mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 12:34:55 +07:00
2a9b3e6ac6
In debug_exception_enter() and debug_exception_exit() we trace hardirqs on/off while RCU isn't guaranteed to be watching, and we don't save and restore the hardirq state, and so may return with this having changed. Handle this appropriately with new entry/exit helpers which do the bare minimum to ensure this is appropriately maintained, without marking debug exceptions as NMIs. These are placed in entry-common.c with the other entry/exit helpers. In future we'll want to reconsider whether some debug exceptions should be NMIs, but this will require a significant refactoring, and for now this should prevent issues with lockdep and RCU. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marins <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201130115950.22492-12-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
856 lines
24 KiB
C
856 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/mm/fault.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1995-2004 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/acpi.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/cmpxchg.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/traps.h>
|
|
|
|
struct fault_info {
|
|
int (*fn)(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs);
|
|
int sig;
|
|
int code;
|
|
const char *name;
|
|
};
|
|
|
|
static const struct fault_info fault_info[];
|
|
static struct fault_info debug_fault_info[];
|
|
|
|
static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
|
|
{
|
|
return fault_info + (esr & ESR_ELx_FSC);
|
|
}
|
|
|
|
static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
|
|
{
|
|
return debug_fault_info + DBG_ESR_EVT(esr);
|
|
}
|
|
|
|
static void data_abort_decode(unsigned int esr)
|
|
{
|
|
pr_alert("Data abort info:\n");
|
|
|
|
if (esr & ESR_ELx_ISV) {
|
|
pr_alert(" Access size = %u byte(s)\n",
|
|
1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
|
|
pr_alert(" SSE = %lu, SRT = %lu\n",
|
|
(esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
|
|
(esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
|
|
pr_alert(" SF = %lu, AR = %lu\n",
|
|
(esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
|
|
(esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
|
|
} else {
|
|
pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
|
|
}
|
|
|
|
pr_alert(" CM = %lu, WnR = %lu\n",
|
|
(esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
|
|
(esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
|
|
}
|
|
|
|
static void mem_abort_decode(unsigned int esr)
|
|
{
|
|
pr_alert("Mem abort info:\n");
|
|
|
|
pr_alert(" ESR = 0x%08x\n", esr);
|
|
pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
|
|
ESR_ELx_EC(esr), esr_get_class_string(esr),
|
|
(esr & ESR_ELx_IL) ? 32 : 16);
|
|
pr_alert(" SET = %lu, FnV = %lu\n",
|
|
(esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
|
|
(esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
|
|
pr_alert(" EA = %lu, S1PTW = %lu\n",
|
|
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
|
|
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
|
|
|
|
if (esr_is_data_abort(esr))
|
|
data_abort_decode(esr);
|
|
}
|
|
|
|
static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
|
|
{
|
|
/* Either init_pg_dir or swapper_pg_dir */
|
|
if (mm == &init_mm)
|
|
return __pa_symbol(mm->pgd);
|
|
|
|
return (unsigned long)virt_to_phys(mm->pgd);
|
|
}
|
|
|
|
/*
|
|
* Dump out the page tables associated with 'addr' in the currently active mm.
