mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 10:00:03 +07:00
26cd94744e
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlofBpkACgkQxWXV+ddt WDvtTQ//emI1QsD4N0e4BxMcZ1bcigiEk3jc4gj+biRapnMHHAHOqJbVtpK1v8gS PCTw+4uD5UOGvhBtS4kXJn8e2qxWCESWJDXwVlW0RHmWLfwd9z7ly0sBMi3oiIqH qief8CIkk3oTexiuuJ3mZGxqnDQjRGtWx2LM+bRJBWMk+jN32v2ObSlv9V505a5M 1daDBsjWojFWa8d4r3YZNJq1df2om/dwVQZ0Wk59bacIo9Xbvok0X459cOlWuv0p mjx8m8uA/z+HVdkTYlzyKpq08O8Z4shj3GrBbSnZ511gKzV+c9jJPxij5pKm3Z2z KW4Mp17+/7GSNcSsJiqnOYi+wtOrak2lD0COlZTijnY2jrv18h8ianoIM6CpzUdy +b09yuFXbPLoUfyl6vFaO/JHuvAkQdaR2tJbds6lvW+liC1ReoL4W1WcUjY6nv9f 6wTaIv0vwgrHaxeIzxKNpnsTlpHAgorFFk0/w8nLb40WX8AoJ/95lo2zws8oaFDN 0Fylu3NYhoDrJZK+D8dbsWx2eTsFVCqep4w0+iEVZl3lfuy3FZl1pu8CL7ru9vJl DNieh+lUvK1Fk+SYIoilGoriW96RbU8+jPo2W4A1ENzeMJfrNCSWtUSZZp4XT4tO 8m1PGud07XBLSxd62bAEDV3KZO2DnY1WxgXbKuIHSi9D5CI1LMo= =7UW+ -----END PGP SIGNATURE----- Merge tag 'for-4.15-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "We've collected some fixes in since the pre-merge window freeze. There's technically only one regression fix for 4.15, but the rest seems important and candidates for stable. - fix missing flush bio puts in error cases (is serious, but rarely happens) - fix reporting stat::st_blocks for buffered append writes - fix space cache invalidation - fix out of bound memory access when setting zlib level - fix potential memory corruption when fsync fails in the middle - fix crash in integrity checker - incremetnal send fix, path mixup for certain unlink/rename combination - pass flags to writeback so compressed writes can be throttled properly - error handling fixes" * tag 'for-4.15-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Btrfs: incremental send, fix wrong unlink path after renaming file btrfs: tree-checker: Fix false panic for sanity test Btrfs: fix list_add corruption and soft lockups in fsync btrfs: Fix wild memory access in compression level parser btrfs: fix deadlock when writing out space cache btrfs: clear space cache inode generation always Btrfs: fix reported number of inode blocks after buffered append writes Btrfs: move definition of the function btrfs_find_new_delalloc_bytes Btrfs: bail out gracefully rather than BUG_ON btrfs: dev_alloc_list is not protected by RCU, use normal list_del btrfs: add missing device::flush_bio puts btrfs: Fix transaction abort during failure in btrfs_rm_dev_item Btrfs: add write_flags for compression bio
2477 lines
64 KiB
C
2477 lines
64 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/module.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/init.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/string.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/statfs.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/parser.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cleancache.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/btrfs.h>
|
|
#include "delayed-inode.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "print-tree.h"
|
|
#include "hash.h"
|
|
#include "props.h"
|
|
#include "xattr.h"
|
|
#include "volumes.h"
|
|
#include "export.h"
|
|
#include "compression.h"
|
|
#include "rcu-string.h"
|
|
#include "dev-replace.h"
|
|
#include "free-space-cache.h"
|
|
#include "backref.h"
|
|
#include "tests/btrfs-tests.h"
|
|
|
|
#include "qgroup.h"
|
|
#include "backref.h"
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/btrfs.h>
|
|
|
|
static const struct super_operations btrfs_super_ops;
|
|
static struct file_system_type btrfs_fs_type;
|
|
|
|
static int btrfs_remount(struct super_block *sb, int *flags, char *data);
|
|
|
|
const char *btrfs_decode_error(int errno)
|
|
{
|
|
char *errstr = "unknown";
|
|
|
|
switch (errno) {
|
|
case -EIO:
|
|
errstr = "IO failure";
|
|
break;
|
|
case -ENOMEM:
|
|
errstr = "Out of memory";
|
|
break;
|
|
case -EROFS:
|
|
errstr = "Readonly filesystem";
|
|
break;
|
|
case -EEXIST:
|
|
errstr = "Object already exists";
|
|
break;
|
|
case -ENOSPC:
|
|
errstr = "No space left";
|
|
break;
|
|
case -ENOENT:
|
|
errstr = "No such entry";
|
|
break;
|
|
}
|
|
|
|
return errstr;
|
|
}
|
|
|
|
/* btrfs handle error by forcing the filesystem readonly */
|
|
static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct super_block *sb = fs_info->sb;
|
|
|
|
if (sb_rdonly(sb))
|
|
return;
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
sb->s_flags |= SB_RDONLY;
|
|
btrfs_info(fs_info, "forced readonly");
|
|
/*
|
|
* Note that a running device replace operation is not
|
|
* canceled here although there is no way to update
|
|
* the progress. It would add the risk of a deadlock,
|
|
* therefore the canceling is omitted. The only penalty
|
|
* is that some I/O remains active until the procedure
|
|
* completes. The next time when the filesystem is
|
|
* mounted writeable again, the device replace
|
|
* operation continues.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* __btrfs_handle_fs_error decodes expected errors from the caller and
|
|
* invokes the approciate error response.
|
|
*/
|
|
__cold
|
|
void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
|
|
unsigned int line, int errno, const char *fmt, ...)
|
|
{
|
|
struct super_block *sb = fs_info->sb;
|
|
#ifdef CONFIG_PRINTK
|
|
const char *errstr;
|
|
#endif
|
|
|
|
/*
|
|
* Special case: if the error is EROFS, and we're already
|
|
* under SB_RDONLY, then it is safe here.
|
|
*/
|
|
if (errno == -EROFS && sb_rdonly(sb))
|
|
return;
|
|
|
|
#ifdef CONFIG_PRINTK
|
|
errstr = btrfs_decode_error(errno);
|
|
if (fmt) {
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
|
|
sb->s_id, function, line, errno, errstr, &vaf);
|
|
va_end(args);
|
|
} else {
|
|
pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
|
|
sb->s_id, function, line, errno, errstr);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Today we only save the error info to memory. Long term we'll
|
|
* also send it down to the disk
|
|
*/
|
|
set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
|
|
|
|
/* Don't go through full error handling during mount */
|
|
if (sb->s_flags & SB_BORN)
|
|
btrfs_handle_error(fs_info);
|
|
}
|
|
|
|
#ifdef CONFIG_PRINTK
|
|
static const char * const logtypes[] = {
|
|
"emergency",
|
|
"alert",
|
|
"critical",
|
|
"error",
|
|
"warning",
|
|
"notice",
|
|
"info",
|
|
"debug",
|
|
};
|
|
|
|
|
|
/*
|
|
* Use one ratelimit state per log level so that a flood of less important
|
|
* messages doesn't cause more important ones to be dropped.
|
|
*/
|
|
static struct ratelimit_state printk_limits[] = {
|
|
RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
|
|
RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
|
|
RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
|
|
RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
|
|
RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
|
|
RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
|
|
RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
|
|
RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
|
|
};
|
|
|
|
void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
|
|
{
|
|
char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
|
|
struct va_format vaf;
|
|
va_list args;
|
|
int kern_level;
|
|
const char *type = logtypes[4];
|
|
struct ratelimit_state *ratelimit = &printk_limits[4];
|
|
|
|
va_start(args, fmt);
|
|
|
|
while ((kern_level = printk_get_level(fmt)) != 0) {
|
|
size_t size = printk_skip_level(fmt) - fmt;
|
|
|
|
if (kern_level >= '0' && kern_level <= '7') {
|
|
memcpy(lvl, fmt, size);
|
|
lvl[size] = '\0';
|
|
type = logtypes[kern_level - '0'];
|
|
ratelimit = &printk_limits[kern_level - '0'];
|
|
}
|
|
fmt += size;
|
|
}
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
if (__ratelimit(ratelimit))
|
|
printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
|
|
fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
|
|
|
|
va_end(args);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We only mark the transaction aborted and then set the file system read-only.
|
|
* This will prevent new transactions from starting or trying to join this
|
|
* one.
|
|
*
|
|
* This means that error recovery at the call site is limited to freeing
|
|
* any local memory allocations and passing the error code up without
|
|
* further cleanup. The transaction should complete as it normally would
|
|
* in the call path but will return -EIO.
|
|
*
|
|
* We'll complete the cleanup in btrfs_end_transaction and
|
|
* btrfs_commit_transaction.
|
|
*/
|
|
__cold
|
|
void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
|
|
const char *function,
|
|
unsigned int line, int errno)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
|
|
trans->aborted = errno;
|
|
/* Nothing used. The other threads that have joined this
|
|
* transaction may be able to continue. */
|
|
if (!trans->dirty && list_empty(&trans->new_bgs)) {
|
|
const char *errstr;
|
|
|
|
errstr = btrfs_decode_error(errno);
|
|
btrfs_warn(fs_info,
|
|
"%s:%d: Aborting unused transaction(%s).",
|
|
function, line, errstr);
|
|
return;
|
|
}
|
|
WRITE_ONCE(trans->transaction->aborted, errno);
|
|
/* Wake up anybody who may be waiting on this transaction */
|
|
wake_up(&fs_info->transaction_wait);
|
|
wake_up(&fs_info->transaction_blocked_wait);
|
|
__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
|
|
}
|
|
/*
|
|
* __btrfs_panic decodes unexpected, fatal errors from the caller,
|
|
* issues an alert, and either panics or BUGs, depending on mount options.
|
|
*/
|
|
__cold
|
|
void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
|
|
unsigned int line, int errno, const char *fmt, ...)
