mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
9b1a12d291
In below commit alias DTE is set when its peripheral is
setting DTE. However there's a code bug here to wrongly
set the alias DTE, correct it in this patch.
commit e25bfb56ea
Author: Joerg Roedel <jroedel@suse.de>
Date: Tue Oct 20 17:33:38 2015 +0200
iommu/amd: Set alias DTE in do_attach/do_detach
Signed-off-by: Baoquan He <bhe@redhat.com>
Tested-by: Mark Hounschell <markh@compro.net>
Cc: stable@vger.kernel.org # v4.4
Signed-off-by: Joerg Roedel <jroedel@suse.de>
4113 lines
94 KiB
C
4113 lines
94 KiB
C
/*
|
|
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
|
|
* Author: Joerg Roedel <jroedel@suse.de>
|
|
* Leo Duran <leo.duran@amd.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-ats.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/iommu-helper.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/amd-iommu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/export.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/percpu.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/msidef.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/gart.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include "amd_iommu_proto.h"
|
|
#include "amd_iommu_types.h"
|
|
#include "irq_remapping.h"
|
|
|
|
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
|
|
|
|
#define LOOP_TIMEOUT 100000
|
|
|
|
/*
|
|
* This bitmap is used to advertise the page sizes our hardware support
|
|
* to the IOMMU core, which will then use this information to split
|
|
* physically contiguous memory regions it is mapping into page sizes
|
|
* that we support.
|
|
*
|
|
* 512GB Pages are not supported due to a hardware bug
|
|
*/
|
|
#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
|
|
|
|
static DEFINE_RWLOCK(amd_iommu_devtable_lock);
|
|
|
|
/* List of all available dev_data structures */
|
|
static LIST_HEAD(dev_data_list);
|
|
static DEFINE_SPINLOCK(dev_data_list_lock);
|
|
|
|
LIST_HEAD(ioapic_map);
|
|
LIST_HEAD(hpet_map);
|
|
|
|
/*
|
|
* Domain for untranslated devices - only allocated
|
|
* if iommu=pt passed on kernel cmd line.
|
|
*/
|
|
static const struct iommu_ops amd_iommu_ops;
|
|
|
|
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
|
|
int amd_iommu_max_glx_val = -1;
|
|
|
|
static struct dma_map_ops amd_iommu_dma_ops;
|
|
|
|
/*
|
|
* This struct contains device specific data for the IOMMU
|
|
*/
|
|
struct iommu_dev_data {
|
|
struct list_head list; /* For domain->dev_list */
|
|
struct list_head dev_data_list; /* For global dev_data_list */
|
|
struct protection_domain *domain; /* Domain the device is bound to */
|
|
u16 devid; /* PCI Device ID */
|
|
bool iommu_v2; /* Device can make use of IOMMUv2 */
|
|
bool passthrough; /* Device is identity mapped */
|
|
struct {
|
|
bool enabled;
|
|
int qdep;
|
|
} ats; /* ATS state */
|
|
bool pri_tlp; /* PASID TLB required for
|
|
PPR completions */
|
|
u32 errata; /* Bitmap for errata to apply */
|
|
};
|
|
|
|
/*
|
|
* general struct to manage commands send to an IOMMU
|
|
*/
|
|
struct iommu_cmd {
|
|
u32 data[4];
|
|
};
|
|
|
|
struct kmem_cache *amd_iommu_irq_cache;
|
|
|
|
static void update_domain(struct protection_domain *domain);
|
|
static int protection_domain_init(struct protection_domain *domain);
|
|
|
|
/*
|
|
* For dynamic growth the aperture size is split into ranges of 128MB of
|
|
* DMA address space each. This struct represents one such range.
|
|
*/
|
|
struct aperture_range {
|
|
|
|
spinlock_t bitmap_lock;
|
|
|
|
/* address allocation bitmap */
|
|
unsigned long *bitmap;
|
|
unsigned long offset;
|
|
unsigned long next_bit;
|
|
|
|
/*
|
|
* Array of PTE pages for the aperture. In this array we save all the
|
|
* leaf pages of the domain page table used for the aperture. This way
|
|
* we don't need to walk the page table to find a specific PTE. We can
|
|
* just calculate its address in constant time.
|
|
*/
|
|
u64 *pte_pages[64];
|
|
};
|
|
|
|
/*
|
|
* Data container for a dma_ops specific protection domain
|
|
*/
|
|
struct dma_ops_domain {
|
|
/* generic protection domain information */
|
|
struct protection_domain domain;
|
|
|
|
/* size of the aperture for the mappings */
|
|
unsigned long aperture_size;
|
|
|
|
/* aperture index we start searching for free addresses */
|
|
u32 __percpu *next_index;
|
|
|
|
/* address space relevant data */
|
|
struct aperture_range *aperture[APERTURE_MAX_RANGES];
|
|
};
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Helper functions
|
|
*
|
|
****************************************************************************/
|
|
|
|
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
|
|
{
|
|
return container_of(dom, struct protection_domain, domain);
|
|
}
|
|
|
|
static struct iommu_dev_data *alloc_dev_data(u16 devid)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
unsigned long flags;
|
|
|
|
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
|
|
if (!dev_data)
|
|
return NULL;
|
|
|
|
dev_data->devid = devid;
|
|
|
|
spin_lock_irqsave(&dev_data_list_lock, flags);
|
|
list_add_tail(&dev_data->dev_data_list, &dev_data_list);
|
|
spin_unlock_irqrestore(&dev_data_list_lock, flags);
|
|
|
|
return dev_data;
|
|
}
|
|
|
|
static struct iommu_dev_data *search_dev_data(u16 devid)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_data_list_lock, flags);
|
|
list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
|
|
if (dev_data->devid == devid)
|
|
goto out_unlock;
|
|
}
|
|
|
|
dev_data = NULL;
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&dev_data_list_lock, flags);
|
|
|
|
return dev_data;
|
|
}
|
|
|
|
static struct iommu_dev_data *find_dev_data(u16 devid)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
dev_data = search_dev_data(devid);
|
|
|
|
if (dev_data == NULL)
|
|
dev_data = alloc_dev_data(devid);
|
|
|
|
return dev_data;
|
|
}
|
|
|
|
static inline u16 get_device_id(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
return PCI_DEVID(pdev->bus->number, pdev->devfn);
|
|
}
|
|
|
|
static struct iommu_dev_data *get_dev_data(struct device *dev)
|
|
{
|
|
return dev->archdata.iommu;
|
|
}
|
|
|
|
static bool pci_iommuv2_capable(struct pci_dev *pdev)
|
|
{
|
|
static const int caps[] = {
|
|
PCI_EXT_CAP_ID_ATS,
|
|
PCI_EXT_CAP_ID_PRI,
|
|
PCI_EXT_CAP_ID_PASID,
|
|
};
|
|
int i, pos;
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
pos = pci_find_ext_capability(pdev, caps[i]);
|
|
if (pos == 0)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
dev_data = get_dev_data(&pdev->dev);
|
|
|
|
return dev_data->errata & (1 << erratum) ? true : false;
|
|
}
|
|
|
|
/*
|
|
* This function actually applies the mapping to the page table of the
|
|
* dma_ops domain.
|
|
*/
|
|
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
|
|
struct unity_map_entry *e)
|
|
{
|
|
u64 addr;
|
|
|
|
for (addr = e->address_start; addr < e->address_end;
|
|
addr += PAGE_SIZE) {
|
|
if (addr < dma_dom->aperture_size)
|
|
__set_bit(addr >> PAGE_SHIFT,
|
|
dma_dom->aperture[0]->bitmap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Inits the unity mappings required for a specific device
|
|
*/
|
|
static void init_unity_mappings_for_device(struct device *dev,
|
|
struct dma_ops_domain *dma_dom)
|
|
{
|
|
struct unity_map_entry *e;
|
|
u16 devid;
|
|
|
|
devid = get_device_id(dev);
|
|
|
|
list_for_each_entry(e, &amd_iommu_unity_map, list) {
|
|
if (!(devid >= e->devid_start && devid <= e->devid_end))
|
|
continue;
|
|
alloc_unity_mapping(dma_dom, e);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function checks if the driver got a valid device from the caller to
|
|
* avoid dereferencing invalid pointers.
|
|
*/
|
|
static bool check_device(struct device *dev)
|
|
{
|
|
u16 devid;
|
|
|
|
if (!dev || !dev->dma_mask)
|
|
return false;
|
|
|
|
/* No PCI device */
|
|
if (!dev_is_pci(dev))
|
|
return false;
|
|
|
|
devid = get_device_id(dev);
|
|
|
|
/* Out of our scope? */
|
|
if (devid > amd_iommu_last_bdf)
|
|
return false;
|
|
|
|
if (amd_iommu_rlookup_table[devid] == NULL)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void init_iommu_group(struct device *dev)
|
|
{
|
|
struct dma_ops_domain *dma_domain;
|
|
struct iommu_domain *domain;
|
|
struct iommu_group *group;
|
|
|
|
group = iommu_group_get_for_dev(dev);
|
|
if (IS_ERR(group))
|
|
return;
|
|
|
|
domain = iommu_group_default_domain(group);
|
|
if (!domain)
|
|
goto out;
|
|
|
|
dma_domain = to_pdomain(domain)->priv;
|
|
|
|
init_unity_mappings_for_device(dev, dma_domain);
|
|
out:
|
|
iommu_group_put(group);
|
|
}
|
|
|
|
static int iommu_init_device(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
if (dev->archdata.iommu)
|
|
return 0;
|
|
|
|
dev_data = find_dev_data(get_device_id(dev));
|
|
if (!dev_data)
|
|
return -ENOMEM;
|
|
|
|
if (pci_iommuv2_capable(pdev)) {
|
|
struct amd_iommu *iommu;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
dev_data->iommu_v2 = iommu->is_iommu_v2;
|
|
}
|
|
|
|
dev->archdata.iommu = dev_data;
|
|
|
|
iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
|
|
dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_ignore_device(struct device *dev)
|
|
{
|
|
u16 devid, alias;
|
|
|
|
devid = get_device_id(dev);
|
|
alias = amd_iommu_alias_table[devid];
|
|
|
|
memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
|
|
memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
|
|
|
|
amd_iommu_rlookup_table[devid] = NULL;
|
|
amd_iommu_rlookup_table[alias] = NULL;
|
|
}
|
|
|
|
static void iommu_uninit_device(struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
|
|
|
|
if (!dev_data)
|
|
return;
|
|
|
|
iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
|
|
dev);
|
|
|
|
iommu_group_remove_device(dev);
|
|
|
|
/* Remove dma-ops */
|
|
dev->archdata.dma_ops = NULL;
|
|
|
|
/*
|
|
* We keep dev_data around for unplugged devices and reuse it when the
|
|
* device is re-plugged - not doing so would introduce a ton of races.