|
|
*/
|
|
static void show_pte(unsigned long addr)
|
|
{
|
|
struct mm_struct *mm;
|
|
pgd_t *pgdp;
|
|
pgd_t pgd;
|
|
|
|
if (is_ttbr0_addr(addr)) {
|
|
/* TTBR0 */
|
|
mm = current->active_mm;
|
|
if (mm == &init_mm) {
|
|
pr_alert("[%016lx] user address but active_mm is swapper\n",
|
|
addr);
|
|
return;
|
|
}
|
|
} else if (is_ttbr1_addr(addr)) {
|
|
/* TTBR1 */
|
|
mm = &init_mm;
|
|
} else {
|
|
pr_alert("[%016lx] address between user and kernel address ranges\n",
|
|
addr);
|
|
return;
|
|
}
|
|
|
|
pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
|
|
mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
|
|
vabits_actual, mm_to_pgd_phys(mm));
|
|
pgdp = pgd_offset(mm, addr);
|
|
pgd = READ_ONCE(*pgdp);
|
|
pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
|
|
|
|
do {
|
|
p4d_t *p4dp, p4d;
|
|
pud_t *pudp, pud;
|
|
pmd_t *pmdp, pmd;
|
|
pte_t *ptep, pte;
|
|
|
|
if (pgd_none(pgd) || pgd_bad(pgd))
|
|
break;
|
|
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
p4d = READ_ONCE(*p4dp);
|
|
pr_cont(", p4d=%016llx", p4d_val(p4d));
|
|
if (p4d_none(p4d) || p4d_bad(p4d))
|
|
break;
|
|
|
|
pudp = pud_offset(p4dp, addr);
|
|
pud = READ_ONCE(*pudp);
|
|
pr_cont(", pud=%016llx", pud_val(pud));
|
|
if (pud_none(pud) || pud_bad(pud))
|
|
break;
|
|
|
|
pmdp = pmd_offset(pudp, addr);
|
|
pmd = READ_ONCE(*pmdp);
|
|
pr_cont(", pmd=%016llx", pmd_val(pmd));
|
|
if (pmd_none(pmd) || pmd_bad(pmd))
|
|
break;
|
|
|
|
ptep = pte_offset_map(pmdp, addr);
|
|
pte = READ_ONCE(*ptep);
|
|
pr_cont(", pte=%016llx", pte_val(pte));
|
|
pte_unmap(ptep);
|
|
} while(0);
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
/*
|
|
* This function sets the access flags (dirty, accessed), as well as write
|
|
* permission, and only to a more permissive setting.
|
|
*
|
|
* It needs to cope with hardware update of the accessed/dirty state by other
|
|
* agents in the system and can safely skip the __sync_icache_dcache() call as,
|
|
* like set_pte_at(), the PTE is never changed from no-exec to exec here.
|
|
*
|
|
* Returns whether or not the PTE actually changed.
|
|
*/
|
|
int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
pteval_t old_pteval, pteval;
|
|
pte_t pte = READ_ONCE(*ptep);
|
|
|
|
if (pte_same(pte, entry))
|
|
return 0;
|
|
|
|
/* only preserve the access flags and write permission */
|
|
pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
|
|
|
|
/*
|
|
* Setting the flags must be done atomically to avoid racing with the
|
|
* hardware update of the access/dirty state. The PTE_RDONLY bit must
|
|
* be set to the most permissive (lowest value) of *ptep and entry
|
|
* (calculated as: a & b == ~(~a | ~b)).
|
|
*/
|
|
pte_val(entry) ^= PTE_RDONLY;
|
|
pteval = pte_val(pte);
|
|
do {
|
|
old_pteval = pteval;
|
|
pteval ^= PTE_RDONLY;
|
|
pteval |= pte_val(entry);
|
|
pteval ^= PTE_RDONLY;
|
|
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
|
|
} while (pteval != old_pteval);
|
|
|
|
/* Invalidate a stale read-only entry */
|
|
if (dirty)
|
|
flush_tlb_page(vma, address);
|
|
return 1;
|
|
}
|
|
|
|
static bool is_el1_instruction_abort(unsigned int esr)
|
|
{
|
|
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
|
|
}
|
|
|
|
static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned int ec = ESR_ELx_EC(esr);
|
|
unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
|
|
|
|
if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
|
|
return false;
|
|
|
|
if (fsc_type == ESR_ELx_FSC_PERM)
|
|
return true;
|
|
|
|
if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
|
|
return fsc_type == ESR_ELx_FSC_FAULT &&
|
|
(regs->pstate & PSR_PAN_BIT);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long flags;
|
|
u64 par, dfsc;
|
|
|
|
if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
|
|
(esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
|
|
return false;
|
|
|
|
local_irq_save(flags);
|
|
asm volatile("at s1e1r, %0" :: "r" (addr));
|
|
isb();
|
|
par = read_sysreg_par();
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* If we now have a valid translation, treat the translation fault as
|
|
* spurious.