|
|
{
|
|
char *s_id = "<unknown>";
|
|
const char *errstr;
|
|
struct va_format vaf = { .fmt = fmt };
|
|
va_list args;
|
|
|
|
if (fs_info)
|
|
s_id = fs_info->sb->s_id;
|
|
|
|
va_start(args, fmt);
|
|
vaf.va = &args;
|
|
|
|
errstr = btrfs_decode_error(errno);
|
|
if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
|
|
panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
|
|
s_id, function, line, &vaf, errno, errstr);
|
|
|
|
btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
|
|
function, line, &vaf, errno, errstr);
|
|
va_end(args);
|
|
/* Caller calls BUG() */
|
|
}
|
|
|
|
static void btrfs_put_super(struct super_block *sb)
|
|
{
|
|
close_ctree(btrfs_sb(sb));
|
|
}
|
|
|
|
enum {
|
|
Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
|
|
Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
|
|
Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
|
|
Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
|
|
Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
|
|
Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
|
|
Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
|
|
Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
|
|
Opt_skip_balance, Opt_check_integrity,
|
|
Opt_check_integrity_including_extent_data,
|
|
Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
|
|
Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
|
|
Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
|
|
Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
|
|
Opt_nologreplay, Opt_norecovery,
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
|
|
#endif
|
|
#ifdef CONFIG_BTRFS_FS_REF_VERIFY
|
|
Opt_ref_verify,
|
|
#endif
|
|
Opt_err,
|
|
};
|
|
|
|
static const match_table_t tokens = {
|
|
{Opt_degraded, "degraded"},
|
|
{Opt_subvol, "subvol=%s"},
|
|
{Opt_subvolid, "subvolid=%s"},
|
|
{Opt_device, "device=%s"},
|
|
{Opt_nodatasum, "nodatasum"},
|
|
{Opt_datasum, "datasum"},
|
|
{Opt_nodatacow, "nodatacow"},
|
|
{Opt_datacow, "datacow"},
|
|
{Opt_nobarrier, "nobarrier"},
|
|
{Opt_barrier, "barrier"},
|
|
{Opt_max_inline, "max_inline=%s"},
|
|
{Opt_alloc_start, "alloc_start=%s"},
|
|
{Opt_thread_pool, "thread_pool=%d"},
|
|
{Opt_compress, "compress"},
|
|
{Opt_compress_type, "compress=%s"},
|
|
{Opt_compress_force, "compress-force"},
|
|
{Opt_compress_force_type, "compress-force=%s"},
|
|
{Opt_ssd, "ssd"},
|
|
{Opt_ssd_spread, "ssd_spread"},
|
|
{Opt_nossd, "nossd"},
|
|
{Opt_acl, "acl"},
|
|
{Opt_noacl, "noacl"},
|
|
{Opt_notreelog, "notreelog"},
|
|
{Opt_treelog, "treelog"},
|
|
{Opt_nologreplay, "nologreplay"},
|
|
{Opt_norecovery, "norecovery"},
|
|
{Opt_flushoncommit, "flushoncommit"},
|
|
{Opt_noflushoncommit, "noflushoncommit"},
|
|
{Opt_ratio, "metadata_ratio=%d"},
|
|
{Opt_discard, "discard"},
|
|
{Opt_nodiscard, "nodiscard"},
|
|
{Opt_space_cache, "space_cache"},
|
|
{Opt_space_cache_version, "space_cache=%s"},
|
|
{Opt_clear_cache, "clear_cache"},
|
|
{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
|
|
{Opt_enospc_debug, "enospc_debug"},
|
|
{Opt_noenospc_debug, "noenospc_debug"},
|
|
{Opt_subvolrootid, "subvolrootid=%d"},
|
|
{Opt_defrag, "autodefrag"},
|
|
{Opt_nodefrag, "noautodefrag"},
|
|
{Opt_inode_cache, "inode_cache"},
|
|
{Opt_noinode_cache, "noinode_cache"},
|
|
{Opt_no_space_cache, "nospace_cache"},
|
|
{Opt_recovery, "recovery"}, /* deprecated */
|
|
{Opt_usebackuproot, "usebackuproot"},
|
|
{Opt_skip_balance, "skip_balance"},
|
|
{Opt_check_integrity, "check_int"},
|
|
{Opt_check_integrity_including_extent_data, "check_int_data"},
|
|
{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
|
|
{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
|
|
{Opt_fatal_errors, "fatal_errors=%s"},
|
|
{Opt_commit_interval, "commit=%d"},
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
{Opt_fragment_data, "fragment=data"},
|
|
{Opt_fragment_metadata, "fragment=metadata"},
|
|
{Opt_fragment_all, "fragment=all"},
|
|
#endif
|
|
#ifdef CONFIG_BTRFS_FS_REF_VERIFY
|
|
{Opt_ref_verify, "ref_verify"},
|
|
#endif
|
|
{Opt_err, NULL},
|
|
};
|
|
|
|
/*
|
|
* Regular mount options parser. Everything that is needed only when
|
|
* reading in a new superblock is parsed here.
|
|
* XXX JDM: This needs to be cleaned up for remount.
|
|
*/
|
|
int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
|
|
unsigned long new_flags)
|
|
{
|
|
substring_t args[MAX_OPT_ARGS];
|
|
char *p, *num, *orig = NULL;
|
|
u64 cache_gen;
|
|
int intarg;
|
|
int ret = 0;
|
|
char *compress_type;
|
|
bool compress_force = false;
|
|
enum btrfs_compression_type saved_compress_type;
|
|
bool saved_compress_force;
|
|
int no_compress = 0;
|
|
|
|
cache_gen = btrfs_super_cache_generation(info->super_copy);
|
|
if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
|
|
btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
|
|
else if (cache_gen)
|
|
btrfs_set_opt(info->mount_opt, SPACE_CACHE);
|
|
|
|
/*
|
|
* Even the options are empty, we still need to do extra check
|
|
* against new flags
|
|
*/
|
|
if (!options)
|
|
goto check;
|
|
|
|
/*
|
|
* strsep changes the string, duplicate it because parse_options
|
|
* gets called twice
|
|
*/
|
|
options = kstrdup(options, GFP_KERNEL);
|
|
if (!options)
|
|
return -ENOMEM;
|
|
|
|
orig = options;
|
|
|
|
while ((p = strsep(&options, ",")) != NULL) {
|
|
int token;
|
|
if (!*p)
|
|
continue;
|
|
|
|
token = match_token(p, tokens, args);
|
|
switch (token) {
|
|
case Opt_degraded:
|
|
btrfs_info(info, "allowing degraded mounts");
|
|
btrfs_set_opt(info->mount_opt, DEGRADED);
|
|
break;
|
|
case Opt_subvol:
|
|
case Opt_subvolid:
|
|
case Opt_subvolrootid:
|
|
case Opt_device:
|
|
/*
|
|
* These are parsed by btrfs_parse_early_options
|
|
* and can be happily ignored here.
|
|
*/
|
|
break;
|
|
case Opt_nodatasum:
|
|
btrfs_set_and_info(info, NODATASUM,
|
|
"setting nodatasum");
|
|
break;
|
|
case Opt_datasum:
|
|
if (btrfs_test_opt(info, NODATASUM)) {
|
|
if (btrfs_test_opt(info, NODATACOW))
|
|
btrfs_info(info,
|
|
"setting datasum, datacow enabled");
|
|
else
|
|
btrfs_info(info, "setting datasum");
|
|
}
|
|
btrfs_clear_opt(info->mount_opt, NODATACOW);
|
|
btrfs_clear_opt(info->mount_opt, NODATASUM);
|
|
break;
|
|
case Opt_nodatacow:
|
|
if (!btrfs_test_opt(info, NODATACOW)) {
|
|
if (!btrfs_test_opt(info, COMPRESS) ||
|
|
!btrfs_test_opt(info, FORCE_COMPRESS)) {
|
|
btrfs_info(info,
|
|
"setting nodatacow, compression disabled");
|
|
} else {
|
|
btrfs_info(info, "setting nodatacow");
|
|
}
|
|
}
|
|
btrfs_clear_opt(info->mount_opt, COMPRESS);
|
|
btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
|
|
btrfs_set_opt(info->mount_opt, NODATACOW);
|
|
btrfs_set_opt(info->mount_opt, NODATASUM);
|
|
break;
|
|
case Opt_datacow:
|
|
btrfs_clear_and_info(info, NODATACOW,
|
|
"setting datacow");
|
|
break;
|
|
case Opt_compress_force:
|
|
case Opt_compress_force_type:
|
|
compress_force = true;
|
|
/* Fallthrough */
|
|
case Opt_compress:
|
|
case Opt_compress_type:
|
|
saved_compress_type = btrfs_test_opt(info,
|
|
COMPRESS) ?
|
|
info->compress_type : BTRFS_COMPRESS_NONE;
|
|
saved_compress_force =
|
|
btrfs_test_opt(info, FORCE_COMPRESS);
|
|
if (token == Opt_compress ||
|
|
token == Opt_compress_force ||
|
|
strncmp(args[0].from, "zlib", 4) == 0) {
|
|
compress_type = "zlib";
|
|
|
|
info->compress_type = BTRFS_COMPRESS_ZLIB;
|
|
info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
|
|
/*
|
|
* args[0] contains uninitialized data since
|
|
* for these tokens we don't expect any
|
|
* parameter.
|
|
*/
|
|
if (token != Opt_compress &&
|
|
token != Opt_compress_force)
|
|
info->compress_level =
|
|
btrfs_compress_str2level(args[0].from);
|
|
btrfs_set_opt(info->mount_opt, COMPRESS);
|
|
btrfs_clear_opt(info->mount_opt, NODATACOW);
|
|
btrfs_clear_opt(info->mount_opt, NODATASUM);
|
|
no_compress = 0;
|
|
} else if (strncmp(args[0].from, "lzo", 3) == 0) {
|
|
compress_type = "lzo";
|
|
info->compress_type = BTRFS_COMPRESS_LZO;
|
|
btrfs_set_opt(info->mount_opt, COMPRESS);
|
|
btrfs_clear_opt(info->mount_opt, NODATACOW);
|
|
btrfs_clear_opt(info->mount_opt, NODATASUM);
|
|
btrfs_set_fs_incompat(info, COMPRESS_LZO);
|
|
no_compress = 0;
|
|
} else if (strcmp(args[0].from, "zstd") == 0) {
|
|
compress_type = "zstd";
|
|
info->compress_type = BTRFS_COMPRESS_ZSTD;
|
|
btrfs_set_opt(info->mount_opt, COMPRESS);
|
|
btrfs_clear_opt(info->mount_opt, NODATACOW);
|
|
btrfs_clear_opt(info->mount_opt, NODATASUM);
|
|
btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
|
|
no_compress = 0;
|
|
} else if (strncmp(args[0].from, "no", 2) == 0) {
|
|
compress_type = "no";
|
|
btrfs_clear_opt(info->mount_opt, COMPRESS);
|
|
btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
|
|
compress_force = false;
|
|
no_compress++;
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (compress_force) {
|
|
btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
|
|
} else {
|
|
/*
|
|
* If we remount from compress-force=xxx to
|
|
* compress=xxx, we need clear FORCE_COMPRESS
|
|
* flag, otherwise, there is no way for users
|
|
* to disable forcible compression separately.