|
|
*/
|
|
}
|
|
|
|
#ifdef CONFIG_AMD_IOMMU_STATS
|
|
|
|
/*
|
|
* Initialization code for statistics collection
|
|
*/
|
|
|
|
DECLARE_STATS_COUNTER(compl_wait);
|
|
DECLARE_STATS_COUNTER(cnt_map_single);
|
|
DECLARE_STATS_COUNTER(cnt_unmap_single);
|
|
DECLARE_STATS_COUNTER(cnt_map_sg);
|
|
DECLARE_STATS_COUNTER(cnt_unmap_sg);
|
|
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
|
|
DECLARE_STATS_COUNTER(cnt_free_coherent);
|
|
DECLARE_STATS_COUNTER(cross_page);
|
|
DECLARE_STATS_COUNTER(domain_flush_single);
|
|
DECLARE_STATS_COUNTER(domain_flush_all);
|
|
DECLARE_STATS_COUNTER(alloced_io_mem);
|
|
DECLARE_STATS_COUNTER(total_map_requests);
|
|
DECLARE_STATS_COUNTER(complete_ppr);
|
|
DECLARE_STATS_COUNTER(invalidate_iotlb);
|
|
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
|
|
DECLARE_STATS_COUNTER(pri_requests);
|
|
|
|
static struct dentry *stats_dir;
|
|
static struct dentry *de_fflush;
|
|
|
|
static void amd_iommu_stats_add(struct __iommu_counter *cnt)
|
|
{
|
|
if (stats_dir == NULL)
|
|
return;
|
|
|
|
cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
|
|
&cnt->value);
|
|
}
|
|
|
|
static void amd_iommu_stats_init(void)
|
|
{
|
|
stats_dir = debugfs_create_dir("amd-iommu", NULL);
|
|
if (stats_dir == NULL)
|
|
return;
|
|
|
|
de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
|
|
&amd_iommu_unmap_flush);
|
|
|
|
amd_iommu_stats_add(&compl_wait);
|
|
amd_iommu_stats_add(&cnt_map_single);
|
|
amd_iommu_stats_add(&cnt_unmap_single);
|
|
amd_iommu_stats_add(&cnt_map_sg);
|
|
amd_iommu_stats_add(&cnt_unmap_sg);
|
|
amd_iommu_stats_add(&cnt_alloc_coherent);
|
|
amd_iommu_stats_add(&cnt_free_coherent);
|
|
amd_iommu_stats_add(&cross_page);
|
|
amd_iommu_stats_add(&domain_flush_single);
|
|
amd_iommu_stats_add(&domain_flush_all);
|
|
amd_iommu_stats_add(&alloced_io_mem);
|
|
amd_iommu_stats_add(&total_map_requests);
|
|
amd_iommu_stats_add(&complete_ppr);
|
|
amd_iommu_stats_add(&invalidate_iotlb);
|
|
amd_iommu_stats_add(&invalidate_iotlb_all);
|
|
amd_iommu_stats_add(&pri_requests);
|
|
}
|
|
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Interrupt handling functions
|
|
*
|
|
****************************************************************************/
|
|
|
|
static void dump_dte_entry(u16 devid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
|
|
amd_iommu_dev_table[devid].data[i]);
|
|
}
|
|
|
|
static void dump_command(unsigned long phys_addr)
|
|
{
|
|
struct iommu_cmd *cmd = phys_to_virt(phys_addr);
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
|
|
}
|
|
|
|
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
|
|
{
|
|
int type, devid, domid, flags;
|
|
volatile u32 *event = __evt;
|
|
int count = 0;
|
|
u64 address;
|
|
|
|
retry:
|
|
type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
|
|
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
|
|
domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
|
|
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
|
|
address = (u64)(((u64)event[3]) << 32) | event[2];
|
|
|
|
if (type == 0) {
|
|
/* Did we hit the erratum? */
|
|
if (++count == LOOP_TIMEOUT) {
|
|
pr_err("AMD-Vi: No event written to event log\n");
|
|
return;
|
|
}
|
|
udelay(1);
|
|
goto retry;
|
|
}
|
|
|
|
printk(KERN_ERR "AMD-Vi: Event logged [");
|
|
|
|
switch (type) {
|
|
case EVENT_TYPE_ILL_DEV:
|
|
printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
|
|
"address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address, flags);
|
|
dump_dte_entry(devid);
|
|
break;
|
|
case EVENT_TYPE_IO_FAULT:
|
|
printk("IO_PAGE_FAULT device=%02x:%02x.%x "
|
|
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
domid, address, flags);
|
|
break;
|
|
case EVENT_TYPE_DEV_TAB_ERR:
|
|
printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
|
|
"address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address, flags);
|
|
break;
|
|
case EVENT_TYPE_PAGE_TAB_ERR:
|
|
printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
|
|
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
domid, address, flags);
|
|
break;
|
|
case EVENT_TYPE_ILL_CMD:
|
|
printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
|
|
dump_command(address);
|
|
break;
|
|
case EVENT_TYPE_CMD_HARD_ERR:
|
|
printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
|
|
"flags=0x%04x]\n", address, flags);
|
|
break;
|
|
case EVENT_TYPE_IOTLB_INV_TO:
|
|
printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
|
|
"address=0x%016llx]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address);
|
|
break;
|
|
case EVENT_TYPE_INV_DEV_REQ:
|
|
printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
|
|
"address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address, flags);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
|
|
}
|
|
|
|
memset(__evt, 0, 4 * sizeof(u32));
|
|
}
|
|
|
|
static void iommu_poll_events(struct amd_iommu *iommu)
|
|
{
|
|
u32 head, tail;
|
|
|
|
head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
|
|
|
|
while (head != tail) {
|
|
iommu_print_event(iommu, iommu->evt_buf + head);
|
|
head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
|
|
}
|
|
|
|
writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
|
|
}
|
|
|
|
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
|
|
{
|
|
struct amd_iommu_fault fault;
|
|
|
|
INC_STATS_COUNTER(pri_requests);
|
|
|
|
if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
|
|
pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
|
|
return;
|
|
}
|
|
|
|
fault.address = raw[1];
|
|
fault.pasid = PPR_PASID(raw[0]);
|
|
fault.device_id = PPR_DEVID(raw[0]);
|
|
fault.tag = PPR_TAG(raw[0]);
|
|
fault.flags = PPR_FLAGS(raw[0]);
|
|
|
|
atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
|
|
}
|
|
|
|
static void iommu_poll_ppr_log(struct amd_iommu *iommu)
|
|
{
|
|
u32 head, tail;
|
|
|
|
if (iommu->ppr_log == NULL)
|
|
return;
|
|
|
|
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
|
|
|
|
while (head != tail) {
|
|
volatile u64 *raw;
|
|
u64 entry[2];
|
|
int i;
|
|
|
|
raw = (u64 *)(iommu->ppr_log + head);
|
|
|
|
/*
|
|
* Hardware bug: Interrupt may arrive before the entry is
|
|
* written to memory. If this happens we need to wait for the
|
|
* entry to arrive.
|
|
*/
|
|
for (i = 0; i < LOOP_TIMEOUT; ++i) {
|
|
if (PPR_REQ_TYPE(raw[0]) != 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
/* Avoid memcpy function-call overhead */
|
|
entry[0] = raw[0];
|
|
entry[1] = raw[1];
|
|
|
|
/*
|
|
* To detect the hardware bug we need to clear the entry
|
|
* back to zero.
|
|
*/
|
|
raw[0] = raw[1] = 0UL;
|
|
|
|
/* Update head pointer of hardware ring-buffer */
|
|
head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
|
|
writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
|
|
|
|
/* Handle PPR entry */
|
|
iommu_handle_ppr_entry(iommu, entry);
|
|
|
|
/* Refresh ring-buffer information */
|
|
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
|
|
}
|
|
}
|
|
|
|
irqreturn_t amd_iommu_int_thread(int irq, void *data)
|
|
{
|
|
struct amd_iommu *iommu = (struct amd_iommu *) data;
|
|
u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
|
|
|
|
while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
|
|
/* Enable EVT and PPR interrupts again */
|
|
writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
|
|
iommu->mmio_base + MMIO_STATUS_OFFSET);
|
|
|
|
if (status & MMIO_STATUS_EVT_INT_MASK) {
|
|
pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
|
|
iommu_poll_events(iommu);
|
|
}
|
|
|
|
if (status & MMIO_STATUS_PPR_INT_MASK) {
|
|
pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
|
|
iommu_poll_ppr_log(iommu);
|
|
}
|
|
|
|
/*
|
|
* Hardware bug: ERBT1312
|
|
* When re-enabling interrupt (by writing 1
|
|
* to clear the bit), the hardware might also try to set
|
|
* the interrupt bit in the event status register.
|
|
* In this scenario, the bit will be set, and disable
|
|
* subsequent interrupts.
|
|
*
|
|
* Workaround: The IOMMU driver should read back the
|
|
* status register and check if the interrupt bits are cleared.
|
|
* If not, driver will need to go through the interrupt handler
|
|
* again and re-clear the bits
|
|
*/
|
|
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t amd_iommu_int_handler(int irq, void *data)
|
|
{
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* IOMMU command queuing functions
|
|
*
|
|
****************************************************************************/
|
|
|
|
static int wait_on_sem(volatile u64 *sem)
|
|
{
|
|
int i = 0;
|
|
|
|
while (*sem == 0 && i < LOOP_TIMEOUT) {
|
|
udelay(1);
|
|
i += 1;
|
|
}
|
|
|
|
if (i == LOOP_TIMEOUT) {
|
|
pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void copy_cmd_to_buffer(struct amd_iommu *iommu,
|
|
struct iommu_cmd *cmd,
|
|
u32 tail)
|
|
{
|
|
u8 *target;
|
|
|
|
target = iommu->cmd_buf + tail;
|
|
tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
|
|
|
|
/* Copy command to buffer */
|
|
memcpy(target, cmd, sizeof(*cmd));
|
|
|
|
/* Tell the IOMMU about it */
|
|
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
|
|
}
|
|
|
|
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
|
|
{
|
|
WARN_ON(address & 0x7ULL);
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
|
|
cmd->data[1] = upper_32_bits(__pa(address));
|
|
cmd->data[2] = 1;
|
|
CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
|
|
}
|
|
|
|
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = devid;
|
|
CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
|
|
}
|
|
|
|
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
|
|
size_t size, u16 domid, int pde)
|
|
{
|
|
u64 pages;
|
|
bool s;
|
|
|
|
pages = iommu_num_pages(address, size, PAGE_SIZE);
|
|
s = false;
|
|
|
|
if (pages > 1) {
|
|
/*
|
|
* If we have to flush more than one page, flush all
|
|
* TLB entries for this domain
|
|
*/
|
|
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
|
|
s = true;
|
|
}
|
|
|
|
address &= PAGE_MASK;
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[1] |= domid;
|
|
cmd->data[2] = lower_32_bits(address);
|
|
cmd->data[3] = upper_32_bits(address);
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
|
|
if (s) /* size bit - we flush more than one 4kb page */
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
|
|
if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
|
|
}
|
|
|
|
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
|
|
u64 address, size_t size)
|
|
{
|
|
u64 pages;
|
|
bool s;
|
|
|
|
pages = iommu_num_pages(address, size, PAGE_SIZE);
|
|
s = false;
|
|
|
|
if (pages > 1) {
|
|
/*
|
|
* If we have to flush more than one page, flush all
|
|
* TLB entries for this domain
|
|
*/
|
|
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
|
|
s = true;
|
|
}
|
|
|
|
address &= PAGE_MASK;
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = devid;
|
|
cmd->data[0] |= (qdep & 0xff) << 24;
|
|
cmd->data[1] = devid;
|
|
cmd->data[2] = lower_32_bits(address);
|
|
cmd->data[3] = upper_32_bits(address);
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
|
|
if (s)
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
|
|
}
|
|
|
|
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
|
|
u64 address, bool size)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
|
|
address &= ~(0xfffULL);
|
|
|
|
cmd->data[0] = pasid;
|
|
cmd->data[1] = domid;
|
|
cmd->data[2] = lower_32_bits(address);
|
|
cmd->data[3] = upper_32_bits(address);
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
|
|
if (size)
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
|
|
}
|
|
|
|
static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
|
|
int qdep, u64 address, bool size)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
|
|
address &= ~(0xfffULL);
|
|
|
|
cmd->data[0] = devid;
|
|
cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
|
|
cmd->data[0] |= (qdep & 0xff) << 24;
|
|
cmd->data[1] = devid;
|
|
cmd->data[1] |= (pasid & 0xff) << 16;
|
|
cmd->data[2] = lower_32_bits(address);
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
|
|
cmd->data[3] = upper_32_bits(address);
|
|
if (size)
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
|
|
}
|
|
|
|
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
|
|
int status, int tag, bool gn)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
|
|
cmd->data[0] = devid;
|
|
if (gn) {
|
|
cmd->data[1] = pasid;
|
|
cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
|
|
}
|
|
cmd->data[3] = tag & 0x1ff;
|
|
cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
|
|
|
|
CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
|
|
}
|
|
|
|
static void build_inv_all(struct iommu_cmd *cmd)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
CMD_SET_TYPE(cmd, CMD_INV_ALL);
|
|
}
|
|
|
|
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = devid;
|
|
CMD_SET_TYPE(cmd, CMD_INV_IRT);
|
|
}
|
|
|
|
/*
|
|
* Writes the command to the IOMMUs command buffer and informs the
|
|
* hardware about the new command.
|
|
*/
|
|
static int iommu_queue_command_sync(struct amd_iommu *iommu,
|
|
struct iommu_cmd *cmd,
|
|
bool sync)
|
|
{
|
|
u32 left, tail, head, next_tail;
|
|
unsigned long flags;
|
|
|
|
again:
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
|
|
next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
|
|
left = (head - next_tail) % CMD_BUFFER_SIZE;
|
|
|
|
if (left <= 2) {
|
|
struct iommu_cmd sync_cmd;
|
|
volatile u64 sem = 0;
|
|
int ret;
|
|
|
|
build_completion_wait(&sync_cmd, (u64)&sem);
|
|
copy_cmd_to_buffer(iommu, &sync_cmd, tail);
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
if ((ret = wait_on_sem(&sem)) != 0)
|
|
return ret;
|
|
|
|
goto again;
|
|
}
|
|
|
|
copy_cmd_to_buffer(iommu, cmd, tail);
|
|
|
|
/* We need to sync now to make sure all commands are processed */
|
|
iommu->need_sync = sync;
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
|
|
{
|
|
return iommu_queue_command_sync(iommu, cmd, true);
|
|
}
|
|
|
|
/*
|
|
* This function queues a completion wait command into the command
|
|
* buffer of an IOMMU
|
|
*/
|
|
static int iommu_completion_wait(struct amd_iommu *iommu)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
volatile u64 sem = 0;
|
|
int ret;
|
|
|
|
if (!iommu->need_sync)
|
|
return 0;
|
|
|
|
build_completion_wait(&cmd, (u64)&sem);
|
|
|
|
ret = iommu_queue_command_sync(iommu, &cmd, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return wait_on_sem(&sem);
|
|
}
|
|
|
|
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_dte(&cmd, devid);
|
|
|
|
return iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
static void iommu_flush_dte_all(struct amd_iommu *iommu)
|
|
{
|
|
u32 devid;
|
|
|
|
for (devid = 0; devid <= 0xffff; ++devid)
|
|
iommu_flush_dte(iommu, devid);
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
/*
|
|
* This function uses heavy locking and may disable irqs for some time. But
|
|
* this is no issue because it is only called during resume.
|
|
*/
|
|
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
|
|
{
|
|
u32 dom_id;
|
|
|
|
for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
|
|
struct iommu_cmd cmd;
|
|
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
|
|
dom_id, 1);
|
|
iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static void iommu_flush_all(struct amd_iommu *iommu)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_all(&cmd);
|
|
|
|
iommu_queue_command(iommu, &cmd);
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_irt(&cmd, devid);
|
|
|
|
iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
static void iommu_flush_irt_all(struct amd_iommu *iommu)
|
|
{
|
|
u32 devid;
|
|
|
|
for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
|
|
iommu_flush_irt(iommu, devid);
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
void iommu_flush_all_caches(struct amd_iommu *iommu)
|
|
{
|
|
if (iommu_feature(iommu, FEATURE_IA)) {
|
|
iommu_flush_all(iommu);
|
|
} else {
|
|
iommu_flush_dte_all(iommu);
|
|
iommu_flush_irt_all(iommu);
|
|
iommu_flush_tlb_all(iommu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Command send function for flushing on-device TLB
|
|
*/
|
|
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
|
|
u64 address, size_t size)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
struct iommu_cmd cmd;
|
|
int qdep;
|
|
|
|
qdep = dev_data->ats.qdep;
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
|
|
build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
|
|
|
|
return iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
/*
|
|
* Command send function for invalidating a device table entry
|
|
*/
|
|
static int device_flush_dte(struct iommu_dev_data *dev_data)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
u16 alias;
|
|
int ret;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
alias = amd_iommu_alias_table[dev_data->devid];
|
|
|
|
ret = iommu_flush_dte(iommu, dev_data->devid);
|
|
if (!ret && alias != dev_data->devid)
|
|
ret = iommu_flush_dte(iommu, alias);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dev_data->ats.enabled)
|
|
ret = device_flush_iotlb(dev_data, 0, ~0UL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* TLB invalidation function which is called from the mapping functions.