|
|
*/
|
|
if (!(par & SYS_PAR_EL1_F))
|
|
return true;
|
|
|
|
/*
|
|
* If we got a different type of fault from the AT instruction,
|
|
* treat the translation fault as spurious.
|
|
*/
|
|
dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
|
|
return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
|
|
}
|
|
|
|
static void die_kernel_fault(const char *msg, unsigned long addr,
|
|
unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
bust_spinlocks(1);
|
|
|
|
pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
|
|
addr);
|
|
|
|
mem_abort_decode(esr);
|
|
|
|
show_pte(addr);
|
|
die("Oops", regs, esr);
|
|
bust_spinlocks(0);
|
|
do_exit(SIGKILL);
|
|
}
|
|
|
|
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const char *msg;
|
|
|
|
/*
|
|
* Are we prepared to handle this kernel fault?
|
|
* We are almost certainly not prepared to handle instruction faults.
|
|
*/
|
|
if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
|
|
return;
|
|
|
|
if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
|
|
"Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
|
|
return;
|
|
|
|
if (is_el1_permission_fault(addr, esr, regs)) {
|
|
if (esr & ESR_ELx_WNR)
|
|
msg = "write to read-only memory";
|
|
else if (is_el1_instruction_abort(esr))
|
|
msg = "execute from non-executable memory";
|
|
else
|
|
msg = "read from unreadable memory";
|
|
} else if (addr < PAGE_SIZE) {
|
|
msg = "NULL pointer dereference";
|
|
} else {
|
|
msg = "paging request";
|
|
}
|
|
|
|
die_kernel_fault(msg, addr, esr, regs);
|
|
}
|
|
|
|
static void set_thread_esr(unsigned long address, unsigned int esr)
|
|
{
|
|
current->thread.fault_address = address;
|
|
|
|
/*
|
|
* If the faulting address is in the kernel, we must sanitize the ESR.
|
|
* From userspace's point of view, kernel-only mappings don't exist
|
|
* at all, so we report them as level 0 translation faults.
|
|
* (This is not quite the way that "no mapping there at all" behaves:
|
|
* an alignment fault not caused by the memory type would take
|
|
* precedence over translation fault for a real access to empty
|
|
* space. Unfortunately we can't easily distinguish "alignment fault
|
|
* not caused by memory type" from "alignment fault caused by memory
|
|
* type", so we ignore this wrinkle and just return the translation
|
|
* fault.)
|
|
*/
|
|
if (!is_ttbr0_addr(current->thread.fault_address)) {
|
|
switch (ESR_ELx_EC(esr)) {
|
|
case ESR_ELx_EC_DABT_LOW:
|
|
/*
|
|
* These bits provide only information about the
|
|
* faulting instruction, which userspace knows already.
|
|
* We explicitly clear bits which are architecturally
|
|
* RES0 in case they are given meanings in future.
|
|
* We always report the ESR as if the fault was taken
|
|
* to EL1 and so ISV and the bits in ISS[23:14] are
|
|
* clear. (In fact it always will be a fault to EL1.)
|
|
*/
|
|
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
|
|
ESR_ELx_CM | ESR_ELx_WNR;
|
|
esr |= ESR_ELx_FSC_FAULT;
|
|
break;
|
|
case ESR_ELx_EC_IABT_LOW:
|
|
/*
|
|
* Claim a level 0 translation fault.
|
|
* All other bits are architecturally RES0 for faults
|
|
* reported with that DFSC value, so we clear them.