|
|
*/
|
|
btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
|
|
}
|
|
if ((btrfs_test_opt(info, COMPRESS) &&
|
|
(info->compress_type != saved_compress_type ||
|
|
compress_force != saved_compress_force)) ||
|
|
(!btrfs_test_opt(info, COMPRESS) &&
|
|
no_compress == 1)) {
|
|
btrfs_info(info, "%s %s compression, level %d",
|
|
(compress_force) ? "force" : "use",
|
|
compress_type, info->compress_level);
|
|
}
|
|
compress_force = false;
|
|
break;
|
|
case Opt_ssd:
|
|
btrfs_set_and_info(info, SSD,
|
|
"enabling ssd optimizations");
|
|
btrfs_clear_opt(info->mount_opt, NOSSD);
|
|
break;
|
|
case Opt_ssd_spread:
|
|
btrfs_set_and_info(info, SSD,
|
|
"enabling ssd optimizations");
|
|
btrfs_set_and_info(info, SSD_SPREAD,
|
|
"using spread ssd allocation scheme");
|
|
btrfs_clear_opt(info->mount_opt, NOSSD);
|
|
break;
|
|
case Opt_nossd:
|
|
btrfs_set_opt(info->mount_opt, NOSSD);
|
|
btrfs_clear_and_info(info, SSD,
|
|
"not using ssd optimizations");
|
|
btrfs_clear_and_info(info, SSD_SPREAD,
|
|
"not using spread ssd allocation scheme");
|
|
break;
|
|
case Opt_barrier:
|
|
btrfs_clear_and_info(info, NOBARRIER,
|
|
"turning on barriers");
|
|
break;
|
|
case Opt_nobarrier:
|
|
btrfs_set_and_info(info, NOBARRIER,
|
|
"turning off barriers");
|
|
break;
|
|
case Opt_thread_pool:
|
|
ret = match_int(&args[0], &intarg);
|
|
if (ret) {
|
|
goto out;
|
|
} else if (intarg > 0) {
|
|
info->thread_pool_size = intarg;
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
case Opt_max_inline:
|
|
num = match_strdup(&args[0]);
|
|
if (num) {
|
|
info->max_inline = memparse(num, NULL);
|
|
kfree(num);
|
|
|
|
if (info->max_inline) {
|
|
info->max_inline = min_t(u64,
|
|
info->max_inline,
|
|
info->sectorsize);
|
|
}
|
|
btrfs_info(info, "max_inline at %llu",
|
|
info->max_inline);
|
|
} else {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
break;
|
|
case Opt_alloc_start:
|
|
btrfs_info(info,
|
|
"option alloc_start is obsolete, ignored");
|
|
break;
|
|
case Opt_acl:
|
|
#ifdef CONFIG_BTRFS_FS_POSIX_ACL
|
|
info->sb->s_flags |= SB_POSIXACL;
|
|
break;
|
|
#else
|
|
btrfs_err(info, "support for ACL not compiled in!");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
#endif
|
|
case Opt_noacl:
|
|
info->sb->s_flags &= ~SB_POSIXACL;
|
|
break;
|
|
case Opt_notreelog:
|
|
btrfs_set_and_info(info, NOTREELOG,
|
|
"disabling tree log");
|
|
break;
|
|
case Opt_treelog:
|
|
btrfs_clear_and_info(info, NOTREELOG,
|
|
"enabling tree log");
|
|
break;
|
|
case Opt_norecovery:
|
|
case Opt_nologreplay:
|
|
btrfs_set_and_info(info, NOLOGREPLAY,
|
|
"disabling log replay at mount time");
|
|
break;
|
|
case Opt_flushoncommit:
|
|
btrfs_set_and_info(info, FLUSHONCOMMIT,
|
|
"turning on flush-on-commit");
|
|
break;
|
|
case Opt_noflushoncommit:
|
|
btrfs_clear_and_info(info, FLUSHONCOMMIT,
|
|
"turning off flush-on-commit");
|
|
break;
|
|
case Opt_ratio:
|
|
ret = match_int(&args[0], &intarg);
|
|
if (ret) {
|
|
goto out;
|
|
} else if (intarg >= 0) {
|
|
info->metadata_ratio = intarg;
|
|
btrfs_info(info, "metadata ratio %d",
|
|
info->metadata_ratio);
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
case Opt_discard:
|
|
btrfs_set_and_info(info, DISCARD,
|
|
"turning on discard");
|
|
break;
|
|
case Opt_nodiscard:
|
|
btrfs_clear_and_info(info, DISCARD,
|
|
"turning off discard");
|
|
break;
|
|
case Opt_space_cache:
|
|
case Opt_space_cache_version:
|
|
if (token == Opt_space_cache ||
|
|
strcmp(args[0].from, "v1") == 0) {
|
|
btrfs_clear_opt(info->mount_opt,
|
|
FREE_SPACE_TREE);
|
|
btrfs_set_and_info(info, SPACE_CACHE,
|
|
"enabling disk space caching");
|
|
} else if (strcmp(args[0].from, "v2") == 0) {
|
|
btrfs_clear_opt(info->mount_opt,
|
|
SPACE_CACHE);
|
|
btrfs_set_and_info(info, FREE_SPACE_TREE,
|
|
"enabling free space tree");
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
case Opt_rescan_uuid_tree:
|
|
btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
|
|
break;
|
|
case Opt_no_space_cache:
|
|
if (btrfs_test_opt(info, SPACE_CACHE)) {
|
|
btrfs_clear_and_info(info, SPACE_CACHE,
|
|
"disabling disk space caching");
|
|
}
|
|
if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
|
|
btrfs_clear_and_info(info, FREE_SPACE_TREE,
|
|
"disabling free space tree");
|
|
}
|
|
break;
|
|
case Opt_inode_cache:
|
|
btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
|
|
"enabling inode map caching");
|
|
break;
|
|
case Opt_noinode_cache:
|
|
btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
|
|
"disabling inode map caching");
|
|
break;
|
|
case Opt_clear_cache:
|
|
btrfs_set_and_info(info, CLEAR_CACHE,
|
|
"force clearing of disk cache");
|
|
break;
|
|
case Opt_user_subvol_rm_allowed:
|
|
btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
|
|
break;
|
|
case Opt_enospc_debug:
|
|
btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
|
|
break;
|
|
case Opt_noenospc_debug:
|
|
btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
|
|
break;
|
|
case Opt_defrag:
|
|
btrfs_set_and_info(info, AUTO_DEFRAG,
|
|
"enabling auto defrag");
|
|
break;
|
|
case Opt_nodefrag:
|
|
btrfs_clear_and_info(info, AUTO_DEFRAG,
|
|
"disabling auto defrag");
|
|
break;
|
|
case Opt_recovery:
|
|
btrfs_warn(info,
|
|
"'recovery' is deprecated, use 'usebackuproot' instead");
|
|
case Opt_usebackuproot:
|
|
btrfs_info(info,
|
|
"trying to use backup root at mount time");
|
|
btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
|
|
break;
|
|
case Opt_skip_balance:
|
|
btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
|
|
break;
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
case Opt_check_integrity_including_extent_data:
|
|
btrfs_info(info,
|
|
"enabling check integrity including extent data");
|
|
btrfs_set_opt(info->mount_opt,
|
|
CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
|
|
btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
|
|
break;
|
|
case Opt_check_integrity:
|
|
btrfs_info(info, "enabling check integrity");
|
|
btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
|
|
break;
|
|
case Opt_check_integrity_print_mask:
|
|
ret = match_int(&args[0], &intarg);
|
|
if (ret) {
|
|
goto out;
|
|
} else if (intarg >= 0) {
|
|
info->check_integrity_print_mask = intarg;
|
|
btrfs_info(info,
|
|
"check_integrity_print_mask 0x%x",
|
|
info->check_integrity_print_mask);
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
#else
|
|
case Opt_check_integrity_including_extent_data:
|
|
case Opt_check_integrity:
|
|
case Opt_check_integrity_print_mask:
|
|
btrfs_err(info,
|
|
"support for check_integrity* not compiled in!");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
#endif
|
|
case Opt_fatal_errors:
|
|
if (strcmp(args[0].from, "panic") == 0)
|
|
btrfs_set_opt(info->mount_opt,
|
|
PANIC_ON_FATAL_ERROR);
|
|
else if (strcmp(args[0].from, "bug") == 0)
|
|
btrfs_clear_opt(info->mount_opt,
|
|
PANIC_ON_FATAL_ERROR);
|
|
else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
case Opt_commit_interval:
|
|
intarg = 0;
|
|
ret = match_int(&args[0], &intarg);
|
|
if (ret < 0) {
|
|
btrfs_err(info, "invalid commit interval");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (intarg > 0) {
|
|
if (intarg > 300) {
|
|
btrfs_warn(info,
|
|
"excessive commit interval %d",
|
|
intarg);
|
|
}
|
|
info->commit_interval = intarg;
|
|
} else {
|
|
btrfs_info(info,
|
|
"using default commit interval %ds",
|
|
BTRFS_DEFAULT_COMMIT_INTERVAL);
|
|
info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
|
|
}
|
|
break;
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
case Opt_fragment_all:
|
|
btrfs_info(info, "fragmenting all space");
|
|
btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
|
|
btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
|
|
break;
|
|
case Opt_fragment_metadata:
|
|
btrfs_info(info, "fragmenting metadata");
|
|
btrfs_set_opt(info->mount_opt,
|
|
FRAGMENT_METADATA);
|
|
break;
|
|
case Opt_fragment_data:
|
|
btrfs_info(info, "fragmenting data");
|
|
btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_BTRFS_FS_REF_VERIFY
|
|
case Opt_ref_verify:
|
|
btrfs_info(info, "doing ref verification");
|
|
btrfs_set_opt(info->mount_opt, REF_VERIFY);
|
|
break;
|
|
#endif
|
|
case Opt_err:
|
|
btrfs_info(info, "unrecognized mount option '%s'", p);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
check:
|
|
/*
|
|
* Extra check for current option against current flag
|
|
*/
|
|
if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
|
|
btrfs_err(info,
|
|
"nologreplay must be used with ro mount option");
|
|
ret = -EINVAL;
|
|
}
|
|
out:
|
|
if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
|
|
!btrfs_test_opt(info, FREE_SPACE_TREE) &&
|
|
!btrfs_test_opt(info, CLEAR_CACHE)) {
|
|
btrfs_err(info, "cannot disable free space tree");
|
|
ret = -EINVAL;
|
|
|
|
}
|
|
if (!ret && btrfs_test_opt(info, SPACE_CACHE))
|
|
btrfs_info(info, "disk space caching is enabled");
|
|
if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
|
|
btrfs_info(info, "using free space tree");
|
|
kfree(orig);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Parse mount options that are required early in the mount process.