|
|
* It invalidates a single PTE if the range to flush is within a single
|
|
* page. Otherwise it flushes the whole TLB of the IOMMU.
|
|
*/
|
|
static void __domain_flush_pages(struct protection_domain *domain,
|
|
u64 address, size_t size, int pde)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct iommu_cmd cmd;
|
|
int ret = 0, i;
|
|
|
|
build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
|
|
|
|
for (i = 0; i < amd_iommus_present; ++i) {
|
|
if (!domain->dev_iommu[i])
|
|
continue;
|
|
|
|
/*
|
|
* Devices of this domain are behind this IOMMU
|
|
* We need a TLB flush
|
|
*/
|
|
ret |= iommu_queue_command(amd_iommus[i], &cmd);
|
|
}
|
|
|
|
list_for_each_entry(dev_data, &domain->dev_list, list) {
|
|
|
|
if (!dev_data->ats.enabled)
|
|
continue;
|
|
|
|
ret |= device_flush_iotlb(dev_data, address, size);
|
|
}
|
|
|
|
WARN_ON(ret);
|
|
}
|
|
|
|
static void domain_flush_pages(struct protection_domain *domain,
|
|
u64 address, size_t size)
|
|
{
|
|
__domain_flush_pages(domain, address, size, 0);
|
|
}
|
|
|
|
/* Flush the whole IO/TLB for a given protection domain */
|
|
static void domain_flush_tlb(struct protection_domain *domain)
|
|
{
|
|
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
|
|
}
|
|
|
|
/* Flush the whole IO/TLB for a given protection domain - including PDE */
|
|
static void domain_flush_tlb_pde(struct protection_domain *domain)
|
|
{
|
|
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
|
|
}
|
|
|
|
static void domain_flush_complete(struct protection_domain *domain)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < amd_iommus_present; ++i) {
|
|
if (!domain->dev_iommu[i])
|
|
continue;
|
|
|
|
/*
|
|
* Devices of this domain are behind this IOMMU
|
|
* We need to wait for completion of all commands.
|
|
*/
|
|
iommu_completion_wait(amd_iommus[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* This function flushes the DTEs for all devices in domain
|
|
*/
|
|
static void domain_flush_devices(struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
list_for_each_entry(dev_data, &domain->dev_list, list)
|
|
device_flush_dte(dev_data);
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The functions below are used the create the page table mappings for
|
|
* unity mapped regions.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* This function is used to add another level to an IO page table. Adding
|
|
* another level increases the size of the address space by 9 bits to a size up
|
|
* to 64 bits.
|
|
*/
|
|
static bool increase_address_space(struct protection_domain *domain,
|
|
gfp_t gfp)
|
|
{
|
|
u64 *pte;
|
|
|
|
if (domain->mode == PAGE_MODE_6_LEVEL)
|
|
/* address space already 64 bit large */
|
|
return false;
|
|
|
|
pte = (void *)get_zeroed_page(gfp);
|
|
if (!pte)
|
|
return false;
|
|
|
|
*pte = PM_LEVEL_PDE(domain->mode,
|
|
virt_to_phys(domain->pt_root));
|
|
domain->pt_root = pte;
|
|
domain->mode += 1;
|
|
domain->updated = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
static u64 *alloc_pte(struct protection_domain *domain,
|
|
unsigned long address,
|
|
unsigned long page_size,
|
|
u64 **pte_page,
|
|
gfp_t gfp)
|
|
{
|
|
int level, end_lvl;
|
|
u64 *pte, *page;
|
|
|
|
BUG_ON(!is_power_of_2(page_size));
|
|
|
|
while (address > PM_LEVEL_SIZE(domain->mode))
|
|
increase_address_space(domain, gfp);
|
|
|
|
level = domain->mode - 1;
|
|
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
|
|
address = PAGE_SIZE_ALIGN(address, page_size);
|
|
end_lvl = PAGE_SIZE_LEVEL(page_size);
|
|
|
|
while (level > end_lvl) {
|
|
u64 __pte, __npte;
|
|
|
|
__pte = *pte;
|
|
|
|
if (!IOMMU_PTE_PRESENT(__pte)) {
|
|
page = (u64 *)get_zeroed_page(gfp);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
__npte = PM_LEVEL_PDE(level, virt_to_phys(page));
|
|
|
|
if (cmpxchg64(pte, __pte, __npte)) {
|
|
free_page((unsigned long)page);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* No level skipping support yet */
|
|
if (PM_PTE_LEVEL(*pte) != level)
|
|
return NULL;
|
|
|
|
level -= 1;
|
|
|
|
pte = IOMMU_PTE_PAGE(*pte);
|
|
|
|
if (pte_page && level == end_lvl)
|
|
*pte_page = pte;
|
|
|
|
pte = &pte[PM_LEVEL_INDEX(level, address)];
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* This function checks if there is a PTE for a given dma address. If
|
|
* there is one, it returns the pointer to it.
|
|
*/
|
|
static u64 *fetch_pte(struct protection_domain *domain,
|
|
unsigned long address,
|
|
unsigned long *page_size)
|
|
{
|
|
int level;
|
|
u64 *pte;
|
|
|
|
if (address > PM_LEVEL_SIZE(domain->mode))
|
|
return NULL;
|
|
|
|
level = domain->mode - 1;
|
|
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
|
|
*page_size = PTE_LEVEL_PAGE_SIZE(level);
|
|
|
|
while (level > 0) {
|
|
|
|
/* Not Present */
|
|
if (!IOMMU_PTE_PRESENT(*pte))
|
|
return NULL;
|
|
|
|
/* Large PTE */
|
|
if (PM_PTE_LEVEL(*pte) == 7 ||
|
|
PM_PTE_LEVEL(*pte) == 0)
|
|
break;
|
|
|
|
/* No level skipping support yet */
|
|
if (PM_PTE_LEVEL(*pte) != level)
|
|
return NULL;
|
|
|
|
level -= 1;
|
|
|
|
/* Walk to the next level */
|
|
pte = IOMMU_PTE_PAGE(*pte);
|
|
pte = &pte[PM_LEVEL_INDEX(level, address)];
|
|
*page_size = PTE_LEVEL_PAGE_SIZE(level);
|
|
}
|
|
|
|
if (PM_PTE_LEVEL(*pte) == 0x07) {
|
|
unsigned long pte_mask;
|
|
|
|
/*
|
|
* If we have a series of large PTEs, make
|
|
* sure to return a pointer to the first one.
|
|
*/
|
|
*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
|
|
pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
|
|
pte = (u64 *)(((unsigned long)pte) & pte_mask);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* Generic mapping functions. It maps a physical address into a DMA
|
|
* address space. It allocates the page table pages if necessary.
|
|
* In the future it can be extended to a generic mapping function
|
|
* supporting all features of AMD IOMMU page tables like level skipping
|
|
* and full 64 bit address spaces.
|
|
*/
|
|
static int iommu_map_page(struct protection_domain *dom,
|
|
unsigned long bus_addr,
|
|
unsigned long phys_addr,
|
|
int prot,
|
|
unsigned long page_size)
|
|
{
|
|
u64 __pte, *pte;
|
|
int i, count;
|
|
|
|
BUG_ON(!IS_ALIGNED(bus_addr, page_size));
|
|
BUG_ON(!IS_ALIGNED(phys_addr, page_size));
|
|
|
|
if (!(prot & IOMMU_PROT_MASK))
|
|
return -EINVAL;
|
|
|
|
count = PAGE_SIZE_PTE_COUNT(page_size);
|
|
pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
|
|
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < count; ++i)
|
|
if (IOMMU_PTE_PRESENT(pte[i]))
|
|
return -EBUSY;
|
|
|
|
if (count > 1) {
|
|
__pte = PAGE_SIZE_PTE(phys_addr, page_size);
|
|
__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
|
|
} else
|
|
__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
|
|
|
|
if (prot & IOMMU_PROT_IR)
|
|
__pte |= IOMMU_PTE_IR;
|
|
if (prot & IOMMU_PROT_IW)
|
|
__pte |= IOMMU_PTE_IW;
|
|
|
|
for (i = 0; i < count; ++i)
|
|
pte[i] = __pte;
|
|
|
|
update_domain(dom);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long iommu_unmap_page(struct protection_domain *dom,
|
|
unsigned long bus_addr,
|
|
unsigned long page_size)
|
|
{
|
|
unsigned long long unmapped;
|
|
unsigned long unmap_size;
|
|
u64 *pte;
|
|
|
|
BUG_ON(!is_power_of_2(page_size));
|
|
|
|
unmapped = 0;
|
|
|
|
while (unmapped < page_size) {
|
|
|
|
pte = fetch_pte(dom, bus_addr, &unmap_size);
|
|
|
|
if (pte) {
|
|
int i, count;
|
|
|
|
count = PAGE_SIZE_PTE_COUNT(unmap_size);
|
|
for (i = 0; i < count; i++)
|
|
pte[i] = 0ULL;
|
|
}
|
|
|
|
bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
|
|
unmapped += unmap_size;
|
|
}
|
|
|
|
BUG_ON(unmapped && !is_power_of_2(unmapped));
|
|
|
|
return unmapped;
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The next functions belong to the address allocator for the dma_ops
|
|
* interface functions. They work like the allocators in the other IOMMU
|
|
* drivers. Its basically a bitmap which marks the allocated pages in
|
|
* the aperture. Maybe it could be enhanced in the future to a more
|
|
* efficient allocator.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* The address allocator core functions.
|
|
*
|
|
* called with domain->lock held
|
|
*/
|
|
|
|
/*
|
|
* Used to reserve address ranges in the aperture (e.g. for exclusion
|
|
* ranges.
|
|
*/
|
|
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
|
|
unsigned long start_page,
|
|
unsigned int pages)
|
|
{
|
|
unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
|
|
|
|
if (start_page + pages > last_page)
|
|
pages = last_page - start_page;
|
|
|
|
for (i = start_page; i < start_page + pages; ++i) {
|
|
int index = i / APERTURE_RANGE_PAGES;
|
|
int page = i % APERTURE_RANGE_PAGES;
|
|
__set_bit(page, dom->aperture[index]->bitmap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function is used to add a new aperture range to an existing
|
|
* aperture in case of dma_ops domain allocation or address allocation
|
|
* failure.
|
|
*/
|
|
static int alloc_new_range(struct dma_ops_domain *dma_dom,
|
|
bool populate, gfp_t gfp)
|
|
{
|
|
int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
|
|
unsigned long i, old_size, pte_pgsize;
|
|
struct aperture_range *range;
|
|
struct amd_iommu *iommu;
|
|
unsigned long flags;
|
|
|
|
#ifdef CONFIG_IOMMU_STRESS
|
|
populate = false;
|
|
#endif
|
|
|
|
if (index >= APERTURE_MAX_RANGES)
|
|
return -ENOMEM;
|
|
|
|
range = kzalloc(sizeof(struct aperture_range), gfp);
|
|
if (!range)
|
|
return -ENOMEM;
|
|
|
|
range->bitmap = (void *)get_zeroed_page(gfp);
|
|
if (!range->bitmap)
|
|
goto out_free;
|
|
|
|
range->offset = dma_dom->aperture_size;
|
|
|
|
spin_lock_init(&range->bitmap_lock);
|
|
|
|
if (populate) {
|
|
unsigned long address = dma_dom->aperture_size;
|
|
int i, num_ptes = APERTURE_RANGE_PAGES / 512;
|
|
u64 *pte, *pte_page;
|
|
|
|
for (i = 0; i < num_ptes; ++i) {
|
|
pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
|
|
&pte_page, gfp);
|
|
if (!pte)
|
|
goto out_free;
|
|
|
|
range->pte_pages[i] = pte_page;
|
|
|
|
address += APERTURE_RANGE_SIZE / 64;
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&dma_dom->domain.lock, flags);
|
|
|
|
/* First take the bitmap_lock and then publish the range */
|
|
spin_lock(&range->bitmap_lock);
|
|
|
|
old_size = dma_dom->aperture_size;
|
|
dma_dom->aperture[index] = range;
|
|
dma_dom->aperture_size += APERTURE_RANGE_SIZE;
|
|
|
|
/* Reserve address range used for MSI messages */
|
|
if (old_size < MSI_ADDR_BASE_LO &&
|
|
dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
|
|
unsigned long spage;
|
|
int pages;
|
|
|
|
pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
|
|
spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
|
|
|
|
dma_ops_reserve_addresses(dma_dom, spage, pages);
|
|
}
|
|
|
|
/* Initialize the exclusion range if necessary */
|
|
for_each_iommu(iommu) {
|
|
if (iommu->exclusion_start &&
|
|
iommu->exclusion_start >= dma_dom->aperture[index]->offset
|
|
&& iommu->exclusion_start < dma_dom->aperture_size) {
|
|
unsigned long startpage;
|
|
int pages = iommu_num_pages(iommu->exclusion_start,
|
|
iommu->exclusion_length,
|
|
PAGE_SIZE);
|
|
startpage = iommu->exclusion_start >> PAGE_SHIFT;
|
|
dma_ops_reserve_addresses(dma_dom, startpage, pages);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for areas already mapped as present in the new aperture
|
|
* range and mark those pages as reserved in the allocator. Such
|
|
* mappings may already exist as a result of requested unity
|
|
* mappings for devices.