|
|
*/
|
|
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
|
|
esr |= ESR_ELx_FSC_FAULT;
|
|
break;
|
|
default:
|
|
/*
|
|
* This should never happen (entry.S only brings us
|
|
* into this code for insn and data aborts from a lower
|
|
* exception level). Fail safe by not providing an ESR
|
|
* context record at all.
|
|
*/
|
|
WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
|
|
esr = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
current->thread.fault_code = esr;
|
|
}
|
|
|
|
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (user_mode(regs)) {
|
|
const struct fault_info *inf = esr_to_fault_info(esr);
|
|
|
|
set_thread_esr(addr, esr);
|
|
arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
|
|
inf->name);
|
|
} else {
|
|
__do_kernel_fault(addr, esr, regs);
|
|
}
|
|
}
|
|
|
|
#define VM_FAULT_BADMAP 0x010000
|
|
#define VM_FAULT_BADACCESS 0x020000
|
|
|
|
static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
|
|
unsigned int mm_flags, unsigned long vm_flags,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct vm_area_struct *vma = find_vma(mm, addr);
|
|
|
|
if (unlikely(!vma))
|
|
return VM_FAULT_BADMAP;
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so we can handle
|
|
* it.
|
|
*/
|
|
if (unlikely(vma->vm_start > addr)) {
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
return VM_FAULT_BADMAP;
|
|
if (expand_stack(vma, addr))
|
|
return VM_FAULT_BADMAP;
|
|
}
|
|
|
|
/*
|
|
* Check that the permissions on the VMA allow for the fault which
|
|
* occurred.
|
|
*/
|
|
if (!(vma->vm_flags & vm_flags))
|
|
return VM_FAULT_BADACCESS;
|
|
return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs);
|
|
}
|
|
|
|
static bool is_el0_instruction_abort(unsigned int esr)
|
|
{
|
|
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
|
|
}
|
|
|
|
/*
|
|
* Note: not valid for EL1 DC IVAC, but we never use that such that it
|
|
* should fault. EL0 cannot issue DC IVAC (undef).
|
|
*/
|
|
static bool is_write_abort(unsigned int esr)
|
|
{
|
|
return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
|
|
}
|
|
|
|
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf;
|
|
struct mm_struct *mm = current->mm;
|
|
vm_fault_t fault;
|
|
unsigned long vm_flags = VM_ACCESS_FLAGS;
|
|
unsigned int mm_flags = FAULT_FLAG_DEFAULT;
|
|
|
|
if (kprobe_page_fault(regs, esr))
|
|
return 0;
|
|
|
|
/*
|
|
* If we're in an interrupt or have no user context, we must not take
|
|
* the fault.
|
|
*/
|
|
if (faulthandler_disabled() || !mm)
|
|
goto no_context;
|
|
|
|
if (user_mode(regs))
|
|
mm_flags |= FAULT_FLAG_USER;
|
|
|
|
if (is_el0_instruction_abort(esr)) {
|
|
vm_flags = VM_EXEC;
|
|
mm_flags |= FAULT_FLAG_INSTRUCTION;
|
|
} else if (is_write_abort(esr)) {
|
|
vm_flags = VM_WRITE;
|
|
mm_flags |= FAULT_FLAG_WRITE;
|
|
}
|
|
|
|
if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
|
|
/* regs->orig_addr_limit may be 0 if we entered from EL0 */
|
|
if (regs->orig_addr_limit == KERNEL_DS)
|
|
die_kernel_fault("access to user memory with fs=KERNEL_DS",
|
|
addr, esr, regs);
|
|
|
|
if (is_el1_instruction_abort(esr))
|
|
die_kernel_fault("execution of user memory",
|
|
addr, esr, regs);
|
|
|
|
if (!search_exception_tables(regs->pc))
|
|
die_kernel_fault("access to user memory outside uaccess routines",
|
|
addr, esr, regs);
|
|
}
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
|
|
|
|
/*
|
|
* As per x86, we may deadlock here. However, since the kernel only
|
|
* validly references user space from well defined areas of the code,
|
|
* we can bug out early if this is from code which shouldn't.