|
|
*
|
|
* All other options will be parsed on much later in the mount process and
|
|
* only when we need to allocate a new super block.
|
|
*/
|
|
static int btrfs_parse_early_options(const char *options, fmode_t flags,
|
|
void *holder, char **subvol_name, u64 *subvol_objectid,
|
|
struct btrfs_fs_devices **fs_devices)
|
|
{
|
|
substring_t args[MAX_OPT_ARGS];
|
|
char *device_name, *opts, *orig, *p;
|
|
char *num = NULL;
|
|
int error = 0;
|
|
|
|
if (!options)
|
|
return 0;
|
|
|
|
/*
|
|
* strsep changes the string, duplicate it because parse_options
|
|
* gets called twice
|
|
*/
|
|
opts = kstrdup(options, GFP_KERNEL);
|
|
if (!opts)
|
|
return -ENOMEM;
|
|
orig = opts;
|
|
|
|
while ((p = strsep(&opts, ",")) != NULL) {
|
|
int token;
|
|
if (!*p)
|
|
continue;
|
|
|
|
token = match_token(p, tokens, args);
|
|
switch (token) {
|
|
case Opt_subvol:
|
|
kfree(*subvol_name);
|
|
*subvol_name = match_strdup(&args[0]);
|
|
if (!*subvol_name) {
|
|
error = -ENOMEM;
|
|
goto out;
|
|
}
|
|
break;
|
|
case Opt_subvolid:
|
|
num = match_strdup(&args[0]);
|
|
if (num) {
|
|
*subvol_objectid = memparse(num, NULL);
|
|
kfree(num);
|
|
/* we want the original fs_tree */
|
|
if (!*subvol_objectid)
|
|
*subvol_objectid =
|
|
BTRFS_FS_TREE_OBJECTID;
|
|
} else {
|
|
error = -EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
case Opt_subvolrootid:
|
|
pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
|
|
break;
|
|
case Opt_device:
|
|
device_name = match_strdup(&args[0]);
|
|
if (!device_name) {
|
|
error = -ENOMEM;
|
|
goto out;
|
|
}
|
|
error = btrfs_scan_one_device(device_name,
|
|
flags, holder, fs_devices);
|
|
kfree(device_name);
|
|
if (error)
|
|
goto out;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
kfree(orig);
|
|
return error;
|
|
}
|
|
|
|
static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
|
|
u64 subvol_objectid)
|
|
{
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct btrfs_root *fs_root;
|
|
struct btrfs_root_ref *root_ref;
|
|
struct btrfs_inode_ref *inode_ref;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path = NULL;
|
|
char *name = NULL, *ptr;
|
|
u64 dirid;
|
|
int len;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
path->leave_spinning = 1;
|
|
|
|
name = kmalloc(PATH_MAX, GFP_KERNEL);
|
|
if (!name) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
ptr = name + PATH_MAX - 1;
|
|
ptr[0] = '\0';
|
|
|
|
/*
|
|
* Walk up the subvolume trees in the tree of tree roots by root
|
|
* backrefs until we hit the top-level subvolume.
|
|
*/
|
|
while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
|
|
key.objectid = subvol_objectid;
|
|
key.type = BTRFS_ROOT_BACKREF_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto err;
|
|
} else if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, subvol_objectid,
|
|
BTRFS_ROOT_BACKREF_KEY);
|
|
if (ret < 0) {
|
|
goto err;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
subvol_objectid = key.offset;
|
|
|
|
root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_root_ref);
|
|
len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
|
|
ptr -= len + 1;
|
|
if (ptr < name) {
|
|
ret = -ENAMETOOLONG;
|
|
goto err;
|
|
}
|
|
read_extent_buffer(path->nodes[0], ptr + 1,
|
|
(unsigned long)(root_ref + 1), len);
|
|
ptr[0] = '/';
|
|
dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
|
|
btrfs_release_path(path);
|
|
|
|
key.objectid = subvol_objectid;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
|
|
if (IS_ERR(fs_root)) {
|
|
ret = PTR_ERR(fs_root);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Walk up the filesystem tree by inode refs until we hit the
|
|
* root directory.
|
|
*/
|
|
while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
|
|
key.objectid = dirid;
|
|
key.type = BTRFS_INODE_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto err;
|
|
} else if (ret > 0) {
|
|
ret = btrfs_previous_item(fs_root, path, dirid,
|
|
BTRFS_INODE_REF_KEY);
|
|
if (ret < 0) {
|
|
goto err;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
dirid = key.offset;
|
|
|
|
inode_ref = btrfs_item_ptr(path->nodes[0],
|
|
path->slots[0],
|
|
struct btrfs_inode_ref);
|
|
len = btrfs_inode_ref_name_len(path->nodes[0],
|
|
inode_ref);
|
|
ptr -= len + 1;
|
|
if (ptr < name) {
|
|
ret = -ENAMETOOLONG;
|
|
goto err;
|
|
}
|
|
read_extent_buffer(path->nodes[0], ptr + 1,
|
|
(unsigned long)(inode_ref + 1), len);
|
|
ptr[0] = '/';
|
|
btrfs_release_path(path);
|
|
}
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
if (ptr == name + PATH_MAX - 1) {
|
|
name[0] = '/';
|
|
name[1] = '\0';
|
|
} else {
|
|
memmove(name, ptr, name + PATH_MAX - ptr);
|
|
}
|
|
return name;
|
|
|
|
err:
|
|
btrfs_free_path(path);
|
|
kfree(name);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
|
|
{
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key location;
|
|
u64 dir_id;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
path->leave_spinning = 1;
|
|
|
|
/*
|
|
* Find the "default" dir item which points to the root item that we
|
|
* will mount by default if we haven't been given a specific subvolume
|
|
* to mount.
|
|
*/
|
|
dir_id = btrfs_super_root_dir(fs_info->super_copy);
|
|
di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
|
|
if (IS_ERR(di)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(di);
|
|
}
|
|
if (!di) {
|
|
/*
|
|
* Ok the default dir item isn't there. This is weird since
|
|
* it's always been there, but don't freak out, just try and
|
|
* mount the top-level subvolume.
|
|
*/
|
|
btrfs_free_path(path);
|
|
*objectid = BTRFS_FS_TREE_OBJECTID;
|
|
return 0;
|
|
}
|
|
|
|
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
|
|
btrfs_free_path(path);
|
|
*objectid = location.objectid;
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_fill_super(struct super_block *sb,
|
|
struct btrfs_fs_devices *fs_devices,
|
|
void *data)
|
|
{
|
|
struct inode *inode;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_key key;
|
|
int err;
|
|
|
|
sb->s_maxbytes = MAX_LFS_FILESIZE;
|
|
sb->s_magic = BTRFS_SUPER_MAGIC;
|
|
sb->s_op = &btrfs_super_ops;
|
|
sb->s_d_op = &btrfs_dentry_operations;
|
|
sb->s_export_op = &btrfs_export_ops;
|
|
sb->s_xattr = btrfs_xattr_handlers;
|
|
sb->s_time_gran = 1;
|
|
#ifdef CONFIG_BTRFS_FS_POSIX_ACL
|
|
sb->s_flags |= SB_POSIXACL;
|
|
#endif
|
|
sb->s_flags |= SB_I_VERSION;
|
|
sb->s_iflags |= SB_I_CGROUPWB;
|
|
|
|
err = super_setup_bdi(sb);
|
|
if (err) {
|
|
btrfs_err(fs_info, "super_setup_bdi failed");
|
|
return err;
|
|
}
|
|
|
|
err = open_ctree(sb, fs_devices, (char *)data);
|
|
if (err) {
|
|
btrfs_err(fs_info, "open_ctree failed");
|
|
return err;
|
|
}
|
|
|
|
key.objectid = BTRFS_FIRST_FREE_OBJECTID;
|
|
key.type = BTRFS_INODE_ITEM_KEY;
|
|
key.offset = 0;
|
|
inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
goto fail_close;
|
|
}
|
|
|
|
sb->s_root = d_make_root(inode);
|
|
if (!sb->s_root) {
|
|
err = -ENOMEM;
|
|
goto fail_close;
|
|
}
|
|
|
|
cleancache_init_fs(sb);
|
|
sb->s_flags |= SB_ACTIVE;
|
|
return 0;
|
|
|
|
fail_close:
|
|
close_ctree(fs_info);
|
|
return err;
|
|
}
|
|
|
|
int btrfs_sync_fs(struct super_block *sb, int wait)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
|
|
trace_btrfs_sync_fs(fs_info, wait);
|
|
|
|
if (!wait) {
|
|
filemap_flush(fs_info->btree_inode->i_mapping);
|
|
return 0;
|
|
}
|
|
|
|
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
|
|
|
|
trans = btrfs_attach_transaction_barrier(root);
|
|
if (IS_ERR(trans)) {
|
|
/* no transaction, don't bother */
|
|
if (PTR_ERR(trans) == -ENOENT) {
|
|
/*
|
|
* Exit unless we have some pending changes
|
|
* that need to go through commit
|
|
*/
|
|
if (fs_info->pending_changes == 0)
|
|
return 0;
|
|
/*
|
|
* A non-blocking test if the fs is frozen. We must not
|
|
* start a new transaction here otherwise a deadlock
|
|
* happens. The pending operations are delayed to the
|
|
* next commit after thawing.