|
|
*/
|
|
for (i = dma_dom->aperture[index]->offset;
|
|
i < dma_dom->aperture_size;
|
|
i += pte_pgsize) {
|
|
u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
|
|
if (!pte || !IOMMU_PTE_PRESENT(*pte))
|
|
continue;
|
|
|
|
dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
|
|
pte_pgsize >> 12);
|
|
}
|
|
|
|
update_domain(&dma_dom->domain);
|
|
|
|
spin_unlock(&range->bitmap_lock);
|
|
|
|
spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
update_domain(&dma_dom->domain);
|
|
|
|
free_page((unsigned long)range->bitmap);
|
|
|
|
kfree(range);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
|
|
struct aperture_range *range,
|
|
unsigned long pages,
|
|
unsigned long dma_mask,
|
|
unsigned long boundary_size,
|
|
unsigned long align_mask,
|
|
bool trylock)
|
|
{
|
|
unsigned long offset, limit, flags;
|
|
dma_addr_t address;
|
|
bool flush = false;
|
|
|
|
offset = range->offset >> PAGE_SHIFT;
|
|
limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
|
|
dma_mask >> PAGE_SHIFT);
|
|
|
|
if (trylock) {
|
|
if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
|
|
return -1;
|
|
} else {
|
|
spin_lock_irqsave(&range->bitmap_lock, flags);
|
|
}
|
|
|
|
address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
|
|
pages, offset, boundary_size, align_mask);
|
|
if (address == -1) {
|
|
/* Nothing found, retry one time */
|
|
address = iommu_area_alloc(range->bitmap, limit,
|
|
0, pages, offset, boundary_size,
|
|
align_mask);
|
|
flush = true;
|
|
}
|
|
|
|
if (address != -1)
|
|
range->next_bit = address + pages;
|
|
|
|
spin_unlock_irqrestore(&range->bitmap_lock, flags);
|
|
|
|
if (flush) {
|
|
domain_flush_tlb(&dom->domain);
|
|
domain_flush_complete(&dom->domain);
|
|
}
|
|
|
|
return address;
|
|
}
|
|
|
|
static unsigned long dma_ops_area_alloc(struct device *dev,
|
|
struct dma_ops_domain *dom,
|
|
unsigned int pages,
|
|
unsigned long align_mask,
|
|
u64 dma_mask)
|
|
{
|
|
unsigned long boundary_size, mask;
|
|
unsigned long address = -1;
|
|
bool first = true;
|
|
u32 start, i;
|
|
|
|
preempt_disable();
|
|
|
|
mask = dma_get_seg_boundary(dev);
|
|
|
|
again:
|
|
start = this_cpu_read(*dom->next_index);
|
|
|
|
/* Sanity check - is it really necessary? */
|
|
if (unlikely(start > APERTURE_MAX_RANGES)) {
|
|
start = 0;
|
|
this_cpu_write(*dom->next_index, 0);
|
|
}
|
|
|
|
boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
|
|
1UL << (BITS_PER_LONG - PAGE_SHIFT);
|
|
|
|
for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
|
|
struct aperture_range *range;
|
|
int index;
|
|
|
|
index = (start + i) % APERTURE_MAX_RANGES;
|
|
|
|
range = dom->aperture[index];
|
|
|
|
if (!range || range->offset >= dma_mask)
|
|
continue;
|
|
|
|
address = dma_ops_aperture_alloc(dom, range, pages,
|
|
dma_mask, boundary_size,
|
|
align_mask, first);
|
|
if (address != -1) {
|
|
address = range->offset + (address << PAGE_SHIFT);
|
|
this_cpu_write(*dom->next_index, index);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (address == -1 && first) {
|
|
first = false;
|
|
goto again;
|
|
}
|
|
|
|
preempt_enable();
|
|
|
|
return address;
|
|
}
|
|
|
|
static unsigned long dma_ops_alloc_addresses(struct device *dev,
|
|
struct dma_ops_domain *dom,
|
|
unsigned int pages,
|
|
unsigned long align_mask,
|
|
u64 dma_mask)
|
|
{
|
|
unsigned long address = -1;
|
|
|
|
while (address == -1) {
|
|
address = dma_ops_area_alloc(dev, dom, pages,
|
|
align_mask, dma_mask);
|
|
|
|
if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
|
|
break;
|
|
}
|
|
|
|
if (unlikely(address == -1))
|
|
address = DMA_ERROR_CODE;
|
|
|
|
WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
|
|
|
|
return address;
|
|
}
|
|
|
|
/*
|
|
* The address free function.
|
|
*
|
|
* called with domain->lock held
|
|
*/
|
|
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
|
|
unsigned long address,
|
|
unsigned int pages)
|
|
{
|
|
unsigned i = address >> APERTURE_RANGE_SHIFT;
|
|
struct aperture_range *range = dom->aperture[i];
|
|
unsigned long flags;
|
|
|
|
BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
|
|
|
|
#ifdef CONFIG_IOMMU_STRESS
|
|
if (i < 4)
|
|
return;
|
|
#endif
|
|
|
|
if (amd_iommu_unmap_flush) {
|
|
domain_flush_tlb(&dom->domain);
|
|
domain_flush_complete(&dom->domain);
|
|
}
|
|
|
|
address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
|
|
|
|
spin_lock_irqsave(&range->bitmap_lock, flags);
|
|
if (address + pages > range->next_bit)
|
|
range->next_bit = address + pages;
|
|
bitmap_clear(range->bitmap, address, pages);
|
|
spin_unlock_irqrestore(&range->bitmap_lock, flags);
|
|
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The next functions belong to the domain allocation. A domain is
|
|
* allocated for every IOMMU as the default domain. If device isolation
|
|
* is enabled, every device get its own domain. The most important thing
|
|
* about domains is the page table mapping the DMA address space they
|
|
* contain.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* This function adds a protection domain to the global protection domain list
|
|
*/
|
|
static void add_domain_to_list(struct protection_domain *domain)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
|
|
list_add(&domain->list, &amd_iommu_pd_list);
|
|
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This function removes a protection domain to the global
|
|
* protection domain list
|
|
*/
|
|
static void del_domain_from_list(struct protection_domain *domain)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
|
|
list_del(&domain->list);
|
|
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
|
|
}
|
|
|
|
static u16 domain_id_alloc(void)
|
|
{
|
|
unsigned long flags;
|
|
int id;
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
|
|
BUG_ON(id == 0);
|
|
if (id > 0 && id < MAX_DOMAIN_ID)
|
|
__set_bit(id, amd_iommu_pd_alloc_bitmap);
|
|
else
|
|
id = 0;
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
|
|
return id;
|
|
}
|
|
|
|
static void domain_id_free(int id)
|
|
{
|
|
unsigned long flags;
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
if (id > 0 && id < MAX_DOMAIN_ID)
|
|
__clear_bit(id, amd_iommu_pd_alloc_bitmap);
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
}
|
|
|
|
#define DEFINE_FREE_PT_FN(LVL, FN) \
|
|
static void free_pt_##LVL (unsigned long __pt) \
|
|
{ \
|
|
unsigned long p; \
|
|
u64 *pt; \
|
|
int i; \
|
|
\
|
|
pt = (u64 *)__pt; \
|
|
\
|
|
for (i = 0; i < 512; ++i) { \
|
|
/* PTE present? */ \
|
|
if (!IOMMU_PTE_PRESENT(pt[i])) \
|
|
continue; \
|
|
\
|
|
/* Large PTE? */ \
|
|
if (PM_PTE_LEVEL(pt[i]) == 0 || \
|
|
PM_PTE_LEVEL(pt[i]) == 7) \
|
|
continue; \
|
|
\
|
|
p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
|
|
FN(p); \
|
|
} \
|
|
free_page((unsigned long)pt); \
|
|
}
|
|
|
|
DEFINE_FREE_PT_FN(l2, free_page)
|
|
DEFINE_FREE_PT_FN(l3, free_pt_l2)
|
|
DEFINE_FREE_PT_FN(l4, free_pt_l3)
|
|
DEFINE_FREE_PT_FN(l5, free_pt_l4)
|
|
DEFINE_FREE_PT_FN(l6, free_pt_l5)
|
|
|
|
static void free_pagetable(struct protection_domain *domain)
|
|
{
|
|
unsigned long root = (unsigned long)domain->pt_root;
|
|
|
|
switch (domain->mode) {
|
|
case PAGE_MODE_NONE:
|
|
break;
|
|
case PAGE_MODE_1_LEVEL:
|
|
free_page(root);
|
|
break;
|
|
case PAGE_MODE_2_LEVEL:
|
|
free_pt_l2(root);
|
|
break;
|
|
case PAGE_MODE_3_LEVEL:
|
|
free_pt_l3(root);
|
|
break;
|
|
case PAGE_MODE_4_LEVEL:
|
|
free_pt_l4(root);
|
|
break;
|
|
case PAGE_MODE_5_LEVEL:
|
|
free_pt_l5(root);
|
|
break;
|
|
case PAGE_MODE_6_LEVEL:
|
|
free_pt_l6(root);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void free_gcr3_tbl_level1(u64 *tbl)
|
|
{
|
|
u64 *ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < 512; ++i) {
|
|
if (!(tbl[i] & GCR3_VALID))
|
|
continue;
|
|
|
|
ptr = __va(tbl[i] & PAGE_MASK);
|
|
|
|
free_page((unsigned long)ptr);
|
|
}
|
|
}
|
|
|
|
static void free_gcr3_tbl_level2(u64 *tbl)
|
|
{
|
|
u64 *ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < 512; ++i) {
|
|
if (!(tbl[i] & GCR3_VALID))
|
|
continue;
|
|
|
|
ptr = __va(tbl[i] & PAGE_MASK);
|
|
|
|
free_gcr3_tbl_level1(ptr);
|
|
}
|
|
}
|
|
|
|
static void free_gcr3_table(struct protection_domain *domain)
|
|
{
|
|
if (domain->glx == 2)
|
|
free_gcr3_tbl_level2(domain->gcr3_tbl);
|
|
else if (domain->glx == 1)
|
|
free_gcr3_tbl_level1(domain->gcr3_tbl);
|
|
else
|
|
BUG_ON(domain->glx != 0);
|
|
|
|
free_page((unsigned long)domain->gcr3_tbl);
|
|
}
|
|
|
|
/*
|
|
* Free a domain, only used if something went wrong in the
|
|
* allocation path and we need to free an already allocated page table
|
|
*/
|
|
static void dma_ops_domain_free(struct dma_ops_domain *dom)
|
|
{
|
|
int i;
|
|
|
|
if (!dom)
|
|
return;
|
|
|
|
free_percpu(dom->next_index);
|
|
|
|
del_domain_from_list(&dom->domain);
|
|
|
|
free_pagetable(&dom->domain);
|
|
|
|
for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
|
|
if (!dom->aperture[i])
|
|
continue;
|
|
free_page((unsigned long)dom->aperture[i]->bitmap);
|
|
kfree(dom->aperture[i]);
|
|
}
|
|
|
|
kfree(dom);
|
|
}
|
|
|
|
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
|
|
int max_apertures)
|
|
{
|
|
int ret, i, apertures;
|
|
|
|
apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
|
|
ret = 0;
|
|
|
|
for (i = apertures; i < max_apertures; ++i) {
|
|
ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Allocates a new protection domain usable for the dma_ops functions.
|
|
* It also initializes the page table and the address allocator data
|
|
* structures required for the dma_ops interface
|
|
*/
|
|
static struct dma_ops_domain *dma_ops_domain_alloc(void)
|
|
{
|
|
struct dma_ops_domain *dma_dom;
|
|
int cpu;
|
|
|
|
dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
|
|
if (!dma_dom)
|
|
return NULL;
|
|
|
|
if (protection_domain_init(&dma_dom->domain))
|
|
goto free_dma_dom;
|
|
|
|
dma_dom->next_index = alloc_percpu(u32);
|
|
if (!dma_dom->next_index)
|
|
goto free_dma_dom;
|
|
|
|
dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
|
|
dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
|
|
dma_dom->domain.flags = PD_DMA_OPS_MASK;
|
|
dma_dom->domain.priv = dma_dom;
|
|
if (!dma_dom->domain.pt_root)
|
|
goto free_dma_dom;
|
|
|
|
add_domain_to_list(&dma_dom->domain);
|
|
|
|
if (alloc_new_range(dma_dom, true, GFP_KERNEL))
|
|
goto free_dma_dom;
|
|
|
|
/*
|
|
* mark the first page as allocated so we never return 0 as
|
|
* a valid dma-address. So we can use 0 as error value
|
|
*/
|
|
dma_dom->aperture[0]->bitmap[0] = 1;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
|
|
|
|
return dma_dom;
|
|
|
|
free_dma_dom:
|
|
dma_ops_domain_free(dma_dom);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* little helper function to check whether a given protection domain is a
|
|
* dma_ops domain
|
|
*/
|
|
static bool dma_ops_domain(struct protection_domain *domain)
|
|
{
|
|
return domain->flags & PD_DMA_OPS_MASK;
|
|
}
|
|
|
|
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
|
|
{
|
|
u64 pte_root = 0;
|
|
u64 flags = 0;
|
|
|
|
if (domain->mode != PAGE_MODE_NONE)
|
|
pte_root = virt_to_phys(domain->pt_root);
|
|
|
|
pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
|
|
<< DEV_ENTRY_MODE_SHIFT;
|
|
pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
|
|
|
|
flags = amd_iommu_dev_table[devid].data[1];
|
|
|
|
if (ats)
|
|
flags |= DTE_FLAG_IOTLB;
|
|
|
|
if (domain->flags & PD_IOMMUV2_MASK) {
|
|
u64 gcr3 = __pa(domain->gcr3_tbl);
|
|
u64 glx = domain->glx;
|
|
u64 tmp;
|
|
|
|
pte_root |= DTE_FLAG_GV;
|
|
pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
|
|
|
|
/* First mask out possible old values for GCR3 table */
|
|
tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
|
|
flags &= ~tmp;
|
|
|
|
tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
|
|
flags &= ~tmp;
|
|
|
|
/* Encode GCR3 table into DTE */
|
|
tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
|
|
pte_root |= tmp;
|
|
|
|
tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
|
|
flags |= tmp;
|
|
|
|
tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
|
|
flags |= tmp;
|
|
}
|
|
|
|
flags &= ~(0xffffUL);
|
|
flags |= domain->id;
|
|
|
|
amd_iommu_dev_table[devid].data[1] = flags;
|
|
amd_iommu_dev_table[devid].data[0] = pte_root;
|
|
}
|
|
|
|
static void clear_dte_entry(u16 devid)
|
|
{
|
|
/* remove entry from the device table seen by the hardware */
|
|
amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
|
|
amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
|
|
|
|
amd_iommu_apply_erratum_63(devid);
|
|
}
|
|
|
|
static void do_attach(struct iommu_dev_data *dev_data,
|
|
struct protection_domain *domain)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
u16 alias;
|
|
bool ats;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
alias = amd_iommu_alias_table[dev_data->devid];
|
|
ats = dev_data->ats.enabled;
|
|
|
|
/* Update data structures */
|
|
dev_data->domain = domain;
|
|
list_add(&dev_data->list, &domain->dev_list);
|
|
|
|
/* Do reference counting */
|
|
domain->dev_iommu[iommu->index] += 1;
|
|
domain->dev_cnt += 1;
|
|
|
|
/* Update device table */
|
|
set_dte_entry(dev_data->devid, domain, ats);
|
|
if (alias != dev_data->devid)
|
|
set_dte_entry(alias, domain, ats);
|
|
|
|
device_flush_dte(dev_data);
|
|
}
|
|
|
|
static void do_detach(struct iommu_dev_data *dev_data)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
u16 alias;
|
|
|
|
/*
|
|
* First check if the device is still attached. It might already
|
|
* be detached from its domain because the generic
|
|
* iommu_detach_group code detached it and we try again here in
|
|
* our alias handling.