|
|
*/
|
|
if (!mmap_read_trylock(mm)) {
|
|
if (!user_mode(regs) && !search_exception_tables(regs->pc))
|
|
goto no_context;
|
|
retry:
|
|
mmap_read_lock(mm);
|
|
} else {
|
|
/*
|
|
* The above down_read_trylock() might have succeeded in which
|
|
* case, we'll have missed the might_sleep() from down_read().
|
|
*/
|
|
might_sleep();
|
|
#ifdef CONFIG_DEBUG_VM
|
|
if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
|
|
mmap_read_unlock(mm);
|
|
goto no_context;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
|
|
|
|
/* Quick path to respond to signals */
|
|
if (fault_signal_pending(fault, regs)) {
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
return 0;
|
|
}
|
|
|
|
if (fault & VM_FAULT_RETRY) {
|
|
if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
|
|
mm_flags |= FAULT_FLAG_TRIED;
|
|
goto retry;
|
|
}
|
|
}
|
|
mmap_read_unlock(mm);
|
|
|
|
/*
|
|
* Handle the "normal" (no error) case first.
|
|
*/
|
|
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
|
|
VM_FAULT_BADACCESS))))
|
|
return 0;
|
|
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
|
|
if (fault & VM_FAULT_OOM) {
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return to
|
|
* userspace (which will retry the fault, or kill us if we got
|
|
* oom-killed).
|
|
*/
|
|
pagefault_out_of_memory();
|
|
return 0;
|
|
}
|
|
|
|
inf = esr_to_fault_info(esr);
|
|
set_thread_esr(addr, esr);
|
|
if (fault & VM_FAULT_SIGBUS) {
|
|
/*
|
|
* We had some memory, but were unable to successfully fix up
|
|
* this page fault.
|
|
*/
|
|
arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
|
|
inf->name);
|
|
} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
|
|
unsigned int lsb;
|
|
|
|
lsb = PAGE_SHIFT;
|
|
if (fault & VM_FAULT_HWPOISON_LARGE)
|
|
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
|
|
|
|
arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
|
|
inf->name);
|
|
} else {
|
|
/*
|
|
* Something tried to access memory that isn't in our memory
|
|
* map.
|
|
*/
|
|
arm64_force_sig_fault(SIGSEGV,
|
|
fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
|
|
(void __user *)addr,
|
|
inf->name);
|
|
}
|
|
|
|
return 0;
|
|
|
|
no_context:
|
|
__do_kernel_fault(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes do_translation_fault(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (is_ttbr0_addr(addr))
|
|
return do_page_fault(addr, esr, regs);
|
|
|
|
do_bad_area(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int do_alignment_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
do_bad_area(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
return 1; /* "fault" */
|
|
}
|
|
|
|
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf;
|
|
void __user *siaddr;
|
|
|
|
inf = esr_to_fault_info(esr);
|
|
|
|
if (user_mode(regs) && apei_claim_sea(regs) == 0) {
|
|
/*
|
|
* APEI claimed this as a firmware-first notification.
|
|
* Some processing deferred to task_work before ret_to_user().