|
|
*/
|
|
if (sb_start_write_trylock(sb))
|
|
sb_end_write(sb);
|
|
else
|
|
return 0;
|
|
trans = btrfs_start_transaction(root, 0);
|
|
}
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
}
|
|
return btrfs_commit_transaction(trans);
|
|
}
|
|
|
|
static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
|
|
{
|
|
struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
|
|
char *compress_type;
|
|
|
|
if (btrfs_test_opt(info, DEGRADED))
|
|
seq_puts(seq, ",degraded");
|
|
if (btrfs_test_opt(info, NODATASUM))
|
|
seq_puts(seq, ",nodatasum");
|
|
if (btrfs_test_opt(info, NODATACOW))
|
|
seq_puts(seq, ",nodatacow");
|
|
if (btrfs_test_opt(info, NOBARRIER))
|
|
seq_puts(seq, ",nobarrier");
|
|
if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
|
|
seq_printf(seq, ",max_inline=%llu", info->max_inline);
|
|
if (info->thread_pool_size != min_t(unsigned long,
|
|
num_online_cpus() + 2, 8))
|
|
seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
|
|
if (btrfs_test_opt(info, COMPRESS)) {
|
|
if (info->compress_type == BTRFS_COMPRESS_ZLIB)
|
|
compress_type = "zlib";
|
|
else if (info->compress_type == BTRFS_COMPRESS_LZO)
|
|
compress_type = "lzo";
|
|
else
|
|
compress_type = "zstd";
|
|
if (btrfs_test_opt(info, FORCE_COMPRESS))
|
|
seq_printf(seq, ",compress-force=%s", compress_type);
|
|
else
|
|
seq_printf(seq, ",compress=%s", compress_type);
|
|
if (info->compress_level)
|
|
seq_printf(seq, ":%d", info->compress_level);
|
|
}
|
|
if (btrfs_test_opt(info, NOSSD))
|
|
seq_puts(seq, ",nossd");
|
|
if (btrfs_test_opt(info, SSD_SPREAD))
|
|
seq_puts(seq, ",ssd_spread");
|
|
else if (btrfs_test_opt(info, SSD))
|
|
seq_puts(seq, ",ssd");
|
|
if (btrfs_test_opt(info, NOTREELOG))
|
|
seq_puts(seq, ",notreelog");
|
|
if (btrfs_test_opt(info, NOLOGREPLAY))
|
|
seq_puts(seq, ",nologreplay");
|
|
if (btrfs_test_opt(info, FLUSHONCOMMIT))
|
|
seq_puts(seq, ",flushoncommit");
|
|
if (btrfs_test_opt(info, DISCARD))
|
|
seq_puts(seq, ",discard");
|
|
if (!(info->sb->s_flags & SB_POSIXACL))
|
|
seq_puts(seq, ",noacl");
|
|
if (btrfs_test_opt(info, SPACE_CACHE))
|
|
seq_puts(seq, ",space_cache");
|
|
else if (btrfs_test_opt(info, FREE_SPACE_TREE))
|
|
seq_puts(seq, ",space_cache=v2");
|
|
else
|
|
seq_puts(seq, ",nospace_cache");
|
|
if (btrfs_test_opt(info, RESCAN_UUID_TREE))
|
|
seq_puts(seq, ",rescan_uuid_tree");
|
|
if (btrfs_test_opt(info, CLEAR_CACHE))
|
|
seq_puts(seq, ",clear_cache");
|
|
if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
|
|
seq_puts(seq, ",user_subvol_rm_allowed");
|
|
if (btrfs_test_opt(info, ENOSPC_DEBUG))
|
|
seq_puts(seq, ",enospc_debug");
|
|
if (btrfs_test_opt(info, AUTO_DEFRAG))
|
|
seq_puts(seq, ",autodefrag");
|
|
if (btrfs_test_opt(info, INODE_MAP_CACHE))
|
|
seq_puts(seq, ",inode_cache");
|
|
if (btrfs_test_opt(info, SKIP_BALANCE))
|
|
seq_puts(seq, ",skip_balance");
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
|
|
seq_puts(seq, ",check_int_data");
|
|
else if (btrfs_test_opt(info, CHECK_INTEGRITY))
|
|
seq_puts(seq, ",check_int");
|
|
if (info->check_integrity_print_mask)
|
|
seq_printf(seq, ",check_int_print_mask=%d",
|
|
info->check_integrity_print_mask);
|
|
#endif
|
|
if (info->metadata_ratio)
|
|
seq_printf(seq, ",metadata_ratio=%d",
|
|
info->metadata_ratio);
|
|
if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
|
|
seq_puts(seq, ",fatal_errors=panic");
|
|
if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
|
|
seq_printf(seq, ",commit=%d", info->commit_interval);
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
if (btrfs_test_opt(info, FRAGMENT_DATA))
|
|
seq_puts(seq, ",fragment=data");
|
|
if (btrfs_test_opt(info, FRAGMENT_METADATA))
|
|
seq_puts(seq, ",fragment=metadata");
|
|
#endif
|
|
if (btrfs_test_opt(info, REF_VERIFY))
|
|
seq_puts(seq, ",ref_verify");
|
|
seq_printf(seq, ",subvolid=%llu",
|
|
BTRFS_I(d_inode(dentry))->root->root_key.objectid);
|
|
seq_puts(seq, ",subvol=");
|
|
seq_dentry(seq, dentry, " \t\n\\");
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_test_super(struct super_block *s, void *data)
|
|
{
|
|
struct btrfs_fs_info *p = data;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(s);
|
|
|
|
return fs_info->fs_devices == p->fs_devices;
|
|
}
|
|
|
|
static int btrfs_set_super(struct super_block *s, void *data)
|
|
{
|
|
int err = set_anon_super(s, data);
|
|
if (!err)
|
|
s->s_fs_info = data;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* subvolumes are identified by ino 256
|
|
*/
|
|
static inline int is_subvolume_inode(struct inode *inode)
|
|
{
|
|
if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This will add subvolid=0 to the argument string while removing any subvol=
|
|
* and subvolid= arguments to make sure we get the top-level root for path
|
|
* walking to the subvol we want.
|
|
*/
|
|
static char *setup_root_args(char *args)
|
|
{
|
|
char *buf, *dst, *sep;
|
|
|
|
if (!args)
|
|
return kstrdup("subvolid=0", GFP_KERNEL);
|
|
|
|
/* The worst case is that we add ",subvolid=0" to the end. */
|
|
buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1,
|
|
GFP_KERNEL);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
while (1) {
|
|
sep = strchrnul(args, ',');
|
|
if (!strstarts(args, "subvol=") &&
|
|
!strstarts(args, "subvolid=")) {
|
|
memcpy(dst, args, sep - args);
|
|
dst += sep - args;
|
|
*dst++ = ',';
|
|
}
|
|
if (*sep)
|
|
args = sep + 1;
|
|
else
|
|
break;
|
|
}
|
|
strcpy(dst, "subvolid=0");
|
|
|
|
return buf;
|
|
}
|
|
|
|
static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
|
|
int flags, const char *device_name,
|
|
char *data)
|
|
{
|
|
struct dentry *root;
|
|
struct vfsmount *mnt = NULL;
|
|
char *newargs;
|
|
int ret;
|
|
|
|
newargs = setup_root_args(data);
|
|
if (!newargs) {
|
|
root = ERR_PTR(-ENOMEM);
|
|
goto out;
|
|
}
|
|
|
|
mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
|
|
if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
|
|
if (flags & SB_RDONLY) {
|
|
mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~SB_RDONLY,
|
|
device_name, newargs);
|
|
} else {
|
|
mnt = vfs_kern_mount(&btrfs_fs_type, flags | SB_RDONLY,
|
|
device_name, newargs);
|
|
if (IS_ERR(mnt)) {
|
|
root = ERR_CAST(mnt);
|
|
mnt = NULL;
|
|
goto out;
|
|
}
|
|
|
|
down_write(&mnt->mnt_sb->s_umount);
|
|
ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
|
|
up_write(&mnt->mnt_sb->s_umount);
|
|
if (ret < 0) {
|
|
root = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
if (IS_ERR(mnt)) {
|
|
root = ERR_CAST(mnt);
|
|
mnt = NULL;
|
|
goto out;
|
|
}
|
|
|
|
if (!subvol_name) {
|
|
if (!subvol_objectid) {
|
|
ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
|
|
&subvol_objectid);
|
|
if (ret) {
|
|
root = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
}
|
|
subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
|
|
subvol_objectid);
|
|
if (IS_ERR(subvol_name)) {
|
|
root = ERR_CAST(subvol_name);
|
|
subvol_name = NULL;
|
|
goto out;
|
|
}
|
|
|
|
}
|
|
|
|
root = mount_subtree(mnt, subvol_name);
|
|
/* mount_subtree() drops our reference on the vfsmount. */
|
|
mnt = NULL;
|
|
|
|
if (!IS_ERR(root)) {
|
|
struct super_block *s = root->d_sb;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(s);
|
|
struct inode *root_inode = d_inode(root);
|
|
u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
|
|
|
|
ret = 0;
|
|
if (!is_subvolume_inode(root_inode)) {
|
|
btrfs_err(fs_info, "'%s' is not a valid subvolume",
|
|
subvol_name);
|
|
ret = -EINVAL;
|
|
}
|
|
if (subvol_objectid && root_objectid != subvol_objectid) {
|
|
/*
|
|
* This will also catch a race condition where a
|
|
* subvolume which was passed by ID is renamed and
|
|
* another subvolume is renamed over the old location.
