp_resource);
/* some BIOSes reserve this area in a pnp some don't */
if (ret)
intel_private.resource_valid = 0;
}
}
static void intel_i965_g33_setup_chipset_flush(void)
{
u32 temp_hi, temp_lo;
int ret;
pci_read_config_dword(intel_private.bridge_dev, I965_IFPADDR + 4, &temp_hi);
pci_read_config_dword(intel_private.bridge_dev, I965_IFPADDR, &temp_lo);
if (!(temp_lo & 0x1)) {
intel_alloc_chipset_flush_resource();
intel_private.resource_valid = 1;
pci_write_config_dword(intel_private.bridge_dev, I965_IFPADDR + 4,
upper_32_bits(intel_private.ifp_resource.start));
pci_write_config_dword(intel_private.bridge_dev, I965_IFPADDR, (intel_private.ifp_resource.start & 0xffffffff) | 0x1);
} else {
u64 l64;
temp_lo &= ~0x1;
l64 = ((u64)temp_hi << 32) | temp_lo;
intel_private.resource_valid = 1;
intel_private.ifp_resource.start = l64;
intel_private.ifp_resource.end = l64 + PAGE_SIZE;
ret = request_resource(&iomem_resource, &intel_private.ifp_resource);
/* some BIOSes reserve this area in a pnp some don't */
if (ret)
intel_private.resource_valid = 0;
}
}
static void intel_i9xx_setup_flush(void)
{
/* return if already configured */
if (intel_private.ifp_resource.start)
return;
if (INTEL_GTT_GEN == 6)
return;
/* setup a resource for this object */
intel_private.ifp_resource.name = "Intel Flush Page";
intel_private.ifp_resource.flags = IORESOURCE_MEM;
/* Setup chipset flush for 915 */
if (IS_G33 || INTEL_GTT_GEN >= 4) {
intel_i965_g33_setup_chipset_flush();
} else {
intel_i915_setup_chipset_flush();
}
if (intel_private.ifp_resource.start)
intel_private.i9xx_flush_page = ioremap_nocache(intel_private.ifp_resource.start, PAGE_SIZE);
if (!intel_private.i9xx_flush_page)
dev_err(&intel_private.pcidev->dev,
"can't ioremap flush page - no chipset flushing\n");
}
static void i9xx_cleanup(void)
{
if (intel_private.i9xx_flush_page)
iounmap(intel_private.i9xx_flush_page);
if (intel_private.resource_valid)
release_resource(&intel_private.ifp_resource);
intel_private.ifp_resource.start = 0;
intel_private.resource_valid = 0;
}
static void i9xx_chipset_flush(void)
{
if (intel_private.i9xx_flush_page)
writel(1, intel_private.i9xx_flush_page);
}
static void i965_write_entry(dma_addr_t addr, unsigned int entry,
unsigned int flags)
{
/* Shift high bits down */
addr |= (addr >> 28) & 0xf0;
writel(addr | I810_PTE_VALID, intel_private.gtt + entry);
}
static bool gen6_check_flags(unsigned int flags)
{
return true;
}
static void gen6_write_entry(dma_addr_t addr, unsigned int entry,
unsigned int flags)
{
unsigned int type_mask = flags & ~AGP_USER_CACHED_MEMORY_GFDT;
unsigned int gfdt = flags & AGP_USER_CACHED_MEMORY_GFDT;
u32 pte_flags;
if (type_mask == AGP_USER_UNCACHED_MEMORY)
pte_flags = GEN6_PTE_UNCACHED;
else if (type_mask == AGP_USER_CACHED_MEMORY_LLC_MLC) {
pte_flags = GEN6_PTE_LLC;
if (gfdt)
pte_flags |= GEN6_PTE_GFDT;
} else { /* set 'normal'/'cached' to LLC by default */
pte_flags = GEN6_PTE_LLC_MLC;
if (gfdt)
pte_flags |= GEN6_PTE_GFDT;
}
/* gen6 has bit11-4 for physical addr bit39-32 */
addr |= (addr >> 28) & 0xff0;
writel(addr | pte_flags, intel_private.gtt + entry);
}
static void gen6_cleanup(void)
{
}
static int i9xx_setup(void)
{
u32 reg_addr;
pci_read_config_dword(intel_private.pcidev, I915_MMADDR, &reg_addr);
reg_addr &= 0xfff80000;
intel_private.registers = ioremap(reg_addr, 128 * 4096);
if (!intel_private.registers)
return -ENOMEM;
if (INTEL_GTT_GEN == 3) {
u32 gtt_addr;
pci_read_config_dword(intel_private.pcidev,
I915_PTEADDR, &gtt_addr);
intel_private.gtt_bus_addr = gtt_addr;
} else {
u32 gtt_offset;
switch (INTEL_GTT_GEN) {
case 5:
case 6:
gtt_offset = MB(2);
break;
case 4:
default:
gtt_offset = KB(512);
break;
}
intel_private.gtt_bus_addr = reg_addr + gtt_offset;
}
intel_private.pte_bus_addr =
readl(intel_private.registers+I810_PGETBL_CTL) & 0xfffff000;
intel_i9xx_setup_flush();
return 0;
}
static const struct agp_bridge_driver intel_810_driver = {
.owner = THIS_MODULE,
.aperture_sizes = intel_i810_sizes,
.size_type = FIXED_APER_SIZE,
.num_aperture_sizes = 2,
.needs_scratch_page = true,
.configure = intel_i810_configure,
.fetch_size = intel_i810_fetch_size,
.cleanup = intel_i810_cleanup,
.mask_memory = intel_i810_mask_memory,
.masks = intel_i810_masks,
.agp_enable = intel_fake_agp_enable,
.cache_flush = global_cache_flush,
.create_gatt_table = agp_generic_create_gatt_table,
.free_gatt_table = agp_generic_free_gatt_table,
.insert_memory = intel_i810_insert_entries,
.remove_memory = intel_i810_remove_entries,
.alloc_by_type = intel_i810_alloc_by_type,
.free_by_type = intel_i810_free_by_type,
.agp_alloc_page = agp_generic_alloc_page,
.agp_alloc_pages = agp_generic_alloc_pages,
.agp_destroy_page = agp_generic_destroy_page,
.agp_destroy_pages = agp_generic_destroy_pages,
.agp_type_to_mask_type = agp_generic_type_to_mask_type,
};
static const struct agp_bridge_driver intel_fake_agp_driver = {
.owner = THIS_MODULE,
.size_type = FIXED_APER_SIZE,
.aperture_sizes = intel_fake_agp_sizes,
.num_aperture_sizes = ARRAY_SIZE(intel_fake_agp_sizes),
.configure = intel_fake_agp_configure,
.fetch_size = intel_fake_agp_fetch_size,
.cleanup = intel_gtt_cleanup,
.agp_enable = intel_fake_agp_enable,
.cache_flush = global_cache_flush,
.create_gatt_table = intel_fake_agp_create_gatt_table,
.free_gatt_table = intel_fake_agp_free_gatt_table,
.insert_memory = intel_fake_agp_insert_entries,
.remove_memory = intel_fake_agp_remove_entries,
.alloc_by_type = intel_fake_agp_alloc_by_type,
.free_by_type = intel_i810_free_by_type,
.agp_alloc_page = agp_generic_alloc_page,
.agp_alloc_pages = agp_generic_alloc_pages,
.agp_destroy_page = agp_generic_destroy_page,
.agp_destroy_pages = agp_generic_destroy_pages,
.chipset_flush = intel_fake_agp_chipset_flush,
};
static const struct intel_gtt_driver i81x_gtt_driver = {
.gen = 1,
.dma_mask_size = 32,
};
static const struct intel_gtt_driver i8xx_gtt_driver = {
.gen = 2,
.setup = i830_setup,
.cleanup = i830_cleanup,
.write_entry = i830_write_entry,
.dma_mask_size = 32,
.check_flags = i830_check_flags,
.chipset_flush = i830_chipset_flush,
};
static const struct intel_gtt_driver i915_gtt_driver = {
.gen = 3,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
/* i945 is the last gpu to need phys mem (for overlay and cursors). */
.write_entry = i830_write_entry,
.dma_mask_size = 32,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver g33_gtt_driver = {
.gen = 3,
.is_g33 = 1,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver pineview_gtt_driver = {
.gen = 3,
.is_pineview = 1, .is_g33 = 1,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver i965_gtt_driver = {
.gen = 4,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver g4x_gtt_driver = {
.gen = 5,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver ironlake_gtt_driver = {
.gen = 5,
.is_ironlake = 1,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver sandybridge_gtt_driver = {
.gen = 6,
.setup = i9xx_setup,
.cleanup = gen6_cleanup,
.write_entry = gen6_write_entry,
.dma_mask_size = 40,
.check_flags = gen6_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
/* Table to describe Intel GMCH and AGP/PCIE GART drivers. At least one of
* driver and gmch_driver must be non-null, and find_gmch will determine
* which one should be used if a gmch_chip_id is present.