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (esr & ESR_ELx_FnV)
|
|
siaddr = NULL;
|
|
else
|
|
siaddr = (void __user *)addr;
|
|
arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_tag_check_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
do_bad_area(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static const struct fault_info fault_info[] = {
|
|
{ do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
|
|
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
|
|
{ do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
|
|
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
|
|
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
|
|
{ do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
|
|
};
|
|
|
|
void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = esr_to_fault_info(esr);
|
|
|
|
if (!inf->fn(addr, esr, regs))
|
|
return;
|
|
|
|
if (!user_mode(regs)) {
|
|
pr_alert("Unhandled fault at 0x%016lx\n", addr);
|
|
mem_abort_decode(esr);
|
|
show_pte(addr);
|
|
}
|
|
|
|
arm64_notify_die(inf->name, regs,
|
|
inf->sig, inf->code, (void __user *)addr, esr);
|
|
}
|
|
NOKPROBE_SYMBOL(do_mem_abort);
|
|
|
|
void do_el0_irq_bp_hardening(void)
|
|
{
|
|
/* PC has already been checked in entry.S */
|
|
arm64_apply_bp_hardening();
|
|
}
|
|
NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
|
|
|
|
void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
arm64_notify_die("SP/PC alignment exception", regs,
|
|
SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
|
|
}
|
|
NOKPROBE_SYMBOL(do_sp_pc_abort);
|
|
|
|
int __init early_brk64(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs);
|
|
|
|
/*
|
|
* __refdata because early_brk64 is __init, but the reference to it is
|
|
* clobbered at arch_initcall time.
|
|
* See traps.c and debug-monitors.c:debug_traps_init().
|
|
*/
|
|
static struct fault_info __refdata debug_fault_info[] = {
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
|
|
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
|
|
{ early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
|
|
};
|
|
|
|
void __init hook_debug_fault_code(int nr,
|
|
int (*fn)(unsigned long, unsigned int, struct pt_regs *),
|
|
int sig, int code, const char *name)
|
|
{
|
|
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
|
|
|
|
debug_fault_info[nr].fn = fn;
|
|
debug_fault_info[nr].sig = sig;
|
|
debug_fault_info[nr].code = code;
|
|
debug_fault_info[nr].name = name;
|
|
}
|
|
|
|
/*
|
|
* In debug exception context, we explicitly disable preemption despite
|
|
* having interrupts disabled.
|
|
* This serves two purposes: it makes it much less likely that we would
|
|
* accidentally schedule in exception context and it will force a warning
|
|
* if we somehow manage to schedule by accident.
|
|
*/
|
|
static void debug_exception_enter(struct pt_regs *regs)
|
|
{
|
|
preempt_disable();
|
|
|
|
/* This code is a bit fragile. Test it. */
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
|
|
}
|
|
NOKPROBE_SYMBOL(debug_exception_enter);
|
|
|
|
static void debug_exception_exit(struct pt_regs *regs)
|
|
{
|
|
preempt_enable_no_resched();
|
|
}
|
|
NOKPROBE_SYMBOL(debug_exception_exit);
|
|
|
|
#ifdef CONFIG_ARM64_ERRATUM_1463225
|
|
DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
|
|
|
|
static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
|
|
{
|
|
if (user_mode(regs))
|
|
return 0;
|
|
|
|
if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
|
|
return 0;
|
|
|
|
/*
|
|
* We've taken a dummy step exception from the kernel to ensure
|
|
* that interrupts are re-enabled on the syscall path. Return back
|
|
* to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
|
|
* masked so that we can safely restore the mdscr and get on with
|
|
* handling the syscall.
|
|
*/
|
|
regs->pstate |= PSR_D_BIT;
|
|
return 1;
|
|
}
|
|
#else
|
|
static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_ARM64_ERRATUM_1463225 */
|
|
NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
|
|
|
|
void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = esr_to_debug_fault_info(esr);
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
if (cortex_a76_erratum_1463225_debug_handler(regs))
|
|
return;
|
|
|
|
debug_exception_enter(regs);
|
|
|
|
if (user_mode(regs) && !is_ttbr0_addr(pc))
|
|
arm64_apply_bp_hardening();
|
|
|
|
if (inf->fn(addr_if_watchpoint, esr, regs)) {
|
|
arm64_notify_die(inf->name, regs,
|
|
inf->sig, inf->code, (void __user *)pc, esr);
|
|
}
|
|
|
|
debug_exception_exit(regs);
|
|
}
|
|
NOKPROBE_SYMBOL(do_debug_exception);
|