|
|
*/
|
|
btrfs_err(fs_info,
|
|
"subvol '%s' does not match subvolid %llu",
|
|
subvol_name, subvol_objectid);
|
|
ret = -EINVAL;
|
|
}
|
|
if (ret) {
|
|
dput(root);
|
|
root = ERR_PTR(ret);
|
|
deactivate_locked_super(s);
|
|
}
|
|
}
|
|
|
|
out:
|
|
mntput(mnt);
|
|
kfree(newargs);
|
|
kfree(subvol_name);
|
|
return root;
|
|
}
|
|
|
|
static int parse_security_options(char *orig_opts,
|
|
struct security_mnt_opts *sec_opts)
|
|
{
|
|
char *secdata = NULL;
|
|
int ret = 0;
|
|
|
|
secdata = alloc_secdata();
|
|
if (!secdata)
|
|
return -ENOMEM;
|
|
ret = security_sb_copy_data(orig_opts, secdata);
|
|
if (ret) {
|
|
free_secdata(secdata);
|
|
return ret;
|
|
}
|
|
ret = security_sb_parse_opts_str(secdata, sec_opts);
|
|
free_secdata(secdata);
|
|
return ret;
|
|
}
|
|
|
|
static int setup_security_options(struct btrfs_fs_info *fs_info,
|
|
struct super_block *sb,
|
|
struct security_mnt_opts *sec_opts)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Call security_sb_set_mnt_opts() to check whether new sec_opts
|
|
* is valid.
|
|
*/
|
|
ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
#ifdef CONFIG_SECURITY
|
|
if (!fs_info->security_opts.num_mnt_opts) {
|
|
/* first time security setup, copy sec_opts to fs_info */
|
|
memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
|
|
} else {
|
|
/*
|
|
* Since SELinux (the only one supporting security_mnt_opts)
|
|
* does NOT support changing context during remount/mount of
|
|
* the same sb, this must be the same or part of the same
|
|
* security options, just free it.
|
|
*/
|
|
security_free_mnt_opts(sec_opts);
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Find a superblock for the given device / mount point.
|
|
*
|
|
* Note: This is based on get_sb_bdev from fs/super.c with a few additions
|
|
* for multiple device setup. Make sure to keep it in sync.
|
|
*/
|
|
static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
|
|
const char *device_name, void *data)
|
|
{
|
|
struct block_device *bdev = NULL;
|
|
struct super_block *s;
|
|
struct btrfs_fs_devices *fs_devices = NULL;
|
|
struct btrfs_fs_info *fs_info = NULL;
|
|
struct security_mnt_opts new_sec_opts;
|
|
fmode_t mode = FMODE_READ;
|
|
char *subvol_name = NULL;
|
|
u64 subvol_objectid = 0;
|
|
int error = 0;
|
|
|
|
if (!(flags & SB_RDONLY))
|
|
mode |= FMODE_WRITE;
|
|
|
|
error = btrfs_parse_early_options(data, mode, fs_type,
|
|
&subvol_name, &subvol_objectid,
|
|
&fs_devices);
|
|
if (error) {
|
|
kfree(subvol_name);
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
|
|
/* mount_subvol() will free subvol_name. */
|
|
return mount_subvol(subvol_name, subvol_objectid, flags,
|
|
device_name, data);
|
|
}
|
|
|
|
security_init_mnt_opts(&new_sec_opts);
|
|
if (data) {
|
|
error = parse_security_options(data, &new_sec_opts);
|
|
if (error)
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
|
|
if (error)
|
|
goto error_sec_opts;
|
|
|
|
/*
|
|
* Setup a dummy root and fs_info for test/set super. This is because
|
|
* we don't actually fill this stuff out until open_ctree, but we need
|
|
* it for searching for existing supers, so this lets us do that and
|
|
* then open_ctree will properly initialize everything later.
|
|
*/
|
|
fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
|
|
if (!fs_info) {
|
|
error = -ENOMEM;
|
|
goto error_sec_opts;
|
|
}
|
|
|
|
fs_info->fs_devices = fs_devices;
|
|
|
|
fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
|
|
fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
|
|
security_init_mnt_opts(&fs_info->security_opts);
|
|
if (!fs_info->super_copy || !fs_info->super_for_commit) {
|
|
error = -ENOMEM;
|
|
goto error_fs_info;
|
|
}
|
|
|
|
error = btrfs_open_devices(fs_devices, mode, fs_type);
|
|
if (error)
|
|
goto error_fs_info;
|
|
|
|
if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
|
|
error = -EACCES;
|
|
goto error_close_devices;
|
|
}
|
|
|
|
bdev = fs_devices->latest_bdev;
|
|
s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
|
|
fs_info);
|
|
if (IS_ERR(s)) {
|
|
error = PTR_ERR(s);
|
|
goto error_close_devices;
|
|
}
|
|
|
|
if (s->s_root) {
|
|
btrfs_close_devices(fs_devices);
|
|
free_fs_info(fs_info);
|
|
if ((flags ^ s->s_flags) & SB_RDONLY)
|
|
error = -EBUSY;
|
|
} else {
|
|
snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
|
|
btrfs_sb(s)->bdev_holder = fs_type;
|
|
error = btrfs_fill_super(s, fs_devices, data);
|
|
}
|
|
if (error) {
|
|
deactivate_locked_super(s);
|
|
goto error_sec_opts;
|
|
}
|
|
|
|
fs_info = btrfs_sb(s);
|
|
error = setup_security_options(fs_info, s, &new_sec_opts);
|
|
if (error) {
|
|
deactivate_locked_super(s);
|
|
goto error_sec_opts;
|
|
}
|
|
|
|
return dget(s->s_root);
|
|
|
|
error_close_devices:
|
|
btrfs_close_devices(fs_devices);
|
|
error_fs_info:
|
|
free_fs_info(fs_info);
|
|
error_sec_opts:
|
|
security_free_mnt_opts(&new_sec_opts);
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
|
|
int new_pool_size, int old_pool_size)
|
|
{
|
|
if (new_pool_size == old_pool_size)
|
|
return;
|
|
|
|
fs_info->thread_pool_size = new_pool_size;
|
|
|
|
btrfs_info(fs_info, "resize thread pool %d -> %d",
|
|
old_pool_size, new_pool_size);
|
|
|
|
btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
|
|
new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
|
|
btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
|
|
new_pool_size);
|
|
}
|
|
|
|
static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
|
|
{
|
|
set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
|
|
}
|
|
|
|
static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
|
|
unsigned long old_opts, int flags)
|
|
{
|
|
if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
|
|
(!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
|
|
(flags & SB_RDONLY))) {
|
|
/* wait for any defraggers to finish */
|
|
wait_event(fs_info->transaction_wait,
|
|
(atomic_read(&fs_info->defrag_running) == 0));
|
|
if (flags & SB_RDONLY)
|
|
sync_filesystem(fs_info->sb);
|
|
}
|
|
}
|
|
|
|
static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
|
|
unsigned long old_opts)
|
|
{
|
|
/*
|
|
* We need to cleanup all defragable inodes if the autodefragment is
|
|
* close or the filesystem is read only.
|
|
*/
|
|
if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
|
|
(!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
|
|
btrfs_cleanup_defrag_inodes(fs_info);
|
|
}
|
|
|
|
clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
|
|
}
|
|
|
|
static int btrfs_remount(struct super_block *sb, int *flags, char *data)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
unsigned old_flags = sb->s_flags;
|
|
unsigned long old_opts = fs_info->mount_opt;
|
|
unsigned long old_compress_type = fs_info->compress_type;
|
|
u64 old_max_inline = fs_info->max_inline;
|
|
int old_thread_pool_size = fs_info->thread_pool_size;
|
|
unsigned int old_metadata_ratio = fs_info->metadata_ratio;
|
|
int ret;
|
|
|
|
sync_filesystem(sb);
|
|
btrfs_remount_prepare(fs_info);
|
|
|
|
if (data) {
|
|
struct security_mnt_opts new_sec_opts;
|
|
|
|
security_init_mnt_opts(&new_sec_opts);
|
|
ret = parse_security_options(data, &new_sec_opts);
|
|
if (ret)
|
|
goto restore;
|
|
ret = setup_security_options(fs_info, sb,
|
|
&new_sec_opts);
|
|
if (ret) {
|
|
security_free_mnt_opts(&new_sec_opts);
|
|
goto restore;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_parse_options(fs_info, data, *flags);
|
|
if (ret) {
|
|
ret = -EINVAL;
|
|
goto restore;
|
|
}
|
|
|
|
btrfs_remount_begin(fs_info, old_opts, *flags);
|
|
btrfs_resize_thread_pool(fs_info,
|
|
fs_info->thread_pool_size, old_thread_pool_size);
|
|
|
|
if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
|
|
goto out;
|
|
|
|
if (*flags & SB_RDONLY) {
|
|
/*
|
|
* this also happens on 'umount -rf' or on shutdown, when
|
|
* the filesystem is busy.
|
|
*/
|
|
cancel_work_sync(&fs_info->async_reclaim_work);
|
|
|
|
/* wait for the uuid_scan task to finish */
|
|
down(&fs_info->uuid_tree_rescan_sem);
|
|
/* avoid complains from lockdep et al. */
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
|
|
sb->s_flags |= SB_RDONLY;
|
|
|
|
/*
|
|
* Setting SB_RDONLY will put the cleaner thread to
|
|
* sleep at the next loop if it's already active.
|
|
* If it's already asleep, we'll leave unused block
|
|
* groups on disk until we're mounted read-write again
|
|
* unless we clean them up here.
