mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 19:49:18 +07:00
b9d305cc47
Use rt2x00_has_cap_flag macro to check rt2x00dev->cap_flags. Signed-off-by: Fred Chou <fred.chou.nd@gmail.com> Acked-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
1550 lines
39 KiB
C
1550 lines
39 KiB
C
/*
|
|
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
|
|
Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2x00lib
|
|
Abstract: rt2x00 generic device routines.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/log2.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00lib.h"
|
|
|
|
/*
|
|
* Utility functions.
|
|
*/
|
|
u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
/*
|
|
* When in STA mode, bssidx is always 0 otherwise local_address[5]
|
|
* contains the bss number, see BSS_ID_MASK comments for details.
|
|
*/
|
|
if (rt2x00dev->intf_sta_count)
|
|
return 0;
|
|
return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
|
|
|
|
/*
|
|
* Radio control handlers.
|
|
*/
|
|
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int status;
|
|
|
|
/*
|
|
* Don't enable the radio twice.
|
|
* And check if the hardware button has been disabled.
|
|
*/
|
|
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Initialize all data queues.
|
|
*/
|
|
rt2x00queue_init_queues(rt2x00dev);
|
|
|
|
/*
|
|
* Enable radio.
|
|
*/
|
|
status =
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
|
|
if (status)
|
|
return status;
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
|
|
|
|
rt2x00leds_led_radio(rt2x00dev, true);
|
|
rt2x00led_led_activity(rt2x00dev, true);
|
|
|
|
set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Enable queues.
|
|
*/
|
|
rt2x00queue_start_queues(rt2x00dev);
|
|
rt2x00link_start_tuner(rt2x00dev);
|
|
rt2x00link_start_agc(rt2x00dev);
|
|
if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
|
|
rt2x00link_start_vcocal(rt2x00dev);
|
|
|
|
/*
|
|
* Start watchdog monitoring.
|
|
*/
|
|
rt2x00link_start_watchdog(rt2x00dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Stop watchdog monitoring.
|
|
*/
|
|
rt2x00link_stop_watchdog(rt2x00dev);
|
|
|
|
/*
|
|
* Stop all queues
|
|
*/
|
|
rt2x00link_stop_agc(rt2x00dev);
|
|
if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
|
|
rt2x00link_stop_vcocal(rt2x00dev);
|
|
rt2x00link_stop_tuner(rt2x00dev);
|
|
rt2x00queue_stop_queues(rt2x00dev);
|
|
rt2x00queue_flush_queues(rt2x00dev, true);
|
|
|
|
/*
|
|
* Disable radio.
|
|
*/
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
|
|
rt2x00led_led_activity(rt2x00dev, false);
|
|
rt2x00leds_led_radio(rt2x00dev, false);
|
|
}
|
|
|
|
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = data;
|
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
|
|
|
/*
|
|
* It is possible the radio was disabled while the work had been
|
|
* scheduled. If that happens we should return here immediately,
|
|
* note that in the spinlock protected area above the delayed_flags
|
|
* have been cleared correctly.
|
|
*/
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
|
|
mutex_lock(&intf->beacon_skb_mutex);
|
|
rt2x00queue_update_beacon(rt2x00dev, vif);
|
|
mutex_unlock(&intf->beacon_skb_mutex);
|
|
}
|
|
}
|
|
|
|
static void rt2x00lib_intf_scheduled(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, intf_work);
|
|
|
|
/*
|
|
* Iterate over each interface and perform the
|
|
* requested configurations.
|
|
*/
|
|
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
|
|
IEEE80211_IFACE_ITER_RESUME_ALL,
|
|
rt2x00lib_intf_scheduled_iter,
|
|
rt2x00dev);
|
|
}
|
|
|
|
static void rt2x00lib_autowakeup(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, autowakeup_work.work);
|
|
|
|
if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
|
|
return;
|
|
|
|
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
|
|
rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
|
|
clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
|
|
}
|
|
|
|
/*
|
|
* Interrupt context handlers.
|
|
*/
|
|
static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct ieee80211_tx_control control = {};
|
|
struct rt2x00_dev *rt2x00dev = data;
|
|
struct sk_buff *skb;
|
|
|
|
/*
|
|
* Only AP mode interfaces do broad- and multicast buffering
|
|
*/
|
|
if (vif->type != NL80211_IFTYPE_AP)
|
|
return;
|
|
|
|
/*
|
|
* Send out buffered broad- and multicast frames
|
|
*/
|
|
skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
|
|
while (skb) {
|
|
rt2x00mac_tx(rt2x00dev->hw, &control, skb);
|
|
skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
|
|
}
|
|
}
|
|
|
|
static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = data;
|
|
|
|
if (vif->type != NL80211_IFTYPE_AP &&
|
|
vif->type != NL80211_IFTYPE_ADHOC &&
|
|
vif->type != NL80211_IFTYPE_MESH_POINT &&
|
|
vif->type != NL80211_IFTYPE_WDS)
|
|
return;
|
|
|
|
/*
|
|
* Update the beacon without locking. This is safe on PCI devices
|
|
* as they only update the beacon periodically here. This should
|
|
* never be called for USB devices.