|
|
*/
|
|
if (!dev_data->domain)
|
|
return;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
alias = amd_iommu_alias_table[dev_data->devid];
|
|
|
|
/* decrease reference counters */
|
|
dev_data->domain->dev_iommu[iommu->index] -= 1;
|
|
dev_data->domain->dev_cnt -= 1;
|
|
|
|
/* Update data structures */
|
|
dev_data->domain = NULL;
|
|
list_del(&dev_data->list);
|
|
clear_dte_entry(dev_data->devid);
|
|
if (alias != dev_data->devid)
|
|
clear_dte_entry(alias);
|
|
|
|
/* Flush the DTE entry */
|
|
device_flush_dte(dev_data);
|
|
}
|
|
|
|
/*
|
|
* If a device is not yet associated with a domain, this function does
|
|
* assigns it visible for the hardware
|
|
*/
|
|
static int __attach_device(struct iommu_dev_data *dev_data,
|
|
struct protection_domain *domain)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Must be called with IRQs disabled. Warn here to detect early
|
|
* when its not.
|
|
*/
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
/* lock domain */
|
|
spin_lock(&domain->lock);
|
|
|
|
ret = -EBUSY;
|
|
if (dev_data->domain != NULL)
|
|
goto out_unlock;
|
|
|
|
/* Attach alias group root */
|
|
do_attach(dev_data, domain);
|
|
|
|
ret = 0;
|
|
|
|
out_unlock:
|
|
|
|
/* ready */
|
|
spin_unlock(&domain->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void pdev_iommuv2_disable(struct pci_dev *pdev)
|
|
{
|
|
pci_disable_ats(pdev);
|
|
pci_disable_pri(pdev);
|
|
pci_disable_pasid(pdev);
|
|
}
|
|
|
|
/* FIXME: Change generic reset-function to do the same */
|
|
static int pri_reset_while_enabled(struct pci_dev *pdev)
|
|
{
|
|
u16 control;
|
|
int pos;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
|
|
if (!pos)
|
|
return -EINVAL;
|
|
|
|
pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
|
|
control |= PCI_PRI_CTRL_RESET;
|
|
pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pdev_iommuv2_enable(struct pci_dev *pdev)
|
|
{
|
|
bool reset_enable;
|
|
int reqs, ret;
|
|
|
|
/* FIXME: Hardcode number of outstanding requests for now */
|
|
reqs = 32;
|
|
if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
|
|
reqs = 1;
|
|
reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
|
|
|
|
/* Only allow access to user-accessible pages */
|
|
ret = pci_enable_pasid(pdev, 0);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
/* First reset the PRI state of the device */
|
|
ret = pci_reset_pri(pdev);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
/* Enable PRI */
|
|
ret = pci_enable_pri(pdev, reqs);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
if (reset_enable) {
|
|
ret = pri_reset_while_enabled(pdev);
|
|
if (ret)
|
|
goto out_err;
|
|
}
|
|
|
|
ret = pci_enable_ats(pdev, PAGE_SHIFT);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
pci_disable_pri(pdev);
|
|
pci_disable_pasid(pdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* FIXME: Move this to PCI code */
|
|
#define PCI_PRI_TLP_OFF (1 << 15)
|
|
|
|
static bool pci_pri_tlp_required(struct pci_dev *pdev)
|
|
{
|
|
u16 status;
|
|
int pos;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
|
|
if (!pos)
|
|
return false;
|
|
|
|
pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
|
|
|
|
return (status & PCI_PRI_TLP_OFF) ? true : false;
|
|
}
|
|
|
|
/*
|
|
* If a device is not yet associated with a domain, this function
|
|
* assigns it visible for the hardware
|
|
*/
|
|
static int attach_device(struct device *dev,
|
|
struct protection_domain *domain)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct iommu_dev_data *dev_data;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
dev_data = get_dev_data(dev);
|
|
|
|
if (domain->flags & PD_IOMMUV2_MASK) {
|
|
if (!dev_data->passthrough)
|
|
return -EINVAL;
|
|
|
|
if (dev_data->iommu_v2) {
|
|
if (pdev_iommuv2_enable(pdev) != 0)
|
|
return -EINVAL;
|
|
|
|
dev_data->ats.enabled = true;
|
|
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
|
|
dev_data->pri_tlp = pci_pri_tlp_required(pdev);
|
|
}
|
|
} else if (amd_iommu_iotlb_sup &&
|
|
pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
|
|
dev_data->ats.enabled = true;
|
|
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
|
|
}
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
ret = __attach_device(dev_data, domain);
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
|
|
/*
|
|
* We might boot into a crash-kernel here. The crashed kernel
|
|
* left the caches in the IOMMU dirty. So we have to flush
|
|
* here to evict all dirty stuff.
|
|
*/
|
|
domain_flush_tlb_pde(domain);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Removes a device from a protection domain (unlocked)
|
|
*/
|
|
static void __detach_device(struct iommu_dev_data *dev_data)
|
|
{
|
|
struct protection_domain *domain;
|
|
|
|
/*
|
|
* Must be called with IRQs disabled. Warn here to detect early
|
|
* when its not.
|
|
*/
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
if (WARN_ON(!dev_data->domain))
|
|
return;
|
|
|
|
domain = dev_data->domain;
|
|
|
|
spin_lock(&domain->lock);
|
|
|
|
do_detach(dev_data);
|
|
|
|
spin_unlock(&domain->lock);
|
|
}
|
|
|
|
/*
|
|
* Removes a device from a protection domain (with devtable_lock held)
|
|
*/
|
|
static void detach_device(struct device *dev)
|
|
{
|
|
struct protection_domain *domain;
|
|
struct iommu_dev_data *dev_data;
|
|
unsigned long flags;
|
|
|
|
dev_data = get_dev_data(dev);
|
|
domain = dev_data->domain;
|
|
|
|
/* lock device table */
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
__detach_device(dev_data);
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
|
|
if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
|
|
pdev_iommuv2_disable(to_pci_dev(dev));
|
|
else if (dev_data->ats.enabled)
|
|
pci_disable_ats(to_pci_dev(dev));
|
|
|
|
dev_data->ats.enabled = false;
|
|
}
|
|
|
|
static int amd_iommu_add_device(struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct iommu_domain *domain;
|
|
struct amd_iommu *iommu;
|
|
u16 devid;
|
|
int ret;
|
|
|
|
if (!check_device(dev) || get_dev_data(dev))
|
|
return 0;
|
|
|
|
devid = get_device_id(dev);
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
|
|
ret = iommu_init_device(dev);
|
|
if (ret) {
|
|
if (ret != -ENOTSUPP)
|
|
pr_err("Failed to initialize device %s - trying to proceed anyway\n",
|
|
dev_name(dev));
|
|
|
|
iommu_ignore_device(dev);
|
|
dev->archdata.dma_ops = &nommu_dma_ops;
|
|
goto out;
|
|
}
|
|
init_iommu_group(dev);
|
|
|
|
dev_data = get_dev_data(dev);
|
|
|
|
BUG_ON(!dev_data);
|
|
|
|
if (iommu_pass_through || dev_data->iommu_v2)
|
|
iommu_request_dm_for_dev(dev);
|
|
|
|
/* Domains are initialized for this device - have a look what we ended up with */
|
|
domain = iommu_get_domain_for_dev(dev);
|
|
if (domain->type == IOMMU_DOMAIN_IDENTITY)
|
|
dev_data->passthrough = true;
|
|
else
|
|
dev->archdata.dma_ops = &amd_iommu_dma_ops;
|
|
|
|
out:
|
|
iommu_completion_wait(iommu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void amd_iommu_remove_device(struct device *dev)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
u16 devid;
|
|
|
|
if (!check_device(dev))
|
|
return;
|
|
|
|
devid = get_device_id(dev);
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
|
|
iommu_uninit_device(dev);
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* The next functions belong to the dma_ops mapping/unmapping code.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* In the dma_ops path we only have the struct device. This function
|
|
* finds the corresponding IOMMU, the protection domain and the
|
|
* requestor id for a given device.
|
|
* If the device is not yet associated with a domain this is also done
|
|
* in this function.
|
|
*/
|
|
static struct protection_domain *get_domain(struct device *dev)
|
|
{
|
|
struct protection_domain *domain;
|
|
struct iommu_domain *io_domain;
|
|
|
|
if (!check_device(dev))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
io_domain = iommu_get_domain_for_dev(dev);
|
|
if (!io_domain)
|
|
return NULL;
|
|
|
|
domain = to_pdomain(io_domain);
|
|
if (!dma_ops_domain(domain))
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
return domain;
|
|
}
|
|
|
|
static void update_device_table(struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
list_for_each_entry(dev_data, &domain->dev_list, list)
|
|
set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
|
|
}
|
|
|
|
static void update_domain(struct protection_domain *domain)
|
|
{
|
|
if (!domain->updated)
|
|
return;
|
|
|
|
update_device_table(domain);
|
|
|
|
domain_flush_devices(domain);
|
|
domain_flush_tlb_pde(domain);
|
|
|
|
domain->updated = false;
|
|
}
|
|
|
|
/*
|
|
* This function fetches the PTE for a given address in the aperture
|
|
*/
|
|
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
|
|
unsigned long address)
|
|
{
|
|
struct aperture_range *aperture;
|
|
u64 *pte, *pte_page;
|
|
|
|
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
|
|
if (!aperture)
|
|
return NULL;
|
|
|
|
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
|
|
if (!pte) {
|
|
pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
|
|
GFP_ATOMIC);
|
|
aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
|
|
} else
|
|
pte += PM_LEVEL_INDEX(0, address);
|
|
|
|
update_domain(&dom->domain);
|
|
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* This is the generic map function. It maps one 4kb page at paddr to
|
|
* the given address in the DMA address space for the domain.
|
|
*/
|
|
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
|
|
unsigned long address,
|
|
phys_addr_t paddr,
|
|
int direction)
|
|
{
|
|
u64 *pte, __pte;
|
|
|
|
WARN_ON(address > dom->aperture_size);
|
|
|
|
paddr &= PAGE_MASK;
|
|
|
|
pte = dma_ops_get_pte(dom, address);
|
|
if (!pte)
|
|
return DMA_ERROR_CODE;
|
|
|
|
__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
|
|
|
|
if (direction == DMA_TO_DEVICE)
|
|
__pte |= IOMMU_PTE_IR;
|
|
else if (direction == DMA_FROM_DEVICE)
|
|
__pte |= IOMMU_PTE_IW;
|
|
else if (direction == DMA_BIDIRECTIONAL)
|
|
__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
|
|
|
|
WARN_ON_ONCE(*pte);
|
|
|
|
*pte = __pte;
|
|
|
|
return (dma_addr_t)address;
|
|
}
|
|
|
|
/*
|
|
* The generic unmapping function for on page in the DMA address space.
|
|
*/
|
|
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
|
|
unsigned long address)
|
|
{
|
|
struct aperture_range *aperture;
|
|
u64 *pte;
|
|
|
|
if (address >= dom->aperture_size)
|
|
return;
|
|
|
|
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
|
|
if (!aperture)
|
|
return;
|
|
|
|
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
|
|
if (!pte)
|
|
return;
|
|
|
|
pte += PM_LEVEL_INDEX(0, address);
|
|
|
|
WARN_ON_ONCE(!*pte);
|
|
|
|
*pte = 0ULL;
|
|
}
|
|
|
|
/*
|
|
* This function contains common code for mapping of a physically
|
|
* contiguous memory region into DMA address space. It is used by all
|
|
* mapping functions provided with this IOMMU driver.
|
|
* Must be called with the domain lock held.