|
|
*/
|
|
btrfs_delete_unused_bgs(fs_info);
|
|
|
|
btrfs_dev_replace_suspend_for_unmount(fs_info);
|
|
btrfs_scrub_cancel(fs_info);
|
|
btrfs_pause_balance(fs_info);
|
|
|
|
ret = btrfs_commit_super(fs_info);
|
|
if (ret)
|
|
goto restore;
|
|
} else {
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
btrfs_err(fs_info,
|
|
"Remounting read-write after error is not allowed");
|
|
ret = -EINVAL;
|
|
goto restore;
|
|
}
|
|
if (fs_info->fs_devices->rw_devices == 0) {
|
|
ret = -EACCES;
|
|
goto restore;
|
|
}
|
|
|
|
if (!btrfs_check_rw_degradable(fs_info)) {
|
|
btrfs_warn(fs_info,
|
|
"too many missing devices, writeable remount is not allowed");
|
|
ret = -EACCES;
|
|
goto restore;
|
|
}
|
|
|
|
if (btrfs_super_log_root(fs_info->super_copy) != 0) {
|
|
ret = -EINVAL;
|
|
goto restore;
|
|
}
|
|
|
|
ret = btrfs_cleanup_fs_roots(fs_info);
|
|
if (ret)
|
|
goto restore;
|
|
|
|
/* recover relocation */
|
|
mutex_lock(&fs_info->cleaner_mutex);
|
|
ret = btrfs_recover_relocation(root);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
if (ret)
|
|
goto restore;
|
|
|
|
ret = btrfs_resume_balance_async(fs_info);
|
|
if (ret)
|
|
goto restore;
|
|
|
|
ret = btrfs_resume_dev_replace_async(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info, "failed to resume dev_replace");
|
|
goto restore;
|
|
}
|
|
|
|
btrfs_qgroup_rescan_resume(fs_info);
|
|
|
|
if (!fs_info->uuid_root) {
|
|
btrfs_info(fs_info, "creating UUID tree");
|
|
ret = btrfs_create_uuid_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"failed to create the UUID tree %d",
|
|
ret);
|
|
goto restore;
|
|
}
|
|
}
|
|
sb->s_flags &= ~SB_RDONLY;
|
|
|
|
set_bit(BTRFS_FS_OPEN, &fs_info->flags);
|
|
}
|
|
out:
|
|
wake_up_process(fs_info->transaction_kthread);
|
|
btrfs_remount_cleanup(fs_info, old_opts);
|
|
return 0;
|
|
|
|
restore:
|
|
/* We've hit an error - don't reset SB_RDONLY */
|
|
if (sb_rdonly(sb))
|
|
old_flags |= SB_RDONLY;
|
|
sb->s_flags = old_flags;
|
|
fs_info->mount_opt = old_opts;
|
|
fs_info->compress_type = old_compress_type;
|
|
fs_info->max_inline = old_max_inline;
|
|
btrfs_resize_thread_pool(fs_info,
|
|
old_thread_pool_size, fs_info->thread_pool_size);
|
|
fs_info->metadata_ratio = old_metadata_ratio;
|
|
btrfs_remount_cleanup(fs_info, old_opts);
|
|
return ret;
|
|
}
|
|
|
|
/* Used to sort the devices by max_avail(descending sort) */
|
|
static int btrfs_cmp_device_free_bytes(const void *dev_info1,
|
|
const void *dev_info2)
|
|
{
|
|
if (((struct btrfs_device_info *)dev_info1)->max_avail >
|
|
((struct btrfs_device_info *)dev_info2)->max_avail)
|
|
return -1;
|
|
else if (((struct btrfs_device_info *)dev_info1)->max_avail <
|
|
((struct btrfs_device_info *)dev_info2)->max_avail)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sort the devices by max_avail, in which max free extent size of each device
|
|
* is stored.(Descending Sort)
|
|
*/
|
|
static inline void btrfs_descending_sort_devices(
|
|
struct btrfs_device_info *devices,
|
|
size_t nr_devices)
|
|
{
|
|
sort(devices, nr_devices, sizeof(struct btrfs_device_info),
|
|
btrfs_cmp_device_free_bytes, NULL);
|
|
}
|
|
|
|
/*
|
|
* The helper to calc the free space on the devices that can be used to store
|
|
* file data.
|
|
*/
|
|
static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
|
|
u64 *free_bytes)
|
|
{
|
|
struct btrfs_device_info *devices_info;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_device *device;
|
|
u64 skip_space;
|
|
u64 type;
|
|
u64 avail_space;
|
|
u64 min_stripe_size;
|
|
int min_stripes = 1, num_stripes = 1;
|
|
int i = 0, nr_devices;
|
|
|
|
/*
|
|
* We aren't under the device list lock, so this is racy-ish, but good
|
|
* enough for our purposes.
|
|
*/
|
|
nr_devices = fs_info->fs_devices->open_devices;
|
|
if (!nr_devices) {
|
|
smp_mb();
|
|
nr_devices = fs_info->fs_devices->open_devices;
|
|
ASSERT(nr_devices);
|
|
if (!nr_devices) {
|
|
*free_bytes = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
|
|
GFP_KERNEL);
|
|
if (!devices_info)
|
|
return -ENOMEM;
|
|
|
|
/* calc min stripe number for data space allocation */
|
|
type = btrfs_data_alloc_profile(fs_info);
|
|
if (type & BTRFS_BLOCK_GROUP_RAID0) {
|
|
min_stripes = 2;
|
|
num_stripes = nr_devices;
|
|
} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
|
|
min_stripes = 2;
|
|
num_stripes = 2;
|
|
} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
min_stripes = 4;
|
|
num_stripes = 4;
|
|
}
|
|
|
|
if (type & BTRFS_BLOCK_GROUP_DUP)
|
|
min_stripe_size = 2 * BTRFS_STRIPE_LEN;
|
|
else
|
|
min_stripe_size = BTRFS_STRIPE_LEN;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
|
|
if (!device->in_fs_metadata || !device->bdev ||
|
|
device->is_tgtdev_for_dev_replace)
|
|
continue;
|
|
|
|
if (i >= nr_devices)
|
|
break;
|
|
|
|
avail_space = device->total_bytes - device->bytes_used;
|
|
|
|
/* align with stripe_len */
|
|
avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
|
|
avail_space *= BTRFS_STRIPE_LEN;
|
|
|
|
/*
|
|
* In order to avoid overwriting the superblock on the drive,
|
|
* btrfs starts at an offset of at least 1MB when doing chunk
|
|
* allocation.
|
|
*/
|
|
skip_space = SZ_1M;
|
|
|
|
/*
|
|
* we can use the free space in [0, skip_space - 1], subtract
|
|
* it from the total.
|
|
*/
|
|
if (avail_space && avail_space >= skip_space)
|
|
avail_space -= skip_space;
|
|
else
|
|
avail_space = 0;
|
|
|
|
if (avail_space < min_stripe_size)
|
|
continue;
|
|
|
|
devices_info[i].dev = device;
|
|
devices_info[i].max_avail = avail_space;
|
|
|
|
i++;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
nr_devices = i;
|
|
|
|
btrfs_descending_sort_devices(devices_info, nr_devices);
|
|
|
|
i = nr_devices - 1;
|
|
avail_space = 0;
|
|
while (nr_devices >= min_stripes) {
|
|
if (num_stripes > nr_devices)
|
|
num_stripes = nr_devices;
|
|
|
|
if (devices_info[i].max_avail >= min_stripe_size) {
|
|
int j;
|
|
u64 alloc_size;
|
|
|
|
avail_space += devices_info[i].max_avail * num_stripes;
|
|
alloc_size = devices_info[i].max_avail;
|
|
for (j = i + 1 - num_stripes; j <= i; j++)
|
|
devices_info[j].max_avail -= alloc_size;
|
|
}
|
|
i--;
|
|
nr_devices--;
|
|
}
|
|
|
|
kfree(devices_info);
|
|
*free_bytes = avail_space;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
|
|
*
|
|
* If there's a redundant raid level at DATA block groups, use the respective
|
|
* multiplier to scale the sizes.
|
|
*
|
|
* Unused device space usage is based on simulating the chunk allocator
|
|
* algorithm that respects the device sizes and order of allocations. This is
|
|
* a close approximation of the actual use but there are other factors that may
|
|
* change the result (like a new metadata chunk).
|
|
*
|
|
* If metadata is exhausted, f_bavail will be 0.
|
|
*/
|
|
static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
|
|
struct btrfs_super_block *disk_super = fs_info->super_copy;
|
|
struct list_head *head = &fs_info->space_info;
|
|
struct btrfs_space_info *found;
|
|
u64 total_used = 0;
|
|
u64 total_free_data = 0;
|
|
u64 total_free_meta = 0;
|
|
int bits = dentry->d_sb->s_blocksize_bits;
|
|
__be32 *fsid = (__be32 *)fs_info->fsid;
|
|
unsigned factor = 1;
|
|
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
|
|
int ret;
|
|
u64 thresh = 0;
|
|
int mixed = 0;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list) {
|
|
if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
|
|
int i;
|
|
|
|
total_free_data += found->disk_total - found->disk_used;
|
|
total_free_data -=
|
|
btrfs_account_ro_block_groups_free_space(found);
|
|
|
|
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
|
|
if (!list_empty(&found->block_groups[i])) {
|
|
switch (i) {
|
|
case BTRFS_RAID_DUP:
|
|
case BTRFS_RAID_RAID1:
|
|
case BTRFS_RAID_RAID10:
|
|
factor = 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Metadata in mixed block goup profiles are accounted in data
|
|
*/
|
|
if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
|
|
if (found->flags & BTRFS_BLOCK_GROUP_DATA)
|
|
mixed = 1;
|
|
else
|
|
total_free_meta += found->disk_total -
|
|
found->disk_used;
|
|
}
|
|
|
|
total_used += found->disk_used;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
|
|
buf->f_blocks >>= bits;
|
|
buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
|
|
|
|
/* Account global block reserve as used, it's in logical size already */
|
|
spin_lock(&block_rsv->lock);
|
|
/* Mixed block groups accounting is not byte-accurate, avoid overflow */
|
|
if (buf->f_bfree >= block_rsv->size >> bits)
|
|
buf->f_bfree -= block_rsv->size >> bits;
|
|
else
|
|
buf->f_bfree = 0;
|
|
spin_unlock(&block_rsv->lock);
|
|
|
|
buf->f_bavail = div_u64(total_free_data, factor);
|
|
ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
|
|
if (ret)
|
|
return ret;
|
|
buf->f_bavail += div_u64(total_free_data, factor);
|
|
buf->f_bavail = buf->f_bavail >> bits;
|
|
|
|
/*
|
|
* We calculate the remaining metadata space minus global reserve. If
|
|
* this is (supposedly) smaller than zero, there's no space. But this
|
|
* does not hold in practice, the exhausted state happens where's still
|
|
* some positive delta. So we apply some guesswork and compare the
|
|
* delta to a 4M threshold. (Practically observed delta was ~2M.)
|
|
*
|
|
* We probably cannot calculate the exact threshold value because this
|
|
* depends on the internal reservations requested by various
|
|
* operations, so some operations that consume a few metadata will
|
|
* succeed even if the Avail is zero. But this is better than the other
|
|
* way around.