|
|
*/
|
|
WARN_ON(rt2x00_is_usb(rt2x00dev));
|
|
rt2x00queue_update_beacon(rt2x00dev, vif);
|
|
}
|
|
|
|
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/* send buffered bc/mc frames out for every bssid */
|
|
ieee80211_iterate_active_interfaces_atomic(
|
|
rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
|
|
rt2x00lib_bc_buffer_iter, rt2x00dev);
|
|
/*
|
|
* Devices with pre tbtt interrupt don't need to update the beacon
|
|
* here as they will fetch the next beacon directly prior to
|
|
* transmission.
|
|
*/
|
|
if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
|
|
return;
|
|
|
|
/* fetch next beacon */
|
|
ieee80211_iterate_active_interfaces_atomic(
|
|
rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
|
|
rt2x00lib_beaconupdate_iter, rt2x00dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
|
|
|
|
void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/* fetch next beacon */
|
|
ieee80211_iterate_active_interfaces_atomic(
|
|
rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
|
|
rt2x00lib_beaconupdate_iter, rt2x00dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
|
|
|
|
void rt2x00lib_dmastart(struct queue_entry *entry)
|
|
{
|
|
set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
|
|
rt2x00queue_index_inc(entry, Q_INDEX);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
|
|
|
|
void rt2x00lib_dmadone(struct queue_entry *entry)
|
|
{
|
|
set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
|
|
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
|
|
rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
|
|
|
|
static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct ieee80211_bar *bar = (void *) entry->skb->data;
|
|
struct rt2x00_bar_list_entry *bar_entry;
|
|
int ret;
|
|
|
|
if (likely(!ieee80211_is_back_req(bar->frame_control)))
|
|
return 0;
|
|
|
|
/*
|
|
* Unlike all other frames, the status report for BARs does
|
|
* not directly come from the hardware as it is incapable of
|
|
* matching a BA to a previously send BAR. The hardware will
|
|
* report all BARs as if they weren't acked at all.
|
|
*
|
|
* Instead the RX-path will scan for incoming BAs and set the
|
|
* block_acked flag if it sees one that was likely caused by
|
|
* a BAR from us.
|
|
*
|
|
* Remove remaining BARs here and return their status for
|
|
* TX done processing.
|
|
*/
|
|
ret = 0;
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
|
|
if (bar_entry->entry != entry)
|
|
continue;
|
|
|
|
spin_lock_bh(&rt2x00dev->bar_list_lock);
|
|
/* Return whether this BAR was blockacked or not */
|
|
ret = bar_entry->block_acked;
|
|
/* Remove the BAR from our checklist */
|
|
list_del_rcu(&bar_entry->list);
|
|
spin_unlock_bh(&rt2x00dev->bar_list_lock);
|
|
kfree_rcu(bar_entry, head);
|
|
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
void rt2x00lib_txdone(struct queue_entry *entry,
|
|
struct txdone_entry_desc *txdesc)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
unsigned int header_length, i;
|
|
u8 rate_idx, rate_flags, retry_rates;
|
|
u8 skbdesc_flags = skbdesc->flags;
|
|
bool success;
|
|
|
|
/*
|
|
* Unmap the skb.
|
|
*/
|
|
rt2x00queue_unmap_skb(entry);
|
|
|
|
/*
|
|
* Remove the extra tx headroom from the skb.
|
|
*/
|
|
skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
|
|
|
|
/*
|
|
* Signal that the TX descriptor is no longer in the skb.
|
|
*/
|
|
skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
|
|
|
|
/*
|
|
* Determine the length of 802.11 header.
|
|
*/
|
|
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
|
|
|
|
/*
|
|
* Remove L2 padding which was added during
|
|
*/
|
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
|
|
rt2x00queue_remove_l2pad(entry->skb, header_length);
|
|
|
|
/*
|
|
* If the IV/EIV data was stripped from the frame before it was
|
|
* passed to the hardware, we should now reinsert it again because
|
|
* mac80211 will expect the same data to be present it the
|
|
* frame as it was passed to us.
|
|
*/
|
|
if (rt2x00_has_cap_hw_crypto(rt2x00dev))
|
|
rt2x00crypto_tx_insert_iv(entry->skb, header_length);
|
|
|
|
/*
|
|
* Send frame to debugfs immediately, after this call is completed
|
|
* we are going to overwrite the skb->cb array.
|
|
*/
|
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
|
|
|
|
/*
|
|
* Determine if the frame has been successfully transmitted and
|
|
* remove BARs from our check list while checking for their
|
|
* TX status.
|
|
*/
|
|
success =
|
|
rt2x00lib_txdone_bar_status(entry) ||
|
|
test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
|
|
test_bit(TXDONE_UNKNOWN, &txdesc->flags);
|
|
|
|
/*
|
|
* Update TX statistics.
|
|
*/
|
|
rt2x00dev->link.qual.tx_success += success;
|
|
rt2x00dev->link.qual.tx_failed += !success;
|
|
|
|
rate_idx = skbdesc->tx_rate_idx;
|
|
rate_flags = skbdesc->tx_rate_flags;
|
|
retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
|
|
(txdesc->retry + 1) : 1;
|
|
|
|
/*
|
|
* Initialize TX status
|
|
*/
|
|
memset(&tx_info->status, 0, sizeof(tx_info->status));
|
|
tx_info->status.ack_signal = 0;
|
|
|
|
/*
|
|
* Frame was send with retries, hardware tried
|
|
* different rates to send out the frame, at each
|
|
* retry it lowered the rate 1 step except when the
|
|
* lowest rate was used.