*/
static const struct intel_gtt_driver_description {
unsigned int gmch_chip_id;
char *name;
const struct agp_bridge_driver *gmch_driver;
const struct intel_gtt_driver *gtt_driver;
} intel_gtt_chipsets[] = {
{ PCI_DEVICE_ID_INTEL_82810_IG1, "i810", &intel_810_driver,
&i81x_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82810_IG3, "i810", &intel_810_driver,
&i81x_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82810E_IG, "i810", &intel_810_driver,
&i81x_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82815_CGC, "i815", &intel_810_driver,
&i81x_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82830_CGC, "830M",
&intel_fake_agp_driver, &i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82845G_IG, "830M",
&intel_fake_agp_driver, &i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82854_IG, "854",
&intel_fake_agp_driver, &i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82855GM_IG, "855GM",
&intel_fake_agp_driver, &i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82865_IG, "865",
&intel_fake_agp_driver, &i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_E7221_IG, "E7221 (i915)",
&intel_fake_agp_driver, &i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82915G_IG, "915G",
&intel_fake_agp_driver, &i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82915GM_IG, "915GM",
&intel_fake_agp_driver, &i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82945G_IG, "945G",
&intel_fake_agp_driver, &i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82945GM_IG, "945GM",
&intel_fake_agp_driver, &i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82945GME_IG, "945GME",
&intel_fake_agp_driver, &i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82946GZ_IG, "946GZ",
&intel_fake_agp_driver, &i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82G35_IG, "G35",
&intel_fake_agp_driver, &i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82965Q_IG, "965Q",
&intel_fake_agp_driver, &i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82965G_IG, "965G",
&intel_fake_agp_driver, &i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82965GM_IG, "965GM",
&intel_fake_agp_driver, &i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82965GME_IG, "965GME/GLE",
&intel_fake_agp_driver, &i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_G33_IG, "G33",
&intel_fake_agp_driver, &g33_gtt_driver },
{ PCI_DEVICE_ID_INTEL_Q35_IG, "Q35",
&intel_fake_agp_driver, &g33_gtt_driver },
{ PCI_DEVICE_ID_INTEL_Q33_IG, "Q33",
&intel_fake_agp_driver, &g33_gtt_driver },
{ PCI_DEVICE_ID_INTEL_PINEVIEW_M_IG, "GMA3150",
&intel_fake_agp_driver, &pineview_gtt_driver },
{ PCI_DEVICE_ID_INTEL_PINEVIEW_IG, "GMA3150",
&intel_fake_agp_driver, &pineview_gtt_driver },
{ PCI_DEVICE_ID_INTEL_GM45_IG, "GM45",
&intel_fake_agp_driver, &g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_EAGLELAKE_IG, "Eaglelake",
&intel_fake_agp_driver, &g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_Q45_IG, "Q45/Q43",
&intel_fake_agp_driver, &g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_G45_IG, "G45/G43",