|
|
*/
|
|
static dma_addr_t __map_single(struct device *dev,
|
|
struct dma_ops_domain *dma_dom,
|
|
phys_addr_t paddr,
|
|
size_t size,
|
|
int dir,
|
|
bool align,
|
|
u64 dma_mask)
|
|
{
|
|
dma_addr_t offset = paddr & ~PAGE_MASK;
|
|
dma_addr_t address, start, ret;
|
|
unsigned int pages;
|
|
unsigned long align_mask = 0;
|
|
int i;
|
|
|
|
pages = iommu_num_pages(paddr, size, PAGE_SIZE);
|
|
paddr &= PAGE_MASK;
|
|
|
|
INC_STATS_COUNTER(total_map_requests);
|
|
|
|
if (pages > 1)
|
|
INC_STATS_COUNTER(cross_page);
|
|
|
|
if (align)
|
|
align_mask = (1UL << get_order(size)) - 1;
|
|
|
|
address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
|
|
dma_mask);
|
|
|
|
if (address == DMA_ERROR_CODE)
|
|
goto out;
|
|
|
|
start = address;
|
|
for (i = 0; i < pages; ++i) {
|
|
ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
|
|
if (ret == DMA_ERROR_CODE)
|
|
goto out_unmap;
|
|
|
|
paddr += PAGE_SIZE;
|
|
start += PAGE_SIZE;
|
|
}
|
|
address += offset;
|
|
|
|
ADD_STATS_COUNTER(alloced_io_mem, size);
|
|
|
|
if (unlikely(amd_iommu_np_cache)) {
|
|
domain_flush_pages(&dma_dom->domain, address, size);
|
|
domain_flush_complete(&dma_dom->domain);
|
|
}
|
|
|
|
out:
|
|
return address;
|
|
|
|
out_unmap:
|
|
|
|
for (--i; i >= 0; --i) {
|
|
start -= PAGE_SIZE;
|
|
dma_ops_domain_unmap(dma_dom, start);
|
|
}
|
|
|
|
dma_ops_free_addresses(dma_dom, address, pages);
|
|
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
/*
|
|
* Does the reverse of the __map_single function. Must be called with
|
|
* the domain lock held too
|
|
*/
|
|
static void __unmap_single(struct dma_ops_domain *dma_dom,
|
|
dma_addr_t dma_addr,
|
|
size_t size,
|
|
int dir)
|
|
{
|
|
dma_addr_t flush_addr;
|
|
dma_addr_t i, start;
|
|
unsigned int pages;
|
|
|
|
if ((dma_addr == DMA_ERROR_CODE) ||
|
|
(dma_addr + size > dma_dom->aperture_size))
|
|
return;
|
|
|
|
flush_addr = dma_addr;
|
|
pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
|
|
dma_addr &= PAGE_MASK;
|
|
start = dma_addr;
|
|
|
|
for (i = 0; i < pages; ++i) {
|
|
dma_ops_domain_unmap(dma_dom, start);
|
|
start += PAGE_SIZE;
|
|
}
|
|
|
|
SUB_STATS_COUNTER(alloced_io_mem, size);
|
|
|
|
dma_ops_free_addresses(dma_dom, dma_addr, pages);
|
|
}
|
|
|
|
/*
|
|
* The exported map_single function for dma_ops.
|
|
*/
|
|
static dma_addr_t map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
phys_addr_t paddr = page_to_phys(page) + offset;
|
|
struct protection_domain *domain;
|
|
u64 dma_mask;
|
|
|
|
INC_STATS_COUNTER(cnt_map_single);
|
|
|
|
domain = get_domain(dev);
|
|
if (PTR_ERR(domain) == -EINVAL)
|
|
return (dma_addr_t)paddr;
|
|
else if (IS_ERR(domain))
|
|
return DMA_ERROR_CODE;
|
|
|
|
dma_mask = *dev->dma_mask;
|
|
|
|
return __map_single(dev, domain->priv, paddr, size, dir, false,
|
|
dma_mask);
|
|
}
|
|
|
|
/*
|
|
* The exported unmap_single function for dma_ops.
|
|
*/
|
|
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
|
|
enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
{
|
|
struct protection_domain *domain;
|
|
|
|
INC_STATS_COUNTER(cnt_unmap_single);
|
|
|
|
domain = get_domain(dev);
|
|
if (IS_ERR(domain))
|
|
return;
|
|
|
|
__unmap_single(domain->priv, dma_addr, size, dir);
|
|
}
|
|
|
|
/*
|
|
* The exported map_sg function for dma_ops (handles scatter-gather
|
|
* lists).
|
|
*/
|
|
static int map_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nelems, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct protection_domain *domain;
|
|
int i;
|
|
struct scatterlist *s;
|
|
phys_addr_t paddr;
|
|
int mapped_elems = 0;
|
|
u64 dma_mask;
|
|
|
|
INC_STATS_COUNTER(cnt_map_sg);
|
|
|
|
domain = get_domain(dev);
|
|
if (IS_ERR(domain))
|
|
return 0;
|
|
|
|
dma_mask = *dev->dma_mask;
|
|
|
|
for_each_sg(sglist, s, nelems, i) {
|
|
paddr = sg_phys(s);
|
|
|
|
s->dma_address = __map_single(dev, domain->priv,
|
|
paddr, s->length, dir, false,
|
|
dma_mask);
|
|
|
|
if (s->dma_address) {
|
|
s->dma_length = s->length;
|
|
mapped_elems++;
|
|
} else
|
|
goto unmap;
|
|
}
|
|
|
|
return mapped_elems;
|
|
|
|
unmap:
|
|
for_each_sg(sglist, s, mapped_elems, i) {
|
|
if (s->dma_address)
|
|
__unmap_single(domain->priv, s->dma_address,
|
|
s->dma_length, dir);
|
|
s->dma_address = s->dma_length = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The exported map_sg function for dma_ops (handles scatter-gather
|
|
* lists).
|
|
*/
|
|
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nelems, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct protection_domain *domain;
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
INC_STATS_COUNTER(cnt_unmap_sg);
|
|
|
|
domain = get_domain(dev);
|
|
if (IS_ERR(domain))
|
|
return;
|
|
|
|
for_each_sg(sglist, s, nelems, i) {
|
|
__unmap_single(domain->priv, s->dma_address,
|
|
s->dma_length, dir);
|
|
s->dma_address = s->dma_length = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The exported alloc_coherent function for dma_ops.
|
|
*/
|
|
static void *alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_addr, gfp_t flag,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
u64 dma_mask = dev->coherent_dma_mask;
|
|
struct protection_domain *domain;
|
|
struct page *page;
|
|
|
|
INC_STATS_COUNTER(cnt_alloc_coherent);
|
|
|
|
domain = get_domain(dev);
|
|
if (PTR_ERR(domain) == -EINVAL) {
|
|
page = alloc_pages(flag, get_order(size));
|
|
*dma_addr = page_to_phys(page);
|
|
return page_address(page);
|
|
} else if (IS_ERR(domain))
|
|
return NULL;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
dma_mask = dev->coherent_dma_mask;
|
|
flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
|
|
flag |= __GFP_ZERO;
|
|
|
|
page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
|
|
if (!page) {
|
|
if (!gfpflags_allow_blocking(flag))
|
|
return NULL;
|
|
|
|
page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
|
|
get_order(size));
|
|
if (!page)
|
|
return NULL;
|
|
}
|
|
|
|
if (!dma_mask)
|
|
dma_mask = *dev->dma_mask;
|
|
|
|
*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
|
|
size, DMA_BIDIRECTIONAL, true, dma_mask);
|
|
|
|
if (*dma_addr == DMA_ERROR_CODE)
|
|
goto out_free;
|
|
|
|
return page_address(page);
|
|
|
|
out_free:
|
|
|
|
if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
|
|
__free_pages(page, get_order(size));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* The exported free_coherent function for dma_ops.
|
|
*/
|
|
static void free_coherent(struct device *dev, size_t size,
|
|
void *virt_addr, dma_addr_t dma_addr,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct protection_domain *domain;
|
|
struct page *page;
|
|
|
|
INC_STATS_COUNTER(cnt_free_coherent);
|
|
|
|
page = virt_to_page(virt_addr);
|
|
size = PAGE_ALIGN(size);
|
|
|
|
domain = get_domain(dev);
|
|
if (IS_ERR(domain))
|
|
goto free_mem;
|
|
|
|
__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
|
|
|
|
free_mem:
|
|
if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
|
|
__free_pages(page, get_order(size));
|
|
}
|
|
|
|
/*
|
|
* This function is called by the DMA layer to find out if we can handle a
|
|
* particular device. It is part of the dma_ops.
|
|
*/
|
|
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
return check_device(dev);
|
|
}
|
|
|
|
static int set_dma_mask(struct device *dev, u64 mask)
|
|
{
|
|
struct protection_domain *domain;
|
|
int max_apertures = 1;
|
|
|
|
domain = get_domain(dev);
|
|
if (IS_ERR(domain))
|
|
return PTR_ERR(domain);
|
|
|
|
if (mask == DMA_BIT_MASK(64))
|
|
max_apertures = 8;
|
|
else if (mask > DMA_BIT_MASK(32))
|
|
max_apertures = 4;
|
|
|
|
/*
|
|
* To prevent lock contention it doesn't make sense to allocate more
|
|
* apertures than online cpus
|
|
*/
|
|
if (max_apertures > num_online_cpus())
|
|
max_apertures = num_online_cpus();
|
|
|
|
if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
|
|
dev_err(dev, "Can't allocate %d iommu apertures\n",
|
|
max_apertures);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dma_map_ops amd_iommu_dma_ops = {
|
|
.alloc = alloc_coherent,
|
|
.free = free_coherent,
|
|
.map_page = map_page,
|
|
.unmap_page = unmap_page,
|
|
.map_sg = map_sg,
|
|
.unmap_sg = unmap_sg,
|
|
.dma_supported = amd_iommu_dma_supported,
|
|
.set_dma_mask = set_dma_mask,
|
|
};
|
|
|
|
int __init amd_iommu_init_api(void)
|
|
{
|
|
return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
|
|
}
|
|
|
|
int __init amd_iommu_init_dma_ops(void)
|
|
{
|
|
swiotlb = iommu_pass_through ? 1 : 0;
|
|
iommu_detected = 1;
|
|
|
|
/*
|
|
* In case we don't initialize SWIOTLB (actually the common case
|
|
* when AMD IOMMU is enabled), make sure there are global
|
|
* dma_ops set as a fall-back for devices not handled by this
|
|
* driver (for example non-PCI devices).