|
|
*/
|
|
for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
|
|
tx_info->status.rates[i].idx = rate_idx - i;
|
|
tx_info->status.rates[i].flags = rate_flags;
|
|
|
|
if (rate_idx - i == 0) {
|
|
/*
|
|
* The lowest rate (index 0) was used until the
|
|
* number of max retries was reached.
|
|
*/
|
|
tx_info->status.rates[i].count = retry_rates - i;
|
|
i++;
|
|
break;
|
|
}
|
|
tx_info->status.rates[i].count = 1;
|
|
}
|
|
if (i < (IEEE80211_TX_MAX_RATES - 1))
|
|
tx_info->status.rates[i].idx = -1; /* terminate */
|
|
|
|
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
|
|
if (success)
|
|
tx_info->flags |= IEEE80211_TX_STAT_ACK;
|
|
else
|
|
rt2x00dev->low_level_stats.dot11ACKFailureCount++;
|
|
}
|
|
|
|
/*
|
|
* Every single frame has it's own tx status, hence report
|
|
* every frame as ampdu of size 1.
|
|
*
|
|
* TODO: if we can find out how many frames were aggregated
|
|
* by the hw we could provide the real ampdu_len to mac80211
|
|
* which would allow the rc algorithm to better decide on
|
|
* which rates are suitable.
|
|
*/
|
|
if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
|
|
tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
|
|
tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
|
|
tx_info->status.ampdu_len = 1;
|
|
tx_info->status.ampdu_ack_len = success ? 1 : 0;
|
|
|
|
if (!success)
|
|
tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
|
|
}
|
|
|
|
if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
|
|
if (success)
|
|
rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
|
|
else
|
|
rt2x00dev->low_level_stats.dot11RTSFailureCount++;
|
|
}
|
|
|
|
/*
|
|
* Only send the status report to mac80211 when it's a frame
|
|
* that originated in mac80211. If this was a extra frame coming
|
|
* through a mac80211 library call (RTS/CTS) then we should not
|
|
* send the status report back.
|
|
*/
|
|
if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
|
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
|
|
ieee80211_tx_status(rt2x00dev->hw, entry->skb);
|
|
else
|
|
ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
|
|
} else
|
|
dev_kfree_skb_any(entry->skb);
|
|
|
|
/*
|
|
* Make this entry available for reuse.
|
|
*/
|
|
entry->skb = NULL;
|
|
entry->flags = 0;
|
|
|
|
rt2x00dev->ops->lib->clear_entry(entry);
|
|
|
|
rt2x00queue_index_inc(entry, Q_INDEX_DONE);
|
|
|
|
/*
|
|
* If the data queue was below the threshold before the txdone
|
|
* handler we must make sure the packet queue in the mac80211 stack
|
|
* is reenabled when the txdone handler has finished. This has to be
|
|
* serialized with rt2x00mac_tx(), otherwise we can wake up queue
|
|
* before it was stopped.
|
|
*/
|
|
spin_lock_bh(&entry->queue->tx_lock);
|
|
if (!rt2x00queue_threshold(entry->queue))
|
|
rt2x00queue_unpause_queue(entry->queue);
|
|
spin_unlock_bh(&entry->queue->tx_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
|
|
|
|
void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
|
|
{
|
|
struct txdone_entry_desc txdesc;
|
|
|
|
txdesc.flags = 0;
|
|
__set_bit(status, &txdesc.flags);
|
|
txdesc.retry = 0;
|
|
|
|
rt2x00lib_txdone(entry, &txdesc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
|
|
|
|
static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
|
|
{
|
|
struct ieee80211_mgmt *mgmt = (void *)data;
|
|
u8 *pos, *end;
|
|
|
|
pos = (u8 *)mgmt->u.beacon.variable;
|
|
end = data + len;
|
|
while (pos < end) {
|
|
if (pos + 2 + pos[1] > end)
|
|
return NULL;
|
|
|
|
if (pos[0] == ie)
|
|
return pos;
|
|
|
|
pos += 2 + pos[1];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void rt2x00lib_sleep(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, sleep_work);
|
|
|
|
if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Check again is powersaving is enabled, to prevent races from delayed
|
|
* work execution.