&intel_fake_agp_driver, &g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_B43_IG, "B43",
&intel_fake_agp_driver, &g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_B43_1_IG, "B43",
&intel_fake_agp_driver, &g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_G41_IG, "G41",
&intel_fake_agp_driver, &g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_IRONLAKE_D_IG,
"HD Graphics", &intel_fake_agp_driver, &ironlake_gtt_driver },
{ PCI_DEVICE_ID_INTEL_IRONLAKE_M_IG,
"HD Graphics", &intel_fake_agp_driver, &ironlake_gtt_driver },
{ PCI_DEVICE_ID_INTEL_SANDYBRIDGE_GT1_IG,
"Sandybridge", &intel_fake_agp_driver, &sandybridge_gtt_driver },
{ PCI_DEVICE_ID_INTEL_SANDYBRIDGE_GT2_IG,
"Sandybridge", &intel_fake_agp_driver, &sandybridge_gtt_driver },
{ PCI_DEVICE_ID_INTEL_SANDYBRIDGE_GT2_PLUS_IG,
"Sandybridge", &intel_fake_agp_driver, &sandybridge_gtt_driver },
{ PCI_DEVICE_ID_INTEL_SANDYBRIDGE_M_GT1_IG,
"Sandybridge", &intel_fake_agp_driver, &sandybridge_gtt_driver },
{ PCI_DEVICE_ID_INTEL_SANDYBRIDGE_M_GT2_IG,
"Sandybridge", &intel_fake_agp_driver, &sandybridge_gtt_driver },
{ PCI_DEVICE_ID_INTEL_SANDYBRIDGE_M_GT2_PLUS_IG,
"Sandybridge", &intel_fake_agp_driver, &sandybridge_gtt_driver },
{ PCI_DEVICE_ID_INTEL_SANDYBRIDGE_S_IG,
"Sandybridge", &intel_fake_agp_driver, &sandybridge_gtt_driver },
{ 0, NULL, NULL }
};
static int find_gmch(u16 device)
{
struct pci_dev *gmch_device;
gmch_device = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL);
if (gmch_device && PCI_FUNC(gmch_device->devfn) != 0) {
gmch_device = pci_get_device(PCI_VENDOR_ID_INTEL,
device, gmch_device);
}
if (!gmch_device)
return 0;
intel_private.pcidev = gmch_device;
return 1;
}
int intel_gmch_probe(struct pci_dev *pdev,
struct agp_bridge_data *bridge)
{
int i, mask;
bridge->driver = NULL;
for (i = 0; intel_gtt_chipsets[i].name != NULL; i++) {
if (find_gmch(intel_gtt_chipsets[i].gmch_chip_id)) {
bridge->driver =
intel_gtt_chipsets[i].gmch_driver;
intel_private.driver =
intel_gtt_chipsets[i].gtt_driver;
break;
}
}
if (!bridge->driver)
return 0;
bridge->dev_private_data = &intel_private;
bridge->dev = pdev;
intel_private.bridge_dev = pci_dev_get(pdev);
dev_info(&pdev->dev, "Intel %s Chipset\n", intel_gtt_chipsets[i].name);
mask = intel_private.driver->dma_mask_size;
if (pci_set_dma_mask(intel_private.pcidev, DMA_BIT_MASK(mask)))
dev_err(&intel_private.pcidev->dev,
"set gfx device dma mask %d-bit failed!\n", mask);
else
pci_set_consistent_dma_mask(intel_private.pcidev,
DMA_BIT_MASK(mask));
if (bridge->driver == &intel_810_driver)
return 1;
if (intel_gtt_init() != 0)
return 0;
return 1;
}
EXPORT_SYMBOL(intel_gmch_probe);
struct intel_gtt *intel_gtt_get(void)
{
return &intel_private.base;
}
EXPORT_SYMBOL(intel_gtt_get);
void intel_gmch_remove(struct pci_dev *pdev)
{
if (intel_private.pcidev)
pci_dev_put(intel_private.pcidev);
if (intel_private.bridge_dev)
pci_dev_put(intel_private.bridge_dev);
}
EXPORT_SYMBOL(intel_gmch_remove);
MODULE_AUTHOR("Dave Jones <davej@redhat.com>");
MODULE_LICENSE("GPL and additional rights");