|
|
*/
|
|
thresh = SZ_4M;
|
|
|
|
if (!mixed && total_free_meta - thresh < block_rsv->size)
|
|
buf->f_bavail = 0;
|
|
|
|
buf->f_type = BTRFS_SUPER_MAGIC;
|
|
buf->f_bsize = dentry->d_sb->s_blocksize;
|
|
buf->f_namelen = BTRFS_NAME_LEN;
|
|
|
|
/* We treat it as constant endianness (it doesn't matter _which_)
|
|
because we want the fsid to come out the same whether mounted
|
|
on a big-endian or little-endian host */
|
|
buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
|
|
buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
|
|
/* Mask in the root object ID too, to disambiguate subvols */
|
|
buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
|
|
buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btrfs_kill_super(struct super_block *sb)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
kill_anon_super(sb);
|
|
free_fs_info(fs_info);
|
|
}
|
|
|
|
static struct file_system_type btrfs_fs_type = {
|
|
.owner = THIS_MODULE,
|
|
.name = "btrfs",
|
|
.mount = btrfs_mount,
|
|
.kill_sb = btrfs_kill_super,
|
|
.fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
|
|
};
|
|
MODULE_ALIAS_FS("btrfs");
|
|
|
|
static int btrfs_control_open(struct inode *inode, struct file *file)
|
|
{
|
|
/*
|
|
* The control file's private_data is used to hold the
|
|
* transaction when it is started and is used to keep
|
|
* track of whether a transaction is already in progress.
|
|
*/
|
|
file->private_data = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* used by btrfsctl to scan devices when no FS is mounted
|
|
*/
|
|
static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct btrfs_ioctl_vol_args *vol;
|
|
struct btrfs_fs_devices *fs_devices;
|
|
int ret = -ENOTTY;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
vol = memdup_user((void __user *)arg, sizeof(*vol));
|
|
if (IS_ERR(vol))
|
|
return PTR_ERR(vol);
|
|
|
|
switch (cmd) {
|
|
case BTRFS_IOC_SCAN_DEV:
|
|
ret = btrfs_scan_one_device(vol->name, FMODE_READ,
|
|
&btrfs_fs_type, &fs_devices);
|
|
break;
|
|
case BTRFS_IOC_DEVICES_READY:
|
|
ret = btrfs_scan_one_device(vol->name, FMODE_READ,
|
|
&btrfs_fs_type, &fs_devices);
|
|
if (ret)
|
|
break;
|
|
ret = !(fs_devices->num_devices == fs_devices->total_devices);
|
|
break;
|
|
case BTRFS_IOC_GET_SUPPORTED_FEATURES:
|
|
ret = btrfs_ioctl_get_supported_features((void __user*)arg);
|
|
break;
|
|
}
|
|
|
|
kfree(vol);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_freeze(struct super_block *sb)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
|
|
set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
|
|
/*
|
|
* We don't need a barrier here, we'll wait for any transaction that
|
|
* could be in progress on other threads (and do delayed iputs that
|
|
* we want to avoid on a frozen filesystem), or do the commit
|
|
* ourselves.
|
|
*/
|
|
trans = btrfs_attach_transaction_barrier(root);
|
|
if (IS_ERR(trans)) {
|
|
/* no transaction, don't bother */
|
|
if (PTR_ERR(trans) == -ENOENT)
|
|
return 0;
|
|
return PTR_ERR(trans);
|
|
}
|
|
return btrfs_commit_transaction(trans);
|
|
}
|
|
|
|
static int btrfs_unfreeze(struct super_block *sb)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
|
|
clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
|
|
struct btrfs_fs_devices *cur_devices;
|
|
struct btrfs_device *dev, *first_dev = NULL;
|
|
struct list_head *head;
|
|
struct rcu_string *name;
|
|
|
|
mutex_lock(&fs_info->fs_devices->device_list_mutex);
|
|
cur_devices = fs_info->fs_devices;
|
|
while (cur_devices) {
|
|
head = &cur_devices->devices;
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (dev->missing)
|
|
continue;
|
|
if (!dev->name)
|
|
continue;
|
|
if (!first_dev || dev->devid < first_dev->devid)
|
|
first_dev = dev;
|
|
}
|
|
cur_devices = cur_devices->seed;
|
|
}
|
|
|
|
if (first_dev) {
|
|
rcu_read_lock();
|
|
name = rcu_dereference(first_dev->name);
|
|
seq_escape(m, name->str, " \t\n\\");
|
|
rcu_read_unlock();
|
|
} else {
|
|
WARN_ON(1);
|
|
}
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static const struct super_operations btrfs_super_ops = {
|
|
.drop_inode = btrfs_drop_inode,
|
|
.evict_inode = btrfs_evict_inode,
|
|
.put_super = btrfs_put_super,
|
|
.sync_fs = btrfs_sync_fs,
|
|
.show_options = btrfs_show_options,
|
|
.show_devname = btrfs_show_devname,
|
|
.write_inode = btrfs_write_inode,
|
|
.alloc_inode = btrfs_alloc_inode,
|
|
.destroy_inode = btrfs_destroy_inode,
|
|
.statfs = btrfs_statfs,
|
|
.remount_fs = btrfs_remount,
|
|
.freeze_fs = btrfs_freeze,
|
|
.unfreeze_fs = btrfs_unfreeze,
|
|
};
|
|
|
|
static const struct file_operations btrfs_ctl_fops = {
|
|
.open = btrfs_control_open,
|
|
.unlocked_ioctl = btrfs_control_ioctl,
|
|
.compat_ioctl = btrfs_control_ioctl,
|
|
.owner = THIS_MODULE,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static struct miscdevice btrfs_misc = {
|
|
.minor = BTRFS_MINOR,
|
|
.name = "btrfs-control",
|
|
.fops = &btrfs_ctl_fops
|
|
};
|
|
|
|
MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
|
|
MODULE_ALIAS("devname:btrfs-control");
|
|
|
|
static int btrfs_interface_init(void)
|
|
{
|
|
return misc_register(&btrfs_misc);
|
|
}
|
|
|
|
static void btrfs_interface_exit(void)
|
|
{
|
|
misc_deregister(&btrfs_misc);
|
|
}
|
|
|
|
static void btrfs_print_mod_info(void)
|
|
{
|
|
pr_info("Btrfs loaded, crc32c=%s"
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
", debug=on"
|
|
#endif
|
|
#ifdef CONFIG_BTRFS_ASSERT
|
|
", assert=on"
|
|
#endif
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
", integrity-checker=on"
|
|
#endif
|
|
#ifdef CONFIG_BTRFS_FS_REF_VERIFY
|
|
", ref-verify=on"
|
|
#endif
|
|
"\n",
|
|
btrfs_crc32c_impl());
|
|
}
|
|
|
|
static int __init init_btrfs_fs(void)
|
|
{
|
|
int err;
|
|
|
|
err = btrfs_hash_init();
|
|
if (err)
|
|
return err;
|
|
|
|
btrfs_props_init();
|
|
|
|
err = btrfs_init_sysfs();
|
|
if (err)
|
|
goto free_hash;
|
|
|
|
btrfs_init_compress();
|
|
|
|
err = btrfs_init_cachep();
|
|
if (err)
|
|
goto free_compress;
|
|
|
|
err = extent_io_init();
|
|
if (err)
|
|
goto free_cachep;
|
|
|
|
err = extent_map_init();
|
|
if (err)
|
|
goto free_extent_io;
|
|
|
|
err = ordered_data_init();
|
|
if (err)
|
|
goto free_extent_map;
|
|
|
|
err = btrfs_delayed_inode_init();
|
|
if (err)
|
|
goto free_ordered_data;
|
|
|
|
err = btrfs_auto_defrag_init();
|
|
if (err)
|
|
goto free_delayed_inode;
|
|
|
|
err = btrfs_delayed_ref_init();
|
|
if (err)
|
|
goto free_auto_defrag;
|
|
|
|
err = btrfs_prelim_ref_init();
|
|
if (err)
|
|
goto free_delayed_ref;
|
|
|
|
err = btrfs_end_io_wq_init();
|
|
if (err)
|
|
goto free_prelim_ref;
|
|
|
|
err = btrfs_interface_init();
|
|
if (err)
|
|
goto free_end_io_wq;
|
|
|
|
btrfs_init_lockdep();
|
|
|
|
btrfs_print_mod_info();
|
|
|
|
err = btrfs_run_sanity_tests();
|
|
if (err)
|
|
goto unregister_ioctl;
|
|
|
|
err = register_filesystem(&btrfs_fs_type);
|
|
if (err)
|
|
goto unregister_ioctl;
|
|
|
|
return 0;
|
|
|
|
unregister_ioctl:
|
|
btrfs_interface_exit();
|
|
free_end_io_wq:
|
|
btrfs_end_io_wq_exit();
|
|
free_prelim_ref:
|
|
btrfs_prelim_ref_exit();
|
|
free_delayed_ref:
|
|
btrfs_delayed_ref_exit();
|
|
free_auto_defrag:
|
|
btrfs_auto_defrag_exit();
|
|
free_delayed_inode:
|
|
btrfs_delayed_inode_exit();
|
|
free_ordered_data:
|
|
ordered_data_exit();
|
|
free_extent_map:
|
|
extent_map_exit();
|
|
free_extent_io:
|
|
extent_io_exit();
|
|
free_cachep:
|
|
btrfs_destroy_cachep();
|
|
free_compress:
|
|
btrfs_exit_compress();
|
|
btrfs_exit_sysfs();
|
|
free_hash:
|
|
btrfs_hash_exit();
|
|
return err;
|
|
}
|
|
|
|
static void __exit exit_btrfs_fs(void)
|
|
{
|
|
btrfs_destroy_cachep();
|
|
btrfs_delayed_ref_exit();
|
|
btrfs_auto_defrag_exit();
|
|
btrfs_delayed_inode_exit();
|
|
btrfs_prelim_ref_exit();
|
|
ordered_data_exit();
|
|
extent_map_exit();
|
|
extent_io_exit();
|
|
btrfs_interface_exit();
|
|
btrfs_end_io_wq_exit();
|
|
unregister_filesystem(&btrfs_fs_type);
|
|
btrfs_exit_sysfs();
|
|
btrfs_cleanup_fs_uuids();
|
|
btrfs_exit_compress();
|
|
btrfs_hash_exit();
|
|
}
|
|
|
|
late_initcall(init_btrfs_fs);
|
|
module_exit(exit_btrfs_fs)
|
|
|
|
MODULE_LICENSE("GPL");
|