|
|
*/
|
|
if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
|
|
rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
|
|
IEEE80211_CONF_CHANGE_PS);
|
|
}
|
|
|
|
static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
|
|
struct sk_buff *skb,
|
|
struct rxdone_entry_desc *rxdesc)
|
|
{
|
|
struct rt2x00_bar_list_entry *entry;
|
|
struct ieee80211_bar *ba = (void *)skb->data;
|
|
|
|
if (likely(!ieee80211_is_back(ba->frame_control)))
|
|
return;
|
|
|
|
if (rxdesc->size < sizeof(*ba) + FCS_LEN)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
|
|
|
|
if (ba->start_seq_num != entry->start_seq_num)
|
|
continue;
|
|
|
|
#define TID_CHECK(a, b) ( \
|
|
((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
|
|
((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
|
|
|
|
if (!TID_CHECK(ba->control, entry->control))
|
|
continue;
|
|
|
|
#undef TID_CHECK
|
|
|
|
if (!ether_addr_equal_64bits(ba->ra, entry->ta))
|
|
continue;
|
|
|
|
if (!ether_addr_equal_64bits(ba->ta, entry->ra))
|
|
continue;
|
|
|
|
/* Mark BAR since we received the according BA */
|
|
spin_lock_bh(&rt2x00dev->bar_list_lock);
|
|
entry->block_acked = 1;
|
|
spin_unlock_bh(&rt2x00dev->bar_list_lock);
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
}
|
|
|
|
static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
|
|
struct sk_buff *skb,
|
|
struct rxdone_entry_desc *rxdesc)
|
|
{
|
|
struct ieee80211_hdr *hdr = (void *) skb->data;
|
|
struct ieee80211_tim_ie *tim_ie;
|
|
u8 *tim;
|
|
u8 tim_len;
|
|
bool cam;
|
|
|
|
/* If this is not a beacon, or if mac80211 has no powersaving
|
|
* configured, or if the device is already in powersaving mode
|
|
* we can exit now. */
|
|
if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
|
|
!(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
|
|
return;
|
|
|
|
/* min. beacon length + FCS_LEN */
|
|
if (skb->len <= 40 + FCS_LEN)
|
|
return;
|
|
|
|
/* and only beacons from the associated BSSID, please */
|
|
if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
|
|
!rt2x00dev->aid)
|
|
return;
|
|
|
|
rt2x00dev->last_beacon = jiffies;
|
|
|
|
tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
|
|
if (!tim)
|
|
return;
|
|
|
|
if (tim[1] < sizeof(*tim_ie))
|
|
return;
|
|
|
|
tim_len = tim[1];
|
|
tim_ie = (struct ieee80211_tim_ie *) &tim[2];
|
|
|
|
/* Check whenever the PHY can be turned off again. */
|
|
|
|
/* 1. What about buffered unicast traffic for our AID? */
|
|
cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
|
|
|
|
/* 2. Maybe the AP wants to send multicast/broadcast data? */
|
|
cam |= (tim_ie->bitmap_ctrl & 0x01);
|
|
|
|
if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
|
|
queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
|
|
}
|
|
|
|
static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
|
|
struct rxdone_entry_desc *rxdesc)
|
|
{
|
|
struct ieee80211_supported_band *sband;
|
|
const struct rt2x00_rate *rate;
|
|
unsigned int i;
|
|
int signal = rxdesc->signal;
|
|
int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
|
|
|
|
switch (rxdesc->rate_mode) {
|
|
case RATE_MODE_CCK:
|
|
case RATE_MODE_OFDM:
|
|
/*
|
|
* For non-HT rates the MCS value needs to contain the
|
|
* actually used rate modulation (CCK or OFDM).
|
|
*/
|
|
if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
|
|
signal = RATE_MCS(rxdesc->rate_mode, signal);
|
|
|
|
sband = &rt2x00dev->bands[rt2x00dev->curr_band];
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
|
|
if (((type == RXDONE_SIGNAL_PLCP) &&
|
|
(rate->plcp == signal)) ||
|
|
((type == RXDONE_SIGNAL_BITRATE) &&
|
|
(rate->bitrate == signal)) ||
|
|
((type == RXDONE_SIGNAL_MCS) &&
|
|
(rate->mcs == signal))) {
|
|
return i;
|
|
}
|
|
}
|
|
break;
|
|
case RATE_MODE_HT_MIX:
|
|
case RATE_MODE_HT_GREENFIELD:
|
|
if (signal >= 0 && signal <= 76)
|
|
return signal;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
|
|
rxdesc->rate_mode, signal, type);
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct rxdone_entry_desc rxdesc;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_rx_status *rx_status;
|
|
unsigned int header_length;
|
|
int rate_idx;
|
|
|
|
if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
|
|
!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
goto submit_entry;
|
|
|
|
if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
|
|
goto submit_entry;
|
|
|
|
/*
|
|
* Allocate a new sk_buffer. If no new buffer available, drop the
|
|
* received frame and reuse the existing buffer.
|
|
*/
|
|
skb = rt2x00queue_alloc_rxskb(entry, gfp);
|
|
if (!skb)
|
|
goto submit_entry;
|
|
|
|
/*
|
|
* Unmap the skb.
|
|
*/
|
|
rt2x00queue_unmap_skb(entry);
|
|
|
|
/*
|
|
* Extract the RXD details.
|
|
*/
|
|
memset(&rxdesc, 0, sizeof(rxdesc));
|
|
rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
|
|
|
|
/*
|
|
* Check for valid size in case we get corrupted descriptor from
|
|
* hardware.
|
|
*/
|
|
if (unlikely(rxdesc.size == 0 ||
|
|
rxdesc.size > entry->queue->data_size)) {
|
|
rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
|
|
rxdesc.size, entry->queue->data_size);
|
|
dev_kfree_skb(entry->skb);
|
|
goto renew_skb;
|
|
}
|
|
|
|
/*
|
|
* The data behind the ieee80211 header must be
|
|
* aligned on a 4 byte boundary.
|
|
*/
|
|
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
|
|
|
|
/*
|
|
* Hardware might have stripped the IV/EIV/ICV data,
|
|
* in that case it is possible that the data was
|
|
* provided separately (through hardware descriptor)
|
|
* in which case we should reinsert the data into the frame.
|
|
*/
|
|
if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
|
|
(rxdesc.flags & RX_FLAG_IV_STRIPPED))
|
|
rt2x00crypto_rx_insert_iv(entry->skb, header_length,
|
|
&rxdesc);
|
|
else if (header_length &&
|
|
(rxdesc.size > header_length) &&
|
|
(rxdesc.dev_flags & RXDONE_L2PAD))
|
|
rt2x00queue_remove_l2pad(entry->skb, header_length);
|
|
|
|
/* Trim buffer to correct size */
|
|
skb_trim(entry->skb, rxdesc.size);
|
|
|
|
/*
|
|
* Translate the signal to the correct bitrate index.
|
|
*/
|
|
rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
|
|
if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
|
|
rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
|
|
rxdesc.flags |= RX_FLAG_HT;
|
|
|
|
/*
|
|
* Check if this is a beacon, and more frames have been
|
|
* buffered while we were in powersaving mode.
|
|
*/
|
|
rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
|
|
|
|
/*
|
|
* Check for incoming BlockAcks to match to the BlockAckReqs
|
|
* we've send out.
|
|
*/
|
|
rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
|
|
|
|
/*
|
|
* Update extra components
|
|
*/
|
|
rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
|
|
rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
|
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
|
|
|
|
/*
|
|
* Initialize RX status information, and send frame
|
|
* to mac80211.
|
|
*/
|
|
rx_status = IEEE80211_SKB_RXCB(entry->skb);
|
|
|
|
/* Ensure that all fields of rx_status are initialized
|
|
* properly. The skb->cb array was used for driver
|
|
* specific informations, so rx_status might contain
|
|
* garbage.
|
|
*/
|
|
memset(rx_status, 0, sizeof(*rx_status));
|
|
|
|
rx_status->mactime = rxdesc.timestamp;
|
|
rx_status->band = rt2x00dev->curr_band;
|
|
rx_status->freq = rt2x00dev->curr_freq;
|
|
rx_status->rate_idx = rate_idx;
|
|
rx_status->signal = rxdesc.rssi;
|
|
rx_status->flag = rxdesc.flags;
|
|
rx_status->antenna = rt2x00dev->link.ant.active.rx;
|
|
|
|
ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
|
|
|
|
renew_skb:
|
|
/*
|
|
* Replace the skb with the freshly allocated one.
|
|
*/
|
|
entry->skb = skb;
|
|
|
|
submit_entry:
|
|
entry->flags = 0;
|
|
rt2x00queue_index_inc(entry, Q_INDEX_DONE);
|
|
if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
|
|
test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
rt2x00dev->ops->lib->clear_entry(entry);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
|
|
|
|
/*
|
|
* Driver initialization handlers.
|
|
*/
|
|
const struct rt2x00_rate rt2x00_supported_rates[12] = {
|
|
{
|
|
.flags = DEV_RATE_CCK,
|
|
.bitrate = 10,
|
|
.ratemask = BIT(0),
|
|
.plcp = 0x00,
|
|
.mcs = RATE_MCS(RATE_MODE_CCK, 0),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
|
.bitrate = 20,
|
|
.ratemask = BIT(1),
|
|
.plcp = 0x01,
|
|
.mcs = RATE_MCS(RATE_MODE_CCK, 1),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
|
.bitrate = 55,
|
|
.ratemask = BIT(2),
|
|
.plcp = 0x02,
|
|
.mcs = RATE_MCS(RATE_MODE_CCK, 2),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
|
.bitrate = 110,
|
|
.ratemask = BIT(3),
|
|
.plcp = 0x03,
|
|
.mcs = RATE_MCS(RATE_MODE_CCK, 3),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 60,
|
|
.ratemask = BIT(4),
|
|
.plcp = 0x0b,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 90,
|
|
.ratemask = BIT(5),
|
|
.plcp = 0x0f,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 120,
|
|
.ratemask = BIT(6),
|
|
.plcp = 0x0a,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 180,
|
|
.ratemask = BIT(7),
|
|
.plcp = 0x0e,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 240,
|
|
.ratemask = BIT(8),
|
|
.plcp = 0x09,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 360,
|
|
.ratemask = BIT(9),
|
|
.plcp = 0x0d,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 480,
|
|
.ratemask = BIT(10),
|
|
.plcp = 0x08,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 540,
|
|
.ratemask = BIT(11),
|
|
.plcp = 0x0c,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
|
|
},
|
|
};
|
|
|
|
static void rt2x00lib_channel(struct ieee80211_channel *entry,
|
|
const int channel, const int tx_power,
|
|
const int value)
|
|
{
|
|
/* XXX: this assumption about the band is wrong for 802.11j */
|
|
entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
|
|
entry->center_freq = ieee80211_channel_to_frequency(channel,
|
|
entry->band);
|
|
entry->hw_value = value;
|
|
entry->max_power = tx_power;
|
|
entry->max_antenna_gain = 0xff;
|
|
}
|
|
|
|
static void rt2x00lib_rate(struct ieee80211_rate *entry,
|
|
const u16 index, const struct rt2x00_rate *rate)
|
|
{
|
|
entry->flags = 0;
|
|
entry->bitrate = rate->bitrate;
|
|
entry->hw_value = index;
|
|
entry->hw_value_short = index;
|
|
|
|
if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
|
|
entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
|
|
}
|
|
|
|
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
|
|
struct hw_mode_spec *spec)
|
|
{
|
|
struct ieee80211_hw *hw = rt2x00dev->hw;
|
|
struct ieee80211_channel *channels;
|
|
struct ieee80211_rate *rates;
|
|
unsigned int num_rates;
|
|
unsigned int i;
|
|
|
|
num_rates = 0;
|
|
if (spec->supported_rates & SUPPORT_RATE_CCK)
|
|
num_rates += 4;
|
|
if (spec->supported_rates & SUPPORT_RATE_OFDM)
|
|
num_rates += 8;
|
|
|
|
channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
|
|
if (!channels)
|
|
return -ENOMEM;
|
|
|
|
rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
|
|
if (!rates)
|
|
goto exit_free_channels;
|
|
|
|
/*
|
|
* Initialize Rate list.