|
|
*/
|
|
if (!swiotlb)
|
|
dma_ops = &nommu_dma_ops;
|
|
|
|
amd_iommu_stats_init();
|
|
|
|
if (amd_iommu_unmap_flush)
|
|
pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
|
|
else
|
|
pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* The following functions belong to the exported interface of AMD IOMMU
|
|
*
|
|
* This interface allows access to lower level functions of the IOMMU
|
|
* like protection domain handling and assignement of devices to domains
|
|
* which is not possible with the dma_ops interface.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
static void cleanup_domain(struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *entry;
|
|
unsigned long flags;
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
|
|
while (!list_empty(&domain->dev_list)) {
|
|
entry = list_first_entry(&domain->dev_list,
|
|
struct iommu_dev_data, list);
|
|
__detach_device(entry);
|
|
}
|
|
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
}
|
|
|
|
static void protection_domain_free(struct protection_domain *domain)
|
|
{
|
|
if (!domain)
|
|
return;
|
|
|
|
del_domain_from_list(domain);
|
|
|
|
if (domain->id)
|
|
domain_id_free(domain->id);
|
|
|
|
kfree(domain);
|
|
}
|
|
|
|
static int protection_domain_init(struct protection_domain *domain)
|
|
{
|
|
spin_lock_init(&domain->lock);
|
|
mutex_init(&domain->api_lock);
|
|
domain->id = domain_id_alloc();
|
|
if (!domain->id)
|
|
return -ENOMEM;
|
|
INIT_LIST_HEAD(&domain->dev_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct protection_domain *protection_domain_alloc(void)
|
|
{
|
|
struct protection_domain *domain;
|
|
|
|
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
if (protection_domain_init(domain))
|
|
goto out_err;
|
|
|
|
add_domain_to_list(domain);
|
|
|
|
return domain;
|
|
|
|
out_err:
|
|
kfree(domain);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
|
|
{
|
|
struct protection_domain *pdomain;
|
|
struct dma_ops_domain *dma_domain;
|
|
|
|
switch (type) {
|
|
case IOMMU_DOMAIN_UNMANAGED:
|
|
pdomain = protection_domain_alloc();
|
|
if (!pdomain)
|
|
return NULL;
|
|
|
|
pdomain->mode = PAGE_MODE_3_LEVEL;
|
|
pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pdomain->pt_root) {
|
|
protection_domain_free(pdomain);
|
|
return NULL;
|
|
}
|
|
|
|
pdomain->domain.geometry.aperture_start = 0;
|
|
pdomain->domain.geometry.aperture_end = ~0ULL;
|
|
pdomain->domain.geometry.force_aperture = true;
|
|
|
|
break;
|
|
case IOMMU_DOMAIN_DMA:
|
|
dma_domain = dma_ops_domain_alloc();
|
|
if (!dma_domain) {
|
|
pr_err("AMD-Vi: Failed to allocate\n");
|
|
return NULL;
|
|
}
|
|
pdomain = &dma_domain->domain;
|
|
break;
|
|
case IOMMU_DOMAIN_IDENTITY:
|
|
pdomain = protection_domain_alloc();
|
|
if (!pdomain)
|
|
return NULL;
|
|
|
|
pdomain->mode = PAGE_MODE_NONE;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
return &pdomain->domain;
|
|
}
|
|
|
|
static void amd_iommu_domain_free(struct iommu_domain *dom)
|
|
{
|
|
struct protection_domain *domain;
|
|
|
|
if (!dom)
|
|
return;
|
|
|
|
domain = to_pdomain(dom);
|
|
|
|
if (domain->dev_cnt > 0)
|
|
cleanup_domain(domain);
|
|
|
|
BUG_ON(domain->dev_cnt != 0);
|
|
|
|
if (domain->mode != PAGE_MODE_NONE)
|
|
free_pagetable(domain);
|
|
|
|
if (domain->flags & PD_IOMMUV2_MASK)
|
|
free_gcr3_table(domain);
|
|
|
|
protection_domain_free(domain);
|
|
}
|
|
|
|
static void amd_iommu_detach_device(struct iommu_domain *dom,
|
|
struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev->archdata.iommu;
|
|
struct amd_iommu *iommu;
|
|
u16 devid;
|
|
|
|
if (!check_device(dev))
|
|
return;
|
|
|
|
devid = get_device_id(dev);
|
|
|
|
if (dev_data->domain != NULL)
|
|
detach_device(dev);
|
|
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (!iommu)
|
|
return;
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static int amd_iommu_attach_device(struct iommu_domain *dom,
|
|
struct device *dev)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
struct iommu_dev_data *dev_data;
|
|
struct amd_iommu *iommu;
|
|
int ret;
|
|
|
|
if (!check_device(dev))
|
|
return -EINVAL;
|
|
|
|
dev_data = dev->archdata.iommu;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
if (!iommu)
|
|
return -EINVAL;
|
|
|
|
if (dev_data->domain)
|
|
detach_device(dev);
|
|
|
|
ret = attach_device(dev, domain);
|
|
|
|
iommu_completion_wait(iommu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
|
|
phys_addr_t paddr, size_t page_size, int iommu_prot)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
int prot = 0;
|
|
int ret;
|
|
|
|
if (domain->mode == PAGE_MODE_NONE)
|
|
return -EINVAL;
|
|
|
|
if (iommu_prot & IOMMU_READ)
|
|
prot |= IOMMU_PROT_IR;
|
|
if (iommu_prot & IOMMU_WRITE)
|
|
prot |= IOMMU_PROT_IW;
|
|
|
|
mutex_lock(&domain->api_lock);
|
|
ret = iommu_map_page(domain, iova, paddr, prot, page_size);
|
|
mutex_unlock(&domain->api_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
|
|
size_t page_size)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
size_t unmap_size;
|
|
|
|
if (domain->mode == PAGE_MODE_NONE)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&domain->api_lock);
|
|
unmap_size = iommu_unmap_page(domain, iova, page_size);
|
|
mutex_unlock(&domain->api_lock);
|
|
|
|
domain_flush_tlb_pde(domain);
|
|
|
|
return unmap_size;
|
|
}
|
|
|
|
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
|
|
dma_addr_t iova)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long offset_mask, pte_pgsize;
|
|
u64 *pte, __pte;
|
|
|
|
if (domain->mode == PAGE_MODE_NONE)
|
|
return iova;
|
|
|
|
pte = fetch_pte(domain, iova, &pte_pgsize);
|
|
|
|
if (!pte || !IOMMU_PTE_PRESENT(*pte))
|
|
return 0;
|
|
|
|
offset_mask = pte_pgsize - 1;
|
|
__pte = *pte & PM_ADDR_MASK;
|
|
|
|
return (__pte & ~offset_mask) | (iova & offset_mask);
|
|
}
|
|
|
|
static bool amd_iommu_capable(enum iommu_cap cap)
|
|
{
|
|
switch (cap) {
|
|
case IOMMU_CAP_CACHE_COHERENCY:
|
|
return true;
|
|
case IOMMU_CAP_INTR_REMAP:
|
|
return (irq_remapping_enabled == 1);
|
|
case IOMMU_CAP_NOEXEC:
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void amd_iommu_get_dm_regions(struct device *dev,
|
|
struct list_head *head)
|
|
{
|
|
struct unity_map_entry *entry;
|
|
u16 devid;
|
|
|
|
devid = get_device_id(dev);
|
|
|
|
list_for_each_entry(entry, &amd_iommu_unity_map, list) {
|
|
struct iommu_dm_region *region;
|
|
|
|
if (devid < entry->devid_start || devid > entry->devid_end)
|
|
continue;
|
|
|
|
region = kzalloc(sizeof(*region), GFP_KERNEL);
|
|
if (!region) {
|
|
pr_err("Out of memory allocating dm-regions for %s\n",
|
|
dev_name(dev));
|
|
return;
|
|
}
|
|
|
|
region->start = entry->address_start;
|
|
region->length = entry->address_end - entry->address_start;
|
|
if (entry->prot & IOMMU_PROT_IR)
|
|
region->prot |= IOMMU_READ;
|
|
if (entry->prot & IOMMU_PROT_IW)
|
|
region->prot |= IOMMU_WRITE;
|
|
|
|
list_add_tail(®ion->list, head);
|
|
}
|
|
}
|
|
|
|
static void amd_iommu_put_dm_regions(struct device *dev,
|
|
struct list_head *head)
|
|
{
|
|
struct iommu_dm_region *entry, *next;
|
|
|
|
list_for_each_entry_safe(entry, next, head, list)
|
|
kfree(entry);
|
|
}
|
|
|
|
static const struct iommu_ops amd_iommu_ops = {
|
|
.capable = amd_iommu_capable,
|
|
.domain_alloc = amd_iommu_domain_alloc,
|
|
.domain_free = amd_iommu_domain_free,
|
|
.attach_dev = amd_iommu_attach_device,
|
|
.detach_dev = amd_iommu_detach_device,
|
|
.map = amd_iommu_map,
|
|
.unmap = amd_iommu_unmap,
|
|
.map_sg = default_iommu_map_sg,
|
|
.iova_to_phys = amd_iommu_iova_to_phys,
|
|
.add_device = amd_iommu_add_device,
|
|
.remove_device = amd_iommu_remove_device,
|
|
.device_group = pci_device_group,
|
|
.get_dm_regions = amd_iommu_get_dm_regions,
|
|
.put_dm_regions = amd_iommu_put_dm_regions,
|
|
.pgsize_bitmap = AMD_IOMMU_PGSIZES,
|
|
};
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* The next functions do a basic initialization of IOMMU for pass through
|
|
* mode
|
|
*
|
|
* In passthrough mode the IOMMU is initialized and enabled but not used for
|
|
* DMA-API translation.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/* IOMMUv2 specific functions */
|
|
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_register(&ppr_notifier, nb);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
|
|
|
|
int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_unregister(&ppr_notifier, nb);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
|
|
|
|
void amd_iommu_domain_direct_map(struct iommu_domain *dom)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
/* Update data structure */
|
|
domain->mode = PAGE_MODE_NONE;
|
|
domain->updated = true;
|
|
|
|
/* Make changes visible to IOMMUs */
|
|
update_domain(domain);
|
|
|
|
/* Page-table is not visible to IOMMU anymore, so free it */
|
|
free_pagetable(domain);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
|
|
|
|
int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int levels, ret;
|
|
|
|
if (pasids <= 0 || pasids > (PASID_MASK + 1))
|
|
return -EINVAL;
|
|
|
|
/* Number of GCR3 table levels required */
|
|
for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
|
|
levels += 1;
|
|
|
|
if (levels > amd_iommu_max_glx_val)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
/*
|
|
* Save us all sanity checks whether devices already in the
|
|
* domain support IOMMUv2. Just force that the domain has no
|
|
* devices attached when it is switched into IOMMUv2 mode.
|
|
*/
|
|
ret = -EBUSY;
|
|
if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
|
|
goto out;
|
|
|
|
ret = -ENOMEM;
|
|
domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
|
|
if (domain->gcr3_tbl == NULL)
|
|
goto out;
|
|
|
|
domain->glx = levels;
|
|
domain->flags |= PD_IOMMUV2_MASK;
|
|
domain->updated = true;
|
|
|
|
update_domain(domain);
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
|
|
|
|
static int __flush_pasid(struct protection_domain *domain, int pasid,
|
|
u64 address, bool size)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct iommu_cmd cmd;
|
|
int i, ret;
|
|
|
|
if (!(domain->flags & PD_IOMMUV2_MASK))
|
|
return -EINVAL;
|
|
|
|
build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
|
|
|
|
/*
|
|
* IOMMU TLB needs to be flushed before Device TLB to
|
|
* prevent device TLB refill from IOMMU TLB
|
|
*/
|
|
for (i = 0; i < amd_iommus_present; ++i) {
|
|
if (domain->dev_iommu[i] == 0)
|
|
continue;
|
|
|
|
ret = iommu_queue_command(amd_iommus[i], &cmd);
|
|
if (ret != 0)
|
|
goto out;
|
|
}
|
|
|
|
/* Wait until IOMMU TLB flushes are complete */
|
|
domain_flush_complete(domain);
|
|
|
|
/* Now flush device TLBs */
|
|
list_for_each_entry(dev_data, &domain->dev_list, list) {
|
|
struct amd_iommu *iommu;
|
|
int qdep;
|
|
|
|
/*
|
|
There might be non-IOMMUv2 capable devices in an IOMMUv2
|
|
* domain.
|
|
*/
|
|
if (!dev_data->ats.enabled)
|
|
continue;
|
|
|
|
qdep = dev_data->ats.qdep;
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
|
|
build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
|
|
qdep, address, size);
|
|
|
|
ret = iommu_queue_command(iommu, &cmd);
|
|
if (ret != 0)
|
|
goto out;
|
|
}
|
|
|
|
/* Wait until all device TLBs are flushed */
|
|
domain_flush_complete(domain);
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
|
|
u64 address)
|
|
{
|
|
INC_STATS_COUNTER(invalidate_iotlb);
|
|
|
|
return __flush_pasid(domain, pasid, address, false);
|
|
}
|
|
|
|
int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
|
|
u64 address)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
ret = __amd_iommu_flush_page(domain, pasid, address);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_flush_page);
|
|
|
|
static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
|
|
{
|
|
INC_STATS_COUNTER(invalidate_iotlb_all);
|
|
|
|
return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
|
|
true);
|
|
}
|
|
|
|
int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
ret = __amd_iommu_flush_tlb(domain, pasid);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_flush_tlb);
|
|
|
|
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
|
|
{
|
|
int index;
|
|
u64 *pte;
|
|
|
|
while (true) {
|
|
|
|
index = (pasid >> (9 * level)) & 0x1ff;
|
|
pte = &root[index];
|
|
|
|
if (level == 0)
|
|
break;
|
|
|
|
if (!(*pte & GCR3_VALID)) {
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
root = (void *)get_zeroed_page(GFP_ATOMIC);
|
|
if (root == NULL)
|
|
return NULL;
|
|
|
|
*pte = __pa(root) | GCR3_VALID;
|
|
}
|
|
|
|
root = __va(*pte & PAGE_MASK);
|
|
|
|
level -= 1;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static int __set_gcr3(struct protection_domain *domain, int pasid,
|
|
unsigned long cr3)
|
|
{
|
|
u64 *pte;
|
|
|
|
if (domain->mode != PAGE_MODE_NONE)
|
|
return -EINVAL;
|
|
|
|
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
|
|
if (pte == NULL)
|
|
return -ENOMEM;
|
|
|
|
*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
|
|
|
|
return __amd_iommu_flush_tlb(domain, pasid);
|
|
}
|
|
|
|
static int __clear_gcr3(struct protection_domain *domain, int pasid)
|
|
{
|
|
u64 *pte;
|
|
|
|
if (domain->mode != PAGE_MODE_NONE)
|
|
return -EINVAL;
|
|
|
|
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
|
|
if (pte == NULL)
|
|
return 0;
|
|
|
|
*pte = 0;
|
|
|
|
return __amd_iommu_flush_tlb(domain, pasid);
|
|
}
|
|
|
|
int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
|
|
unsigned long cr3)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
ret = __set_gcr3(domain, pasid, cr3);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
|
|
|
|
int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
ret = __clear_gcr3(domain, pasid);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
|
|
|
|
int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
|
|
int status, int tag)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct amd_iommu *iommu;
|
|
struct iommu_cmd cmd;
|
|
|
|
INC_STATS_COUNTER(complete_ppr);
|
|
|
|
dev_data = get_dev_data(&pdev->dev);
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
|
|
build_complete_ppr(&cmd, dev_data->devid, pasid, status,
|
|
tag, dev_data->pri_tlp);
|
|
|
|