|
|
*/
|
|
for (i = 0; i < num_rates; i++)
|
|
rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
|
|
|
|
/*
|
|
* Initialize Channel list.
|
|
*/
|
|
for (i = 0; i < spec->num_channels; i++) {
|
|
rt2x00lib_channel(&channels[i],
|
|
spec->channels[i].channel,
|
|
spec->channels_info[i].max_power, i);
|
|
}
|
|
|
|
/*
|
|
* Intitialize 802.11b, 802.11g
|
|
* Rates: CCK, OFDM.
|
|
* Channels: 2.4 GHz
|
|
*/
|
|
if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
|
|
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
|
|
&rt2x00dev->bands[IEEE80211_BAND_2GHZ];
|
|
memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
|
|
&spec->ht, sizeof(spec->ht));
|
|
}
|
|
|
|
/*
|
|
* Intitialize 802.11a
|
|
* Rates: OFDM.
|
|
* Channels: OFDM, UNII, HiperLAN2.
|
|
*/
|
|
if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
|
|
spec->num_channels - 14;
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
|
|
num_rates - 4;
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
|
|
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
|
|
&rt2x00dev->bands[IEEE80211_BAND_5GHZ];
|
|
memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
|
|
&spec->ht, sizeof(spec->ht));
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit_free_channels:
|
|
kfree(channels);
|
|
rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
|
|
ieee80211_unregister_hw(rt2x00dev->hw);
|
|
|
|
if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
|
|
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
|
|
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
|
|
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
|
|
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
|
|
}
|
|
|
|
kfree(rt2x00dev->spec.channels_info);
|
|
}
|
|
|
|
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
|
int status;
|
|
|
|
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Initialize HW modes.
|
|
*/
|
|
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Initialize HW fields.
|
|
*/
|
|
rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
|
|
|
|
/*
|
|
* Initialize extra TX headroom required.
|
|
*/
|
|
rt2x00dev->hw->extra_tx_headroom =
|
|
max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
|
|
rt2x00dev->extra_tx_headroom);
|
|
|
|
/*
|
|
* Take TX headroom required for alignment into account.
|
|
*/
|
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
|
|
rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
|
|
else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
|
|
rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
|
|
|
|
/*
|
|
* Tell mac80211 about the size of our private STA structure.
|
|
*/
|
|
rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
|
|
|
|
/*
|
|
* Allocate tx status FIFO for driver use.
|
|
*/
|
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
|
|
/*
|
|
* Allocate the txstatus fifo. In the worst case the tx
|
|
* status fifo has to hold the tx status of all entries
|
|
* in all tx queues. Hence, calculate the kfifo size as
|
|
* tx_queues * entry_num and round up to the nearest
|
|
* power of 2.
|
|
*/
|
|
int kfifo_size =
|
|
roundup_pow_of_two(rt2x00dev->ops->tx_queues *
|
|
rt2x00dev->tx->limit *
|
|
sizeof(u32));
|
|
|
|
status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
|
|
GFP_KERNEL);
|
|
if (status)
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Initialize tasklets if used by the driver. Tasklets are
|
|
* disabled until the interrupts are turned on. The driver
|
|
* has to handle that.
|
|
*/
|
|
#define RT2X00_TASKLET_INIT(taskletname) \
|
|
if (rt2x00dev->ops->lib->taskletname) { \
|
|
tasklet_init(&rt2x00dev->taskletname, \
|
|
rt2x00dev->ops->lib->taskletname, \
|
|
(unsigned long)rt2x00dev); \
|
|
}
|
|
|
|
RT2X00_TASKLET_INIT(txstatus_tasklet);
|
|
RT2X00_TASKLET_INIT(pretbtt_tasklet);
|
|
RT2X00_TASKLET_INIT(tbtt_tasklet);
|
|
RT2X00_TASKLET_INIT(rxdone_tasklet);
|
|
RT2X00_TASKLET_INIT(autowake_tasklet);
|
|
|
|
#undef RT2X00_TASKLET_INIT
|
|
|
|
/*
|
|
* Register HW.
|
|
*/
|
|
status = ieee80211_register_hw(rt2x00dev->hw);
|
|
if (status)
|
|
return status;
|
|
|
|
set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialization/uninitialization handlers.
|
|
*/
|
|
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Stop rfkill polling.
|
|
*/
|
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
|
|
rt2x00rfkill_unregister(rt2x00dev);
|
|
|
|
/*
|
|
* Allow the HW to uninitialize.
|
|
*/
|
|
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Free allocated queue entries.
|
|
*/
|
|
rt2x00queue_uninitialize(rt2x00dev);
|
|
}
|
|
|
|
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int status;
|
|
|
|
if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Allocate all queue entries.
|
|
*/
|
|
status = rt2x00queue_initialize(rt2x00dev);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Initialize the device.
|
|
*/
|
|
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
|
|
if (status) {
|
|
rt2x00queue_uninitialize(rt2x00dev);
|
|
return status;
|
|
}
|
|
|
|
set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Start rfkill polling.
|
|
*/
|
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
|
|
rt2x00rfkill_register(rt2x00dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
|
|
if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* If this is the first interface which is added,
|
|
* we should load the firmware now.
|
|
*/
|
|
retval = rt2x00lib_load_firmware(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Initialize the device.
|
|
*/
|
|
retval = rt2x00lib_initialize(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
rt2x00dev->intf_ap_count = 0;
|
|
rt2x00dev->intf_sta_count = 0;
|
|
rt2x00dev->intf_associated = 0;
|
|
|
|
/* Enable the radio */
|
|
retval = rt2x00lib_enable_radio(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Perhaps we can add something smarter here,
|
|
* but for now just disabling the radio should do.
|
|
*/
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
|
|
rt2x00dev->intf_ap_count = 0;
|
|
rt2x00dev->intf_sta_count = 0;
|
|
rt2x00dev->intf_associated = 0;
|
|
}
|
|
|
|
static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct ieee80211_iface_limit *if_limit;
|
|
struct ieee80211_iface_combination *if_combination;
|
|
|
|
if (rt2x00dev->ops->max_ap_intf < 2)
|
|
return;
|
|
|
|
/*
|
|
* Build up AP interface limits structure.
|
|
*/
|
|
if_limit = &rt2x00dev->if_limits_ap;
|
|
if_limit->max = rt2x00dev->ops->max_ap_intf;
|
|
if_limit->types = BIT(NL80211_IFTYPE_AP);
|
|
#ifdef CONFIG_MAC80211_MESH
|
|
if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
|
|
#endif
|
|
|
|
/*
|
|
* Build up AP interface combinations structure.
|
|
*/
|
|
if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
|
|
if_combination->limits = if_limit;
|
|
if_combination->n_limits = 1;
|
|
if_combination->max_interfaces = if_limit->max;
|
|
if_combination->num_different_channels = 1;
|
|
|
|
/*
|
|
* Finally, specify the possible combinations to mac80211.
|
|
*/
|
|
rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
|
|
rt2x00dev->hw->wiphy->n_iface_combinations = 1;
|
|
}
|
|
|
|
static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (WARN_ON(!rt2x00dev->tx))
|
|
return 0;
|
|
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
|
|
|
|
return rt2x00dev->tx[0].winfo_size;
|
|
}
|
|
|
|
/*
|
|
* driver allocation handlers.
|
|
*/
|
|
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval = -ENOMEM;
|
|
|
|
/*
|
|
* Set possible interface combinations.
|
|
*/
|
|
rt2x00lib_set_if_combinations(rt2x00dev);
|
|
|
|
/*
|
|
* Allocate the driver data memory, if necessary.
|
|
*/
|
|
if (rt2x00dev->ops->drv_data_size > 0) {
|
|
rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
|
|
GFP_KERNEL);
|
|
if (!rt2x00dev->drv_data) {
|
|
retval = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
spin_lock_init(&rt2x00dev->irqmask_lock);
|
|
mutex_init(&rt2x00dev->csr_mutex);
|
|
INIT_LIST_HEAD(&rt2x00dev->bar_list);
|
|
spin_lock_init(&rt2x00dev->bar_list_lock);
|
|
|
|
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Make room for rt2x00_intf inside the per-interface
|
|
* structure ieee80211_vif.
|
|
*/
|
|
rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
|
|
|
|
/*
|
|
* rt2x00 devices can only use the last n bits of the MAC address
|
|
* for virtual interfaces.
|
|
*/
|
|
rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
|
|
(rt2x00dev->ops->max_ap_intf - 1);
|
|
|
|
/*
|
|
* Initialize work.
|
|
*/
|
|
rt2x00dev->workqueue =
|
|
alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
|
|
if (!rt2x00dev->workqueue) {
|
|
retval = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
|
|
INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
|
|
INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
|
|
INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
|
|
|
|
/*
|
|
* Let the driver probe the device to detect the capabilities.
|
|
*/
|
|
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
|
|
if (retval) {
|
|
rt2x00_err(rt2x00dev, "Failed to allocate device\n");
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* Allocate queue array.
|
|
*/
|
|
retval = rt2x00queue_allocate(rt2x00dev);
|
|
if (retval)
|
|
goto exit;
|
|
|
|
/* Cache TX headroom value */
|
|
rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
|
|
|
|
/*
|
|
* Determine which operating modes are supported, all modes
|
|
* which require beaconing, depend on the availability of
|
|
* beacon entries.
|
|
*/
|
|
rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
|
|
if (rt2x00dev->bcn->limit > 0)
|
|
rt2x00dev->hw->wiphy->interface_modes |=
|
|
BIT(NL80211_IFTYPE_ADHOC) |
|
|
BIT(NL80211_IFTYPE_AP) |
|
|
#ifdef CONFIG_MAC80211_MESH
|
|
BIT(NL80211_IFTYPE_MESH_POINT) |
|
|
#endif
|
|
BIT(NL80211_IFTYPE_WDS);
|
|
|
|
rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
|
|
|
|
/*
|
|
* Initialize ieee80211 structure.
|
|
*/
|
|
retval = rt2x00lib_probe_hw(rt2x00dev);
|
|
if (retval) {
|
|
rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* Register extra components.
|
|
*/
|
|
rt2x00link_register(rt2x00dev);
|
|
rt2x00leds_register(rt2x00dev);
|
|
rt2x00debug_register(rt2x00dev);
|
|
|
|
/*
|
|
* Start rfkill polling.
|
|
*/
|
|
if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
|
|
rt2x00rfkill_register(rt2x00dev);
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
rt2x00lib_remove_dev(rt2x00dev);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
|
|
|
|
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Stop rfkill polling.
|
|
*/
|
|
if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
|
|
rt2x00rfkill_unregister(rt2x00dev);
|
|
|
|
/*
|
|
* Disable radio.
|
|
*/
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
|
|
/*
|
|
* Stop all work.
|
|
*/
|
|
cancel_work_sync(&rt2x00dev->intf_work);
|
|
cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
|
|
cancel_work_sync(&rt2x00dev->sleep_work);
|
|
if (rt2x00_is_usb(rt2x00dev)) {
|
|
hrtimer_cancel(&rt2x00dev->txstatus_timer);
|
|
cancel_work_sync(&rt2x00dev->rxdone_work);
|
|
cancel_work_sync(&rt2x00dev->txdone_work);
|
|
}
|
|
if (rt2x00dev->workqueue)
|
|
destroy_workqueue(rt2x00dev->workqueue);
|
|
|
|
/*
|
|
* Free the tx status fifo.
|
|
*/
|
|
kfifo_free(&rt2x00dev->txstatus_fifo);
|
|
|
|
/*
|
|
* Kill the tx status tasklet.
|
|
*/
|
|
tasklet_kill(&rt2x00dev->txstatus_tasklet);
|
|
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
|
|
tasklet_kill(&rt2x00dev->tbtt_tasklet);
|
|
tasklet_kill(&rt2x00dev->rxdone_tasklet);
|
|
tasklet_kill(&rt2x00dev->autowake_tasklet);
|
|
|
|
/*
|
|
* Uninitialize device.
|
|
*/
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Free extra components
|
|
*/
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
rt2x00leds_unregister(rt2x00dev);
|
|
|
|
/*
|
|
* Free ieee80211_hw memory.
|
|
*/
|
|
rt2x00lib_remove_hw(rt2x00dev);
|
|
|
|
/*
|
|
* Free firmware image.
|
|
*/
|
|
rt2x00lib_free_firmware(rt2x00dev);
|
|
|
|
/*
|
|
* Free queue structures.
|
|
*/
|
|
rt2x00queue_free(rt2x00dev);
|
|
|
|
/*
|
|
* Free the driver data.
|
|
*/
|
|
kfree(rt2x00dev->drv_data);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
|
|
|
|
/*
|
|
* Device state handlers
|
|
*/
|
|
#ifdef CONFIG_PM
|
|
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
|
|
{
|
|
rt2x00_dbg(rt2x00dev, "Going to sleep\n");
|
|
|
|
/*
|
|
* Prevent mac80211 from accessing driver while suspended.
|
|
*/
|
|
if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Cleanup as much as possible.
|
|
*/
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Suspend/disable extra components.
|
|
*/
|
|
rt2x00leds_suspend(rt2x00dev);
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
|
|
/*
|
|
* Set device mode to sleep for power management,
|
|
* on some hardware this call seems to consistently fail.
|
|
* From the specifications it is hard to tell why it fails,
|
|
* and if this is a "bad thing".
|
|
* Overall it is safe to just ignore the failure and
|
|
* continue suspending. The only downside is that the
|
|
* device will not be in optimal power save mode, but with
|
|
* the radio and the other components already disabled the
|
|
* device is as good as disabled.
|
|
*/
|
|
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
|
|
rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
|
|
|
|
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2x00_dbg(rt2x00dev, "Waking up\n");
|
|
|
|
/*
|
|
* Restore/enable extra components.
|
|
*/
|
|
rt2x00debug_register(rt2x00dev);
|
|
rt2x00leds_resume(rt2x00dev);
|
|
|
|
/*
|
|
* We are ready again to receive requests from mac80211.
|
|
*/
|
|
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*
|
|
* rt2x00lib module information.
|
|
*/
|
|
MODULE_AUTHOR(DRV_PROJECT);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("rt2x00 library");
|
|
MODULE_LICENSE("GPL");
|