return iommu_queue_command(iommu, &cmd);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_complete_ppr);
|
|
|
|
struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
|
|
{
|
|
struct protection_domain *pdomain;
|
|
|
|
pdomain = get_domain(&pdev->dev);
|
|
if (IS_ERR(pdomain))
|
|
return NULL;
|
|
|
|
/* Only return IOMMUv2 domains */
|
|
if (!(pdomain->flags & PD_IOMMUV2_MASK))
|
|
return NULL;
|
|
|
|
return &pdomain->domain;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
|
|
|
|
void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
if (!amd_iommu_v2_supported())
|
|
return;
|
|
|
|
dev_data = get_dev_data(&pdev->dev);
|
|
dev_data->errata |= (1 << erratum);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
|
|
|
|
int amd_iommu_device_info(struct pci_dev *pdev,
|
|
struct amd_iommu_device_info *info)
|
|
{
|
|
int max_pasids;
|
|
int pos;
|
|
|
|
if (pdev == NULL || info == NULL)
|
|
return -EINVAL;
|
|
|
|
if (!amd_iommu_v2_supported())
|
|
return -EINVAL;
|
|
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
|
|
if (pos)
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
|
|
if (pos)
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
|
|
if (pos) {
|
|
int features;
|
|
|
|
max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
|
|
max_pasids = min(max_pasids, (1 << 20));
|
|
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
|
|
info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
|
|
|
|
features = pci_pasid_features(pdev);
|
|
if (features & PCI_PASID_CAP_EXEC)
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
|
|
if (features & PCI_PASID_CAP_PRIV)
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_device_info);
|
|
|
|
#ifdef CONFIG_IRQ_REMAP
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Interrupt Remapping Implementation
|
|
*
|
|
*****************************************************************************/
|
|
|
|
union irte {
|
|
u32 val;
|
|
struct {
|
|
u32 valid : 1,
|
|
no_fault : 1,
|
|
int_type : 3,
|
|
rq_eoi : 1,
|
|
dm : 1,
|
|
rsvd_1 : 1,
|
|
destination : 8,
|
|
vector : 8,
|
|
rsvd_2 : 8;
|
|
} fields;
|
|
};
|
|
|
|
struct irq_2_irte {
|
|
u16 devid; /* Device ID for IRTE table */
|
|
u16 index; /* Index into IRTE table*/
|
|
};
|
|
|
|
struct amd_ir_data {
|
|
struct irq_2_irte irq_2_irte;
|
|
union irte irte_entry;
|
|
union {
|
|
struct msi_msg msi_entry;
|
|
};
|
|
};
|
|
|
|
static struct irq_chip amd_ir_chip;
|
|
|
|
#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
|
|
#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
|
|
#define DTE_IRQ_TABLE_LEN (8ULL << 1)
|
|
#define DTE_IRQ_REMAP_ENABLE 1ULL
|
|
|
|
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
|
|
{
|
|
u64 dte;
|
|
|
|
dte = amd_iommu_dev_table[devid].data[2];
|
|
dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
|
|
dte |= virt_to_phys(table->table);
|
|
dte |= DTE_IRQ_REMAP_INTCTL;
|
|
dte |= DTE_IRQ_TABLE_LEN;
|
|
dte |= DTE_IRQ_REMAP_ENABLE;
|
|
|
|
amd_iommu_dev_table[devid].data[2] = dte;
|
|
}
|
|
|
|
#define IRTE_ALLOCATED (~1U)
|
|
|
|
static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
|
|
{
|
|
struct irq_remap_table *table = NULL;
|
|
struct amd_iommu *iommu;
|
|
unsigned long flags;
|
|
u16 alias;
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (!iommu)
|
|
goto out_unlock;
|
|
|
|
table = irq_lookup_table[devid];
|
|
if (table)
|
|
goto out;
|
|
|
|
alias = amd_iommu_alias_table[devid];
|
|
table = irq_lookup_table[alias];
|
|
if (table) {
|
|
irq_lookup_table[devid] = table;
|
|
set_dte_irq_entry(devid, table);
|
|
iommu_flush_dte(iommu, devid);
|
|
goto out;
|
|
}
|
|
|
|
/* Nothing there yet, allocate new irq remapping table */
|
|
table = kzalloc(sizeof(*table), GFP_ATOMIC);
|
|
if (!table)
|
|
goto out;
|
|
|
|
/* Initialize table spin-lock */
|
|
spin_lock_init(&table->lock);
|
|
|
|
if (ioapic)
|
|
/* Keep the first 32 indexes free for IOAPIC interrupts */
|
|
table->min_index = 32;
|
|
|
|
table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
|
|
if (!table->table) {
|
|
kfree(table);
|
|
table = NULL;
|
|
goto out;
|
|
}
|
|
|
|
memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
|
|
|
|
if (ioapic) {
|
|
int i;
|
|
|
|
for (i = 0; i < 32; ++i)
|
|
table->table[i] = IRTE_ALLOCATED;
|
|
}
|
|
|
|
irq_lookup_table[devid] = table;
|
|
set_dte_irq_entry(devid, table);
|
|
iommu_flush_dte(iommu, devid);
|
|
if (devid != alias) {
|
|
irq_lookup_table[alias] = table;
|
|
set_dte_irq_entry(alias, table);
|
|
iommu_flush_dte(iommu, alias);
|
|
}
|
|
|
|
out:
|
|
iommu_completion_wait(iommu);
|
|
|
|
out_unlock:
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
|
|
return table;
|
|
}
|
|
|
|
static int alloc_irq_index(u16 devid, int count)
|
|
{
|
|
struct irq_remap_table *table;
|
|
unsigned long flags;
|
|
int index, c;
|
|
|
|
table = get_irq_table(devid, false);
|
|
if (!table)
|
|
return -ENODEV;
|
|
|
|
spin_lock_irqsave(&table->lock, flags);
|
|
|
|
/* Scan table for free entries */
|
|
for (c = 0, index = table->min_index;
|
|
index < MAX_IRQS_PER_TABLE;
|
|
++index) {
|
|
if (table->table[index] == 0)
|
|
c += 1;
|
|
else
|
|
c = 0;
|
|
|
|
if (c == count) {
|
|
for (; c != 0; --c)
|
|
table->table[index - c + 1] = IRTE_ALLOCATED;
|
|
|
|
index -= count - 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
index = -ENOSPC;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
return index;
|
|
}
|
|
|
|
static int modify_irte(u16 devid, int index, union irte irte)
|
|
{
|
|
struct irq_remap_table *table;
|
|
struct amd_iommu *iommu;
|
|
unsigned long flags;
|
|
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (iommu == NULL)
|
|
return -EINVAL;
|
|
|
|
table = get_irq_table(devid, false);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irqsave(&table->lock, flags);
|
|
table->table[index] = irte.val;
|
|
spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
iommu_flush_irt(iommu, devid);
|
|
iommu_completion_wait(iommu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_irte(u16 devid, int index)
|
|
{
|
|
struct irq_remap_table *table;
|
|
struct amd_iommu *iommu;
|
|
unsigned long flags;
|
|
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (iommu == NULL)
|
|
return;
|
|
|
|
table = get_irq_table(devid, false);
|
|
if (!table)
|
|
return;
|
|
|
|
spin_lock_irqsave(&table->lock, flags);
|
|
table->table[index] = 0;
|
|
spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
iommu_flush_irt(iommu, devid);
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static int get_devid(struct irq_alloc_info *info)
|
|
{
|
|
int devid = -1;
|
|
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_IOAPIC:
|
|
devid = get_ioapic_devid(info->ioapic_id);
|
|
break;
|
|
case X86_IRQ_ALLOC_TYPE_HPET:
|
|
devid = get_hpet_devid(info->hpet_id);
|
|
break;
|
|
case X86_IRQ_ALLOC_TYPE_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_MSIX:
|
|
devid = get_device_id(&info->msi_dev->dev);
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
break;
|
|
}
|
|
|
|
return devid;
|
|
}
|
|
|
|
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
int devid;
|
|
|
|
if (!info)
|
|
return NULL;
|
|
|
|
devid = get_devid(info);
|
|
if (devid >= 0) {
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (iommu)
|
|
return iommu->ir_domain;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
int devid;
|
|
|
|
if (!info)
|
|
return NULL;
|
|
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_MSIX:
|
|
devid = get_device_id(&info->msi_dev->dev);
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (iommu)
|
|
return iommu->msi_domain;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct irq_remap_ops amd_iommu_irq_ops = {
|
|
.prepare = amd_iommu_prepare,
|
|
.enable = amd_iommu_enable,
|
|
.disable = amd_iommu_disable,
|
|
.reenable = amd_iommu_reenable,
|
|
.enable_faulting = amd_iommu_enable_faulting,
|
|
.get_ir_irq_domain = get_ir_irq_domain,
|
|
.get_irq_domain = get_irq_domain,
|
|
};
|
|
|
|
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
|
|
struct irq_cfg *irq_cfg,
|
|
struct irq_alloc_info *info,
|
|
int devid, int index, int sub_handle)
|
|
{
|
|
struct irq_2_irte *irte_info = &data->irq_2_irte;
|
|
struct msi_msg *msg = &data->msi_entry;
|
|
union irte *irte = &data->irte_entry;
|
|
struct IO_APIC_route_entry *entry;
|
|
|
|
data->irq_2_irte.devid = devid;
|
|
data->irq_2_irte.index = index + sub_handle;
|
|
|
|
/* Setup IRTE for IOMMU */
|
|
irte->val = 0;
|
|
irte->fields.vector = irq_cfg->vector;
|
|
irte->fields.int_type = apic->irq_delivery_mode;
|
|
irte->fields.destination = irq_cfg->dest_apicid;
|
|
irte->fields.dm = apic->irq_dest_mode;
|
|
irte->fields.valid = 1;
|
|
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_IOAPIC:
|
|
/* Setup IOAPIC entry */
|
|
entry = info->ioapic_entry;
|
|
info->ioapic_entry = NULL;
|
|
memset(entry, 0, sizeof(*entry));
|
|
entry->vector = index;
|
|
entry->mask = 0;
|
|
entry->trigger = info->ioapic_trigger;
|
|
entry->polarity = info->ioapic_polarity;
|
|
/* Mask level triggered irqs. */
|
|
if (info->ioapic_trigger)
|
|
entry->mask = 1;
|
|
break;
|
|
|
|
case X86_IRQ_ALLOC_TYPE_HPET:
|
|
case X86_IRQ_ALLOC_TYPE_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_MSIX:
|
|
msg->address_hi = MSI_ADDR_BASE_HI;
|
|
msg->address_lo = MSI_ADDR_BASE_LO;
|
|
msg->data = irte_info->index;
|
|
break;
|
|
|
|
default:
|
|
BUG_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs, void *arg)
|
|
{
|
|
struct irq_alloc_info *info = arg;
|
|
struct irq_data *irq_data;
|
|
struct amd_ir_data *data;
|
|
struct irq_cfg *cfg;
|
|
int i, ret, devid;
|
|
int index = -1;
|
|
|
|
if (!info)
|
|
return -EINVAL;
|
|
if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
|
|
info->type != X86_IRQ_ALLOC_TYPE_MSIX)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* With IRQ remapping enabled, don't need contiguous CPU vectors
|
|
* to support multiple MSI interrupts.
|
|
*/
|
|
if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
|
|
info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
|
|
|
|
devid = get_devid(info);
|
|
if (devid < 0)
|
|
return -EINVAL;
|
|
|
|
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
|
|
if (get_irq_table(devid, true))
|
|
index = info->ioapic_pin;
|
|
else
|
|
ret = -ENOMEM;
|
|
} else {
|
|
index = alloc_irq_index(devid, nr_irqs);
|
|
}
|
|
if (index < 0) {
|
|
pr_warn("Failed to allocate IRTE\n");
|
|
goto out_free_parent;
|
|
}
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
cfg = irqd_cfg(irq_data);
|
|
if (!irq_data || !cfg) {
|
|
ret = -EINVAL;
|
|
goto out_free_data;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
goto out_free_data;
|
|
|
|
irq_data->hwirq = (devid << 16) + i;
|
|
irq_data->chip_data = data;
|
|
irq_data->chip = &amd_ir_chip;
|
|
irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
|
|
irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_data:
|
|
for (i--; i >= 0; i--) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
if (irq_data)
|
|
kfree(irq_data->chip_data);
|
|
}
|
|
for (i = 0; i < nr_irqs; i++)
|
|
free_irte(devid, index + i);
|
|
out_free_parent:
|
|
irq_domain_free_irqs_common(domain, virq, nr_irqs);
|
|
return ret;
|
|
}
|
|
|
|
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs)
|
|
{
|
|
struct irq_2_irte *irte_info;
|
|
struct irq_data *irq_data;
|
|
struct amd_ir_data *data;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
if (irq_data && irq_data->chip_data) {
|
|
data = irq_data->chip_data;
|
|
irte_info = &data->irq_2_irte;
|
|
free_irte(irte_info->devid, irte_info->index);
|
|
kfree(data);
|
|
}
|
|
}
|
|
irq_domain_free_irqs_common(domain, virq, nr_irqs);
|
|
}
|
|
|
|
static void irq_remapping_activate(struct irq_domain *domain,
|
|
struct irq_data *irq_data)
|
|
{
|
|
struct amd_ir_data *data = irq_data->chip_data;
|
|
struct irq_2_irte *irte_info = &data->irq_2_irte;
|
|
|
|
modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
|
|
}
|
|
|
|
static void irq_remapping_deactivate(struct irq_domain *domain,
|
|
struct irq_data *irq_data)
|
|
{
|
|
struct amd_ir_data *data = irq_data->chip_data;
|
|
struct irq_2_irte *irte_info = &data->irq_2_irte;
|
|
union irte entry;
|
|
|
|
entry.val = 0;
|
|
modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
|
|
}
|
|
|
|
static struct irq_domain_ops amd_ir_domain_ops = {
|
|
.alloc = irq_remapping_alloc,
|
|
.free = irq_remapping_free,
|
|
.activate = irq_remapping_activate,
|
|
.deactivate = irq_remapping_deactivate,
|
|
};
|
|
|
|
static int amd_ir_set_affinity(struct irq_data *data,
|
|
const struct cpumask *mask, bool force)
|
|
{
|
|
struct amd_ir_data *ir_data = data->chip_data;
|
|
struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
|
|
struct irq_cfg *cfg = irqd_cfg(data);
|
|
struct irq_data *parent = data->parent_data;
|
|
int ret;
|
|
|
|
ret = parent->chip->irq_set_affinity(parent, mask, force);
|
|
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
|
|
return ret;
|
|
|
|
/*
|
|
* Atomically updates the IRTE with the new destination, vector
|
|
* and flushes the interrupt entry cache.
|
|
*/
|
|
ir_data->irte_entry.fields.vector = cfg->vector;
|
|
ir_data->irte_entry.fields.destination = cfg->dest_apicid;
|
|
modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
|
|
|
|
/*
|
|
* After this point, all the interrupts will start arriving
|
|
* at the new destination. So, time to cleanup the previous
|
|
* vector allocation.
|
|
*/
|
|
send_cleanup_vector(cfg);
|
|
|
|
return IRQ_SET_MASK_OK_DONE;
|
|
}
|
|
|
|
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
|
|
{
|
|
struct amd_ir_data *ir_data = irq_data->chip_data;
|
|
|
|
*msg = ir_data->msi_entry;
|
|
}
|
|
|
|
static struct irq_chip amd_ir_chip = {
|
|
.irq_ack = ir_ack_apic_edge,
|
|
.irq_set_affinity = amd_ir_set_affinity,
|
|
.irq_compose_msi_msg = ir_compose_msi_msg,
|
|
};
|
|
|
|
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
|
|
{
|
|
iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
|
|
if (!iommu->ir_domain)
|
|
return -ENOMEM;
|
|
|
|
iommu->ir_domain->parent = arch_get_ir_parent_domain();
|
|